Skip to main content
Book cover

Mitochondria pp 197–220Cite as

Mitochondrial Calcium: Role in the Normal and Ischaemic/Reperfused Myocardium

  • Chapter

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 2))

Abstract

The role of intramitochondrial free [Ca2+] ([Ca2+]m) in regulating energy production in the heart is now well-accepted: An increase in [Ca2+]m, such as occurs during increased workload or adrenaline release, activates the mitochondrial dehydrogenases to increase NADH and hence ATP production (reviewed in (Hansford 1994; McCormack et al. 1990)). But [Ca2+]m could also potentially regulate whole-cell cell Ca2+ signalling, by reducing the free [Ca2+] available for contraction, or by ion channel regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerman KE (1978) Changes in membrane potential during calcium ioninflux and efflux across the mitochondrial membrane. Biochim Biophys Acta 502 (2): 359–66

    PubMed  CAS  Google Scholar 

  • Allen SP, Darley-Usmar VM, McCormack JG, Stone D (1993) Changes inmitochondrial matrix free calcium in perfused rat hearts subjected to hypoxia-reoxygenation. J Mol Cell Cardiol 25 (8): 949–58

    PubMed  CAS  Google Scholar 

  • Arieli Y, Gursahani H, Eaton MM, Hernandez LA, Schaefer S (2004) Gender modulation of Ca(2+) uptake in cardiac mitochondria. J Mol Cell Cardiol 37 (2): 507–13

    PubMed  CAS  Google Scholar 

  • Balaban RS (2002) Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol 34 (10): 1259–71

    PubMed  CAS  Google Scholar 

  • Baron KT, Thayer SA (1997) CGP37157 modulates mitochondrial Ca2+ homeostasis in cultured rat dorsal root ganglion neurons. Eur J Pharmacol 340(2-3):295-300

    CAS  Google Scholar 

  • Bell CJ, Rutter GA, Griffiths EJ (2004) Calcium oscillations inmitochondria and cytosol of neonatal and adult rat cardiomyocytesdetected using targeted aequorin. J Physiol 577P:PC72

    Google Scholar 

  • Benzi RH, Lerch R (1992) Dissociation between contractile function and oxidative metabolism in postischemic myocardium. Attenuation by ruthenium red administered during reperfusion. Circ Res 71 (3): 567–76

    PubMed  CAS  Google Scholar 

  • Bers DM (1991) Species differences and the role of sodium-calcium exchange in cardiac muscle relaxation. Ann N Y Acad Sci 639 : 375–85

    PubMed  CAS  Google Scholar 

  • BeutnerG, Sharma VK, Giovannucci DR, Yule DI, Sheu SS (2001) Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 276 (24): 21482–8

    Google Scholar 

  • Beutner G, Sharma VK, Lin L, Ryu SY, Dirksen RT, Sheu SS (2005) Type 1 ryanodine receptor in cardiac mitochondria: Transducer of excitation-metabolism coupling. Biochim Biophys Acta 1717 (1): 1–10

    PubMed  CAS  Google Scholar 

  • Brandes R, Bers DM (1996) Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery. Biophys J 71 (2): 1024–35

    PubMed  CAS  Google Scholar 

  • Brandes R, Bers DM (1997) Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intactcardiac muscle. Circ Res 80 (1): 82–7

    PubMed  CAS  Google Scholar 

  • Brown GC (1992) Control of respiration and ATP synthesis inmammalian mitochondria and cells. Biochem J 284 (Pt 1):1–13

    PubMed  CAS  Google Scholar 

  • Buntinas L, Gunter KK, Sparagna GC, Gunter TE (2001) The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaMin liver mitochondria. Biochim Biophys Acta 1504(2-3):248–61

    PubMed  CAS  Google Scholar 

  • Bush LR, Shlafer M, Haack DW, Lucchesi BR (1980) Time-dependentchanges in canine cardiac mitochondrial function and ultra structureresulting from coronary occlusion and reperfusion. Basic Res Cardio l75 (4): 555–71

    PubMed  CAS  Google Scholar 

  • Carry MM, Mrak RE, Murphy ML, Peng CF, Straub KD, Fody EP (1989) Reperfusion injury in ischemic myocardium: protective effects of ruthenium red and of nitroprusside. Am J Cardiovasc Pathol2 (4): 335–44

