Skip to main content

Molecular Structure of the Mitochondrial Citrate Transport Protein

  • Chapter
  • 2329 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 2))

Abstract

The mitochondrial citrate transport protein (i.e., CTP) is located within the inner mitochondrial membrane and in higher eukaryotes catalyzes an obligatory 1:1 exchange of the dibasic form of a tricarboxylic acid (e.g., citrate, isocitrate, or cis-aconitate) for either another tricarboxylate, a dicarboxylate, or phosphoenolpyruvate (Palmieri et al. 1972; Bisaccia et al.1993; Palmieri 2004). The CTP occupies a prominent position within intermediary metabolism since following the efflux of citrate from the mitochondrial matrix and subsequent diffusion across the outer mitochondrial membrane, the resulting cytoplasmic citrate serves as the main carbon source fueling the fatty acid, triacylglycerol, and cholesterol biosynthetic pathways (Watson and Lowenstein 1970; Brunengraber and Lowenstein 1973; Endemann et al. 1982; Conover 1987).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akabas MH, Stauffer DA, Xu M, Karlin A (1992) Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258:307–310

    Article  CAS  PubMed  Google Scholar 

  • Bisaccia F, De Palma A, Dierks T, Kramer R, Palmieri F (1993) Reaction mechanism of the reconstituted tricarboxylate carrier from rat liver mitochondria. Biochim. Biophys. Acta 1142:139–145

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4:187–217

    Article  CAS  Google Scholar 

  • Brunengraber H, Lowenstein JM (1973) Effect of (-)-hydroxycitrate on ethanol metabolism. FEBS Lett 36:130–132

    Article  CAS  PubMed  Google Scholar 

  • Chen J-G, Rudnick G (2000) Permeation and gating residues in serotonin transporter. Proc Nat Acad Sci. USA 97: 1044–1049

    Article  CAS  PubMed  Google Scholar 

  • Conover TE (1987) Does citrate transport supply both acetyl groups and NADPH for cytoplasmic fatty acid synthesis? Trends Biochem Sci. 12:88–89

    Article  CAS  Google Scholar 

  • Endemann G, Goetz PG, Edmond J, Brunengraber H (1982) Lipogenesis from ketone bodies in the isolated perfused rat liver. Evidence for the cytosolic activation of acetoacetate. J Biol Chem 257:3434–3440

    CAS  PubMed  Google Scholar 

  • Fu D, Sarker RI, Abe K, Bolton E, Maloney PC (2001) Structure/function relationships in OxlT, the oxalate-formate transporter of oxalobacter formigenes. Assignment of transmembrane helix 11 to the translocation pathway. J Biol Chem 276: 8753–8760

    Article  CAS  PubMed  Google Scholar 

  • Gasol E, Jimenez-Vidal M, Chillaron J, Zorzano A, Palacin M (2004) Membrane topology of system xc-light subunit reveals a reentrant loop with substrate-restricted accessibility. J Biol Chem 279:31228–31236

    Article  CAS  PubMed  Google Scholar 

  • Henry LK, Adkins EM, Han Q, Blakely RD (2003) Serotonin and cocaine-sensitive inactivation of human serotonin transporters by methanethiosulfonates targeted to transmembrane domain I. J Biol Chem 278: 37052–37063

    Article  CAS  PubMed  Google Scholar 

  • Holmgren M, Liu Y, Xu Y, Yellen G (1996) On the use of thiol-modifying agents to determine channel topology. Neuropharmacology 35:797–804

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RS (1996) Mitochondrial transport processes. In: Schultz SG, Andreoli T, Brown A, Fambrough D, Hoffman J, Welsh J (eds) Molecular Biology of Membrane Transport Disorders. Plenum Press, New York, pp. 277–302

    Google Scholar 

  • Kaplan RS (2001) Structure and function of mitochondrial anion transport proteins. J Membrane Biol 179:165–183

    Article  CAS  Google Scholar 

  • Kaplan RS, Morris HP, Coleman PS (1982) Kinetic characteristics of citrate influx and efflux with mitochondria from Morris hepatomas 3924A and 16. Cancer Res 42:4399–4407

    CAS  PubMed  Google Scholar 

  • Kaplan RS, Mayor JA, Johnston N, Oliveira DL (1990a) Purification and characterization of the reconstitutively active tricarboxylate transporter from rat liver mitochondria. J Biol Chem 265:13379–13385

    CAS  PubMed  Google Scholar 

  • Kaplan RS, Oliveira DL, Wilson GL (1990b) Streptozotocin-induced alterations in the levels of functional mitochondrial anion transport proteins. Arch Biochem Biophys 280:181–191

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RS, Mayor JA, Wood DO (1993) The mitochondrial tricarboxylate transport protein. cDNA cloning, primary structure, and comparison with other mitochondrial transport proteins. J Biol Chem 268:13682–13690

    CAS  PubMed  Google Scholar 

  • Kaplan RS, Mayor JA, Gremse DA, Wood DO (1995). High level expression and characterization of the mitochondrial citrate transport protein from the yeast Saccharomyces cerevisiae. J Biol Chem 270:4108–4114

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RS, Mayor JA, Brauer D, Kotaria R, Walters DE, Dean AM (2000a) The yeast mitochondrial citrate transport protein: probing the secondary structure of transmembrane domain IV and identification of residues that likely comprise a portion of the citrate translocation pathway. J Biol Chem 275:12009–12016

