Skip to main content

Modeling Stromal–Epithelial Interactions

  • Chapter
  • First Online:
Genetically Engineered Mice for Cancer Research

Abstract

Modeling the microenvironment of cancer cells has become of particular interest due to increasing evidence linking phenotypic and genotypic alterations within the stromal compartment to the progression of tumors. The dynamic interactions between cancer cells and their host environment can contribute to some of the most destructive characteristics of cancer, including loss of growth control, invasion, and metastasis. While most current cancer models have been focusing on changes in the epithelial compartment, much less is known about the stromal cells and their contribution to the carcinogenic process. An understanding of the tumor microenvironment provides additional targets for preempting cancer and allows the development of better methods for treating it. There have been many attempts to study interactions between tumors and their environment, using in vitro and in vivo models. The value of each of these approaches depends upon the question to be addressed. We will examine some of the most common systems and discuss their utility, as well as propose future challenges for developing new models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate-Shen C, Shen MM (2007) FGF signaling in prostate tumorigenesis – new insights into epithelial-stromal interactions. Cancer Cell 12:495–497

    PubMed  CAS  Google Scholar 

  • Acevedo VD, Gangula RD, Freeman KW, Li R, Zhang Y, Wang F, Ayala GE, Peterson LE, Ittmann M, Spencer DM (2007) Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 12:559–571

    PubMed  CAS  Google Scholar 

  • Agrez M, Chen A, Cone RI, Pytela R, Sheppard D (1994) The alpha v beta 6 integrin promotes proliferation of colon carcinoma cells through a unique region of the beta 6 cytoplasmic domain. J Cell Biol 127:547–556

    PubMed  CAS  Google Scholar 

  • Ao M, Franco OE, Park D, Raman D, Williams K, Hayward SW (2007) Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res 67:4244–4253

    PubMed  CAS  Google Scholar 

  • Ao M, Williams K, Bhowmick NA, Hayward SW (2006) Transforming growth factor-beta promotes invasion in tumorigenic but not in nontumorigenic human prostatic epithelial cells. Cancer Res 66:8007–8016

    PubMed  CAS  Google Scholar 

  • Arribas J, Bech-Serra JJ, Santiago-Josefat B (2006) ADAMs, cell migration and cancer. Cancer Metastasis Rev 25:57–68

    PubMed  Google Scholar 

  • Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ (1989) Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–235

    PubMed  CAS  Google Scholar 

  • Barcellos-Hoff MH, Ravani SA (2000) Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 60:1254–1260

    PubMed  CAS  Google Scholar 

  • Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D, DePinho RA (2006) Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 20:3130–3146

    PubMed  CAS  Google Scholar 

  • Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851

    PubMed  CAS  Google Scholar 

  • Bilozur ME, Hay ED (1988) Neural crest migration in 3D extracellular matrix utilizes laminin, fibronectin, or collagen. Dev Biol 125:19–33

    PubMed  CAS  Google Scholar 

  • Bing RJ, Binder T, Pataricza J, Kibira S, Narayan KS (1991) The use of microcarrier beads in the production of endothelium-derived relaxing factor by freshly harvested endothelial cells. Tissue Cell 23:151–159

    PubMed  CAS  Google Scholar 

  • Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32–43

    PubMed  CAS  Google Scholar 

  • Brinkmann V, Foroutan H, Sachs M, Weidner KM, Birchmeier W (1995) Hepatocyte growth factor/scatter factor induces a variety of tissue-specific morphogenic programs in epithelial cells. J Cell Biol 131:1573–1586

    PubMed  CAS  Google Scholar 

  • Brittan M, Chance V, Elia G, Poulsom R, Alison MR, MacDonald TT, Wright NA (2005) A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts. Gastroenterology 128:1984–1995

    PubMed  Google Scholar 

  • Buchanan DL, Kurita T, Taylor JA, Lubahn DL, Cunha GR, Cooke PS (1998a) Role of stromal and epithelial estrogen receptors in vaginal epithelial proliferation, stratification and cornification. Endocrinology 139:4345–4352

    PubMed  CAS  Google Scholar 

  • Buchanan DL, Setiawan T, Lubahn DL, Taylor JA, Kurita T, Cunha GR, Cooke PS (1998b) Tissue compartment-specific estrogen receptor participation in the mouse uterine epithelial secretory response. Endocrinology 140:484–491

    Google Scholar 

  • Castellsague X, Bosch FX, Munoz N (2002) Environmental co-factors in HPV carcinogenesis. Virus Res 89:191–199

    PubMed  CAS  Google Scholar 

  • Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR, Werb Z, Coussens LM, DeClerck YA (2004) Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 64:1675–1686

    PubMed  CAS  Google Scholar 

  • Chiu WS, McManus JF, Notini AJ, Cassady AI, Zajac JD, Davey RA (2004) Transgenic mice that express Cre recombinase in osteoclasts. Genesis 39:178–185

    PubMed  CAS  Google Scholar 

  • Chung LW (1995) The role of stromal-epithelial interaction in normal and malignant growth. Cancer Surv 23:33–42

    PubMed  CAS  Google Scholar 

  • Clark JM, Hirtenstein MD (1981) Optimizing culture conditions for the production of animal cells in microcarrier culture. Ann N Y Acad Sci 369:33–46