    PubMed  CAS  Google Scholar 

  • Chacon E, Ohata H, Harper IS, Trollinger DR, Herman B, Lemasters JJ (1996) Mitochondrial free calcium transients duringexcitation-contraction coupling in rabbit cardiac myocytes. FEBS Lett 382(1-2):31–6

    PubMed  CAS  Google Scholar 

  • Chacon E, Reece JM, Nieminen AL, Zahrebelski G, Herman B, Lemasters JJ (1994) Distribution of electrical potential, pH, free Ca2+, and volume inside cultured adult rabbit cardiac myocytes during chemicalhypoxia: a multiparameter digitized confocal microscopic study. Biophys J 66 (4): 942–52

    PubMed  CAS  Google Scholar 

  • Chance B, Williams GR (1956) Respiratory enzymes in oxidativephosphorylation. VI. The effects of adenosine diphosphate onazide-treated mitochondria. J Biol Chem 221 (1): 477–89

    PubMed  CAS  Google Scholar 

  • Clarke B, Spedding M, Patmore L, McCormack JG (1993) Protective effects of ranolazine in guinea-pig hearts during low-flow ischaemia and their association with increases in active pyruvatedehydrogenase. Br J Pharmacol 109 (3): 748–50

    PubMed  CAS  Google Scholar 

  • Cox DA, Conforti L, Sperelakis N, Matlib MA (1993) Selectivity of inhibition of Na(+)-Ca2+ exchange of heart mitochondria bybenzothiazepine CGP-37157. J Cardiovasc Pharmacol 21 (4): 595–9

    Article  PubMed  CAS  Google Scholar 

  • Cox DA, Matlib MA (1993) A role for the mitochondrial Na(+)-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria. J Biol Chem 268 (2): 938–47

    PubMed  CAS  Google Scholar 

  • Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin Aof a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255 (1): 357–60

    PubMed  CAS  Google Scholar 

  • Crompton M, Heid I (1978) The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem 91 (2): 599–608

    CAS  Google Scholar 

  • Crompton M, Moser R, Ludi H, Carafoli E (1978) The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem 82 (1): 25–31

    PubMed  CAS  Google Scholar 

  • de Jesus Garcia-Rivas G, Guerrero-Hernandez A, Guerrero-Serna G, Rodriguez-Zavala JS, Zazueta C (2005) Inhibition of themitochondrial calcium uniporter by the oxo-bridged dinuclearruthenium amine complex (Ru360) prevents from irreversible injury inpostischemic rat heart. FEBS J 272 (13): 3477–88

    PubMed  Google Scholar 

  • Delcamp TJ, Dales C, Ralenkotter L, Cole PS, Hadley RW (1998) Intramitochondrial [Ca2+] and membrane potential in ventricularmyocytes exposed to anoxia-reoxygenation. Am J Physiol 275(2 Pt2): H484–94

    PubMed  CAS  Google Scholar 

  • Di Lisa F, Blank PS, Colonna R, Gambassi G, Silverman HS, Stern MD, Hansford RG (1995) Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol 486 (Pt 1):1–13

    PubMed  Google Scholar 

  • Di Lisa F, Canton M, Menabo R, Dodoni G, Bernardi P (2003) Mitochondria and reperfusion injury. The role of permeability transition. Basic Res Cardiol 98 (4): 235–41

    PubMed  Google Scholar 

  • Duchen MR, Biscoe TJ (1992) Mitochondrial function in type I cellsisolated from rabbit arterial chemoreceptors. J Physiol 450 : 13–31

    PubMed  CAS  Google Scholar 

  • Figueredo VM, Dresdner KP, Jr., Wolney AC, Keller AM (1991) Postischaemic reperfusion injury in the isolated rat heart: effectof ruthenium red. Cardiovasc Res 25 (4): 337–42

    PubMed  CAS  Google Scholar 

  • Filippin L, Abad MC, Gastaldello S, Magalhaes PJ, Sandona D, Pozzan T (2005) Improved strategies for the delivery of GFP-based Ca2+ sensors into the mitochondrial matrix. Cell Calcium 37 (2): 129–36