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RS, Mayor JA, Kotaria R, Walters DE, Mchaourab HS (2000b) The yeast mitochondrial citrate transport protein: Determination of secondary structure and solvent accessibility of transmembrane domain IV using site-directed spin labeling. Biochemistry 39:9157–9163

    Article  CAS  PubMed  Google Scholar 

  • Karlin A, Akabas MH (1998) Substituted-cysteine accessibility method. Methods Enzymol 293:123–145

    Article  CAS  PubMed  Google Scholar 

  • Kotaria R, Mayor JA, Walters DE, Kaplan RS (1999) Oligomeric state of wild-type and cysteine-less yeast mitochondrial citrate transport proteins. J Bioenerg Biomemb 31:543–549

    Article  CAS  Google Scholar 

  • Kramer R, Palmieri F (1992) Metabolite carriers in mitochondria. In: Ernster L (ed) Molecular Mechanisms in Bioenergetics. Elsevier, New York, pp. 359–384

    Chapter  Google Scholar 

  • Leighton BH, Seal RP, Shimamoto K, Amara SG (2002) A hydrophobic domain in glutamate transporters forms an extracellular helix associated with the permeation pathway for substrates. J Biol Chem 277: 29847–29855

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Kotaria R, Mayor JA, Eriks LR, Dean AM, Walters DE, Kaplan RS (2004) The mitochondrial citrate transport protein: probing the secondary structure of transmembrane domain III, identification of residues that likely comprise a portion of the citrate transport pathway, and development of a model for the putative TMDIII-TMDIII’ interface. J Biol Chem 279:1533–1540

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Kotaria R, Mayor JA, Remani S, Walters DE, Kaplan RS (2005) The yeast mitochondrial citrate transport protein: characterization of transmembrane domain III residue involvement in substrate translocation. J Biol Chem 280:2331–2340

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Remani S, Kotaria R, Mayor JA, Walters DE, Kaplan RS (2006) The mitochondrial citrate transport protein: evidence for a steric interaction between glutamine 182 and leucine 120 and its relationship to the substrate translocation pathway and identification of other mechanistically essential residues. Biochim Biophys Acta, Manuscript Submitted

    Google Scholar 

  • Nury H, Dahout-Gonzalez C, Treqeguet V, Lauguin G, Brandolin G, Pebay-Peyroula E (2005) Structural basis for lipid-mediated interactions between mitochondrial ADP/ATP carrier monomers. FEBS Lett 579:6031–6036

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch - Eur J Physiol 447:689–709

    Article  CAS  Google Scholar 

  • Palmieri F, Stipani I, Quagliariello E, Klingenberg M (1972) Kinetic study of the tricarboxylate carrier in rat liver mitochondria. Eur J Biochem 26:587–594

    Article  CAS  Google Scholar 

  • Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ-M, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxytractyloside. Nature 426:39–44

    Article  CAS  PubMed  Google Scholar 

  • Seal RP, Amara SG (1998) A reentrant loop domain in the glutamate carrier EAAT1 participates in substrate binding and translocation. Neuron 21: 1487–1498

    Article  CAS  PubMed  Google Scholar 

  • Walters DE, Kaplan RS (2004) Homology-modeled structure of the yeast mitochondrial citrate transport protein. Biophys J 87:907–911

    Article  CAS  PubMed  Google Scholar 

  • Watson JA, Lowenstein JM (1970) Citrate and the conversion of carbohydrate into fat. Fatty acid synthesis by a combination of cytoplasm and mitochondria, J Biol Chem 245:5993–6002

    CAS  PubMed  Google Scholar 

  • West IC (1997) Ligand conduction and the gated-port mechanism of transmembrane transport. Biochim Biophys Acta 1331:213–234

    CAS  PubMed  Google Scholar 

  • Xu Y, Mayor JA, Gremse D, Wood DO, Kaplan RS (1995) High-Yield bacterial expression, purification, and functional reconstitution of the tricarboxylate transport protein from rat liver mitochondria. Biochem Biophys Res Comm 207:783–789

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Kakhniashvili DA, Gremse DA, Wood DO, Mayor JA, Walters DE, Kaplan RS (2000) The yeast mitochondrial citrate transport protein: probing the roles of cysteines, Arg181, and Arg189 in transporter function. J Biol Chem 275:7117–7124

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Maloney PC (2002) Structure/function relationships in OxlT, the oxalate/formate antiporter of Oxalobacter formigenes: assignment of transmembrane helix 2 to the translocation pathway. J Biol Chem 277: 20372–20378

    Article  CAS  PubMed  Google Scholar 

  • Zomot E, Kanner BI (2003) The interaction of the gamma-aminobutyric acid transporter GAT-1 with the neurotransmitter is selectively impaired by sulfhydryl modification of a conformationally sensitive cysteine residue engineered into extracellular loop IV. J Biol Chem 278: 42950–42958

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kaplan, R.S., Mayor, J.A. (2007). Molecular Structure of the Mitochondrial Citrate Transport Protein. In: Schaffer, S.W., Suleiman, MS. (eds) Mitochondria. Advances in Biochemistry in Health and Disease, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69945-5_4

Download citation

Publish with us

Policies and ethics