    PubMed  CAS  Google Scholar 

  • Fleckenstein A, Frey M, Fleckenstein-Grun G (1983) Consequences of uncontrolled calcium entry and its prevention with calciumantagonists. Eur Heart J 4 Suppl H:43–50

    PubMed  CAS  Google Scholar 

  • Gallitelli MF, Schultz M, Isenberg G, Rudolf F (1999) Twitch-potentiation increases calcium in peripheral more than incentral mitochondria of guinea-pig ventricular myocytes. J Physiol 518 (Pt 2):433–47

    PubMed  CAS  Google Scholar 

  • Griffiths EJ (1999a) Reversal of mitochondrial Na/Ca exchange duringmetabolic inhibition in rat cardiomyocytes. FEBS Lett 453 (3): 400–4

    PubMed  CAS  Google Scholar 

  • Griffiths EJ (1999b) Species dependence of mitochondrial calcium transients during excitation-contraction coupling in isolatedcardiomyocytes. Biochem Biophys Res Commun 263 (2): 554–9

    PubMed  CAS  Google Scholar 

  • Griffiths EJ (2000) Use of ruthenium red as an inhibitor of mitochondrial Ca(2+) uptake in single rat cardiomyocytes. FEBS Lett 486 (3): 257–60

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Halestrap AP (1993) Pyrophosphate metabolism in the perfused heart and isolated heart mitochondria and its role inregulation of mitochondrial function by calcium. Biochem J 290 (Pt2):489-95

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific poresremain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307 (Pt 1):93–8

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Ocampo CJ, Savage JS, Rutter GA, Hansford RG, Stern MD, Silverman HS (1998) Mitochondrial calcium transporting pathwaysduring hypoxia and reoxygenation in single rat cardiomyocytes. Cardiovasc Res 39 (2): 423–33

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Stern MD, Silverman HS (1997a) Measurement of mitochondrial calcium in single living cardiomyocytes by selectiveremoval of cytosolic indo 1. Am J Physiol 273(1 Pt 1):C37–44

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Wei SK, Haigney MC, Ocampo CJ, Stern MD, Silverman HS (1997b) Inhibition of mitochondrial calcium efflux by clonazepam inintact single rat cardiomyocytes and effects on NADH production. Cell Calcium 21 (4): 321–9

    PubMed  CAS  Google Scholar 

  • Grover GJ, Dzwonczyk S, Sleph PG (1990) Ruthenium red improves postischemic contractile function in isolated rat hearts. JCardiovasc Pharmacol 16 (5): 783–9

    CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol.Chem. 260 (6): 3440–3450

    PubMed  CAS  Google Scholar 

  • Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondriatransport calcium. Am J Physiol 258(5 Pt 1):C755–86

    PubMed  CAS  Google Scholar 

  • Gupta MP, Dixon IM, Zhao D, Dhalla NS (1989) Influence of rutheniumred on rat heart subcellular calcium transport. Can J Cardiol5 (1): 55–63

    PubMed  CAS  Google Scholar 

  • Gupta MP, Innes IR, Dhalla NS (1988) Responses of contractile function to ruthenium red in rat heart. Am J Physiol 255(6 Pt2):H1413–20

    PubMed  CAS  Google Scholar 

  • Gursahani HI, Schaefer S (2004) Acidification reduces mitochondrial calcium uptake in rat cardiac mitochondria. Am J Physiol Heart Circ Physiol 287(6):H2659–65

    PubMed  CAS  Google Scholar 

  • Halestrap AP (1991) Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7. Implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J 278 ( Pt 3):715–9

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardialreperfusion–a target for cardioprotection. Cardiovasc Res61 (3): 372–85

    PubMed  CAS  Google Scholar 

  • Hanley PJ, Mickel M, Loffler M, Brandt U, Daut J (2002) KATP channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol (Lond) 542 (3): 735–741

    CAS  Google Scholar 

  • Hansford RG (1994) Physiological role of mitochondrial Ca2+ transport. J Bioenerg Biomembr 26 (5): 495–508

    PubMed  CAS  Google Scholar 

  • Heineman FW, Balaban RS (1993) Effects of afterload and heart rate on NAD(P)H redox state in the isolated rabbit heart. Am J Physiol264 (2 Pt2): H433–40

    PubMed  CAS  Google Scholar 

  • Honda HM, Korge P, Weiss JN (2005) Mitochondria and Ischemia/Reperfusion Injury. Ann NY Acad Sci 1047 (1): 248–258

    PubMed  CAS  Google Scholar 

  • Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treatedmitochondria. J Biol Chem 251 (16): 5069–77

    PubMed  CAS  Google Scholar 

  • Jacobson J, Duchen MR (2004) Interplay between mitochondria and cellular calcium signalling. Mol Cell Biochem 256–257(1-2): 209-18

    PubMed  Google Scholar 

  • Katoh H, Nishigaki N, Hayashi H (2002) Diazoxide Opens the Mitochondrial Permeability Transition Pore and Alters Ca2+ Transients in Rat Ventricular Myocytes. Circulation105 (22): 2666–2671

    PubMed  CAS  Google Scholar 

  • Katz LA, Koretsky AP, Balaban RS (1987) Respiratory control in the glucose perfused heart. A 31P NMR and NADH fluorescence study. FEBS Lett 221 (2): 270–6

    PubMed  CAS  Google Scholar 

  • Katz LA, Swain JA, Portman MA, Balaban RS (1989) Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am JPhysiol 256 (1 Pt2): H265–74

    CAS  Google Scholar 

  • Kawahara K, Takase M, Yamauchi Y (2003) Ruthenium red-induced transition from ventricular fibrillation to tachycardia in isolatedrat hearts: possible involvement of changes in mitochondrial calciumuptake. Cardiovasc Pathol 12 (6): 311–21

    PubMed  CAS  Google Scholar 

  • Landgraf G, Gellerich FN, Wussling MH (2004) Inhibitors of SERCA and mitochondrial Ca-uniporter decrease velocity of calcium waves in ratcardiomyocytes. Mol Cell Biochem 256-257 (1–2): 379–86

    PubMed  CAS  Google Scholar 

  • Lawrence CL, Billups B, Rodrigo GC, Standen NB (2001) The KATP channel opener diazoxide protects cardiac myocytes during metabolic inhibition without causing mitochondrial depolarization orflavoprotein oxidation. Br J Pharmacol 134 (3): 535–542

    PubMed  CAS  Google Scholar 

  • Lee B, Miles PD, Vargas L, Luan P, Glasco S, Kushnareva Y, Kornbrust ES, Grako KA, Wollheim CB, Maechler P, Olefsky JM, Anderson CM (2003) Inhibition of mitochondrial Na+-Ca2+ exchanger increasesmitochondrial metabolism and potentiates glucose-stimulated insulinsecretion in rat pancreatic islets. Diabetes 52 (4): 965–73

    PubMed  CAS  Google Scholar 

  • Leperre A, Millart H, Prevost A, Trenque T, Kantelip JP, Keppler BK (1995) Compared effects of ruthenium red and cis [Ru(NH3)4Cl2]Cl on the isolated ischaemic-reperfused rat heart. Fundam Clin Pharmacol9 (6): 545–53

    PubMed  CAS  Google Scholar 

  • Li W, Shariat-Madar Z,Powers M, Sun X, Lane RD, Garlid KD (1992) Reconstitution, identification, purification, and immunological characterization of the 110-kDa Na+/Ca2+ antiporter from beef heartmitochondria. J. Biol. Chem. 267 (25): 17983–17989

    PubMed  CAS  Google Scholar 

  • Lim KHH, Javadov SA, Das M, Clarke SJ, Suleiman MS, Halestrap AP (2002) The effects of ischaemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration. J Physiol (Lond) 545 (3): 961–974

    CAS  Google Scholar 

  • Matlib MA, Zhou Z, Knight S, Ahmed S, Choi KM, Krause-Bauer J, Phillips R, Altschuld R, Katsube Y, Sperelakis N, Bers DM (1998) Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ insingle cardiac myocytes. J Biol Chem 273 (17): 10223–31

    PubMed  CAS  Google Scholar 

  • McCormack JG, Halestrap A P, Denton RM (1990) Role of calcium ions in regulation of mammlian intramitochondrial metabolism. Physiol Rev 70 (2): 391–425

    PubMed  Google Scholar 

  • McKean TA (1991) Calcium uptake by mitochondria isolated from muskrat and guinea pig hearts. J Exp Biol 157 : 133–42

    PubMed  CAS  Google Scholar 

  • McMillin-Wood J,Wolkowicz PE, Chu A, Tate CA, Goldstein MA, Entman ML (1980) Calcium uptake by two preparations of mitochondria from heart. Biochim Biophys Acta 591 (2): 251–65

    PubMed  CAS  Google Scholar 

  • Mironova GD, Baumann M, Kolomytkin O, Krasichkova Z, Berdimuratov A, Sirota T, Virtanen I, Saris NE (1994) Purification of the channel component of the mitochondrial calcium uniporter and its reconstitution into planar lipid bilayers. J Bioenerg Biomembr26 (2): 231–8

    PubMed  CAS  Google Scholar 

  • Miyamae M, Camacho SA, Weiner MW, Figueredo VM (1996) Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts. Am J Physiol Heart Circ Physiol271 (5): H2145–2153

    CAS  Google Scholar 

  • Miyata H, Lakatta EG, Stern MD, Silverman HS (1992) Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia. Circ Res 71 (3): 605–13

    PubMed  CAS  Google Scholar 

  • Miyata H, Silverman HS, Sollott SJ, Lakatta EG, Stern MD, Hansford RG (1991) Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. Am J Physiol 261(4 Pt2):H1123–34

    PubMed  CAS  Google Scholar 

  • Moore CL (1971) Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun 42 (2): 298–305

    PubMed  CAS  Google Scholar 

  • Murata M, Akao M, O’ Rourke B, Marban E (2001) Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 89 (10): 891–8

    PubMed  CAS  Google Scholar 

  • Myerburg RJ, Interian A, Jr., Mitrani RM, Kessler KM, Castellanos A (1997) Frequency of sudden cardiac death and profiles of risk. Am J Cardiol 80(5B):10F–19F

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Crompton M (1980) Mitochondrial calcium transport. FEBS Lett 111 (2): 261–8

    PubMed  CAS  Google Scholar 

  • Panagiotopoulos S, Daly MJ, Nayler WG (1990) Effect of acidosis and alkalosis on postischemic Ca gain in isolated rat heart. Am J Physiol Heart Circ Physiol 258 (3): H821–828

    CAS  Google Scholar 

  • Park Y, Bowles DK, Kehrer JP (1990) Protection against hypoxic injury in isolated-perfused rat heart by ruthenium red. J Pharmacol Exp Ther 253 (2): 628–35

    PubMed  CAS  Google Scholar 

  • Paucek P, Jaburek M (2004) Kinetics and ion specificity of Na(+)/Ca(2+) exchange mediated by the reconstituted beef heartmitochondrial Na(+)/Ca(2+) antiporter. Biochim Biophys Acta 1659 (1): 83–91

    PubMed  CAS  Google Scholar 

  • Peng CF, Kane JJ, Straub KD, Murphy ML (1980) Improvement of mitochondrial energy production in ischemic myocardium by in vivoinfusion of ruthenium red. J Cardiovasc Pharmacol 2 (1): 45–54

    PubMed  CAS  Google Scholar 

  • Piper HM, Noll T, Siegmund B (1994) Mitochondrial function in the oxygen depleted and reoxygenated myocardial cell. Cardiovasc Res 28 (1): 1–15

    PubMed  CAS  Google Scholar 

  • Pozzan T, Mongillo M, Rudolf R (2003) The Theodore Bucher lecture. Investigating signal transduction with genetically encoded fluorescent probes. Eur J Biochem 270 (11): 2343–52

    PubMed  CAS  Google Scholar 

  • Ridgway EB, Ashley CC (1967) Calcium transients in single muscle fibers. Biochem Biophys Res Commun 29 (2): 229–34

    PubMed  CAS  Google Scholar 

  • Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinantaequorin. Nature 358 (6384): 325–7

    PubMed  CAS  Google Scholar 

  • Robert V, Gurlini P, Tosello V, Nagai T, Miyawaki A, Di Lisa F, Pozzan T (2001) Beat-to-beat oscillations of mitochondrial [Ca2+] incardiac cells. Embo J 20 (17): 4998–5007

    PubMed  CAS  Google Scholar 

  • Sanchez JA, Garcia MC, Sharma VK, Young KC, Matlib MA, Sheu S-S (2001) Mitochondria regulate inactivation of L-type Ca2+ channels inrat heart. J Physiol (Lond) 536 (2): 387–396

    CAS  Google Scholar 

  • Saris NE, Sirota TV, Virtanen I, Niva K, Penttila T, Dolgachova LP,Mironova GD (1993) Inhibition of the mitochondrial calcium uniporter by antibodies against a 40-kDa glycoproteinT. J Bioenerg Biomembr 25 (3): 307–12

    PubMed  CAS  Google Scholar 

  • Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW (1995) Effect of substrate on mitochondrial NADH, cytosolic redoxstate, and phosphorylated compounds in isolated hearts. Am J Physiol 268 (1 Pt2): H82–91

    PubMed  CAS  Google Scholar 

  • Seguchi H, Ritter M, Shizukuishi M, Ishida H, Chokoh G, Nakazawa H, Spitzer KW, Barry WH (2005) Propagation of Ca2+ release in cardiacmyocytes: role of mitochondria. Cell Calcium 38 (1): 1–9

    PubMed  CAS  Google Scholar 

  • Sharikabad MN, Ostbye KM, Brors O (2001) Increased [Mg2+]o reduces Ca2+ influx and disruption of mitochondrial membrane potentialduring reoxygenation. Am J Physiol Heart Circ Physiol 281 (5): H2113–23

    PubMed  CAS  Google Scholar 

  • Sharikabad MN, Ostbye KM, Brors O (2004) Effect of hydrogen peroxideon reoxygenation-induced Ca2+ accumulation in rat cardiomyocytes. Free Rad Biol Med 37 (4): 531–538

    PubMed  CAS  Google Scholar 

  • Shen AC, Jennings RB (1972a) Kinetics of calcium accumulation inacute myocardial ischemic injury. Am J Pathol 67 (3): 441-52

    PubMed  CAS  Google Scholar 

  • Shen AC, Jennings RB (1972b) Myocardial calcium and magnesium inacute ischemic injury. Am J Pathol 67 (3): 417–40

    PubMed  CAS  Google Scholar 

  • Smets I, Caplanusi A, Despa S, Molnar Z, Radu M, vande Ven M, Ameloot M, Steels P (2004) Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am J Physiol Renal Physiol 286 (4): F784–794

    PubMed  CAS  Google Scholar 

  • Sordahl LA, Stewart ML (1980) Mechanism(s) of altered mitochondrial calcium transport in acutely ischemic canine hearts. Circ Res 47 (6): 814–20.

    PubMed  CAS  Google Scholar 

  • Sparagna GC, Gunter KK, Sheu SS, Gunter TE (1995) Mitochondrial calcium uptake from physiological-type pulses of calcium. Adescription of the rapid up take mode. J Biol Chem 270 (46): 27510–5.

    PubMed  CAS  Google Scholar 

  • Stone D, Darley-Usmar V, Smith DR, O’Leary V (1989) Hypoxia-reoxygenation induced increase in cellular Ca2+ in myocytes and perfused hearts: the role of mitochondria. J Mol Cell Cardiol 21 (10): 963–73.

    PubMed  CAS  Google Scholar 

  • Suleiman MS, Halestrap AP, Griffiths EJ (2001) Mitochondria: a target for myocardial protection. Pharmacol Ther 89 (1): 29–46.

    PubMed  CAS  Google Scholar 

  • Takeo S, Tanonaka K, Iwai T, Motegi K, Hirota Y (2004) Preservation of mitochondrial function during ischemia as a possible mechanism for cardioprotection of diltiazem against ischemia/reperfusioninjury. Biochem Pharmacol 67 (3): 565–574.

    PubMed  CAS  Google Scholar 

  • Territo PR, Mootha VK, French SA, Balaban RS (2000) Ca(2+)activation of heart mitochondrial oxidative phosphorylation: role ofthe F(0)/F(1)-ATPase. Am J Physiol Cell Physiol 278 (2): C423–35.

    PubMed  CAS  Google Scholar 

  • Tibbits GF, Xu L, Sedarat F (2002) Ontogeny ofexcitation-contraction coupling in the mammalian heart. Comp BiochemPhysiol A Mol Integr Physiol 132 (4): 691–8.

    Google Scholar 

  • Triepels RH, Van Den Heuvel LP, Trijbels JM, Smeitink JA (2001) Respiratory chain complex I deficiency. Am J Med Genet 106 (1): 37–45.

    Google Scholar 

  • Trollinger DR, Cascio WE, Lemasters JJ (1997) Selective loading of Rhod 2 into mitochondria shows mitochondrial Ca2+ transients duringthe contractile cycle in adult rabbit cardiac myocytes. Biochem Biophys Res Commun 236 (3): 738–42.

    PubMed  CAS  Google Scholar 

  • Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19 (11): 2396–404.

    PubMed  CAS  Google Scholar 

  • Vasington FD, Gazzotti P, Tiozzo R, Carafoli E (1972) The effect of ruthenium red on Ca 2+ transport and respiration in rat livermitochondria. Biochim Biophys Acta 256 (1): 43–54.

    PubMed  CAS  Google Scholar 

  • Visch HJ, Rutter GA, Koopman WJ, Koenderink JB, Verkaart S, de Groot T, Varadi A, Mitchell KJ, van den Heuvel LP, Smeitink JA, Willems PH (2004) Inhibition of mitochondrial Na+-Ca2+ exchange restoresagonist-induced ATP production and Ca2+ handling in human complex Ideficiency. J Biol Chem 279 (39): 40328–36.

    PubMed  CAS  Google Scholar 

  • White RL, Wittenberg BA (1993) NADH fluorescence of isolated ventricular myocytes: effects of pacing, myoglobin, and oxygen supply. Biophys J 65 (1): 196–204.

    PubMed  CAS  Google Scholar 

  • White RL, Wittenberg BA (1995) Effects of calcium on mitochondrial NAD(P)H in paced rat ventricular myocytes. Biophys J 69 (6): 2790–9.

    PubMed  CAS  Google Scholar 

  • Winniford MD, Willerson JT, Hillis LD (1985) Calcium antagonists for acute ischemic heart disease. Am J Cardiol 55 (3): 116B–124B.

    PubMed  CAS  Google Scholar 

  • Ying WL, Emerson J, Clarke MJ, Sanadi DR (1991) Inhibition of mitochondrial calcium ion transport by an oxo-bridged dinuclearruthenium ammine complex. Biochemistry 30 (20): 4949–52.

    PubMed  CAS  Google Scholar 

  • Zazueta C, Zafra G, Vera G, Sanchez C, Chavez E (1998) Advances in the purification of the mitochondrial Ca2+ uniporter using the labeled inhibitor 103Ru360. J Bioenerg Biomembr 30 (5): 489–98.

    PubMed  CAS  Google Scholar 

  • Zhang SZ, Gao Q, Cao CM, Bruce IC, Xia Q (2006) Involvement of the mitochondrial calcium uniporter in cardioprotection by ischemic preconditioning. Life Sci 78 (7): 738–45.

    PubMed  CAS  Google Scholar 

  • Zhou Z, Matlib MA, Bers DM (1998) Cytosolic and mitochondrial Ca2+ signals in patch clamped mammalian ventricular myocytes. J Physiol 507 ( Pt 2):379–403.

    PubMed  CAS  Google Scholar 

  • Zhu LP, Yu XD, Ling S, Brown RA, Kuo TH (2000) Mitochondrial Ca(2+) homeostasis in the regulation of apoptotic and necrotic cell deaths. Cell Calcium 28 (2): 107–17.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Griffiths, E.J., Bell, C.J., Balaska, D., Rutter, G.A. (2007). Mitochondrial Calcium: Role in the Normal and Ischaemic/Reperfused Myocardium. In: Schaffer, S.W., Suleiman, MS. (eds) Mitochondria. Advances in Biochemistry in Health and Disease, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69945-5_9

Download citation

Publish with us

Policies and ethics