    PubMed  CAS  Google Scholar 

  • Coleman RE (1997) Skeletal complications of malignancy. Cancer 80:1588–1594

    PubMed  CAS  Google Scholar 

  • Cooper M, Pinkus H (1977) Intrauterine transplantation of rat basal cell carcinoma as a model for reconversion of malignant to benign growth. Cancer Res 37:2544–2552

    PubMed  CAS  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    PubMed  CAS  Google Scholar 

  • Cunha GR, Alarid ET, Turner T, Donjacour AA, Boutin EL, Foster BA (1992a) Normal and abnormal development of the male urogenital tract: role of androgens, mesenchymal-epithelial interactions and growth factors. J Androl 13:465–475

    PubMed  CAS  Google Scholar 

  • Cunha GR, Battle E, Young P, Brody J, Donjacour A, Hayashi N, Kinbara H (1992b) Role of epithelial-mesenchymal interactions in the differentiation and spatial organization of visceral smooth muscle. Epithelial Cell Biol 1:76–83

    PubMed  CAS  Google Scholar 

  • Cunha GR, Chung LWK (1981) Stromal-epithelial interactions: I. Induction of prostatic phenotype in urothelium of testicular feminized (Tfm/y) mice. J. Steroid Biochem 14:1317–1321

    CAS  Google Scholar 

  • Cunha GR, Fujii H, Neubauer BL, Shannon JM, Sawyer LM, Reese BA (1983) Epithelial-mesenchymal interactions in prostatic development. I. Morphological observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. J Cell Biol 96:1662–1670

    PubMed  CAS  Google Scholar 

  • Cunha GR, Hayward SW, Dahiya R, Foster BA (1996) Smooth muscle-epithelial interactions in normal and neoplastic prostatic development. Acta Anat (Basel) 155:63–72

    CAS  Google Scholar 

  • Dacquin R, Starbuck M, Schinke T, Karsenty G (2002) Mouse alpha1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Dev Dyn 224:245–251

    PubMed  CAS  Google Scholar 

  • Donjacour AA, Cunha GR (1993) Assessment of prostatic protein secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium from normal or androgen-insensitive mice. Endocrinology 131:2342–2350

    Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    PubMed  CAS  Google Scholar 

  • Eaton KA (1999) Animal models of Helicobacter gastritis. Curr Top Microbiol Immunol 241:123–154

    PubMed  CAS  Google Scholar 

  • Egeblad M, Littlepage LE, Werb Z (2005) The fibroblastic coconspirator in cancer progression. Cold Spring Harb Symp Quant Biol 70:383–388

    PubMed  CAS  Google Scholar 

  • Forbes SJ, Russo FP, Rey V, Burra P, Rugge M, Wright NA, Alison MR (2004) A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 126:955–963

    PubMed  Google Scholar 

  • Freeman KW, Welm BE, Gangula RD, Rosen JM, Ittmann M, Greenberg NM, Spencer DM (2003) Inducible prostate intraepithelial neoplasia with reversible hyperplasia in conditional FGFR1-expressing mice. Cancer Res 63:8256–8263

    PubMed  CAS  Google Scholar 

  • Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    PubMed  CAS  Google Scholar 

  • Fuchs E (1882) Das Sarkom des Uvealtractus. Graefe’s Archiv für Ophthalmologie XII: 233

    Google Scholar 

  • Fukino K, Shen L, Matsumoto S, Morrison CD, Mutter GL, Eng C (2004) Combined total genome loss of heterozygosity scan of breast cancer stroma and epithelium reveals multiplicity of stromal targets. Cancer Res 64:7231–7236

    PubMed  CAS  Google Scholar 

  • Gahwiler BH, Capogna M, Debanne D, McKinney RA, Thompson SM (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20:471–477

    PubMed  CAS  Google Scholar 

  • Galasko CS (1986) Skeletal metastases. Clin Orthop Relat Res:18–30

    Google Scholar 

  • Giri D, Ropiquet F, Ittmann M (1999a) Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res 5:1063–1071

    PubMed  CAS  Google Scholar 

  • Giri D, Ropiquet F, Ittmann M (1999b) FGF9 is an autocrine and paracrine prostatic growth factor expressed by prostatic stromal cells. J Cell Physiol 180:53–60

    PubMed  CAS  Google Scholar 

  • Glinsky VV, Huflejt ME, Glinsky GV, Deutscher SL, Quinn TP (2000) Effects of Thomsen-Friedenreich antigen-specific peptide P-30 on beta-galactoside-mediated homotypic aggregation and adhesion to the endothelium of MDA-MB-435 human breast carcinoma cells. Cancer Res 60:2584–2588

    PubMed  CAS  Google Scholar 

  • Grossfeld GD, Hayward SW, Tlsty TD, Cunha GR (1998) The role of stroma in prostatic carcinogenesis. Endocr Relat Cancer 5:253–270

    Google Scholar 

  • Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW (2002) Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 115:39–50

    PubMed  CAS  Google Scholar 

  • Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, Dubus P, Sandgren EP, Barbacid M (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302

    PubMed  CAS  Google Scholar 

  • Habib FK, Ross M, Bayne CW (2000) Development of a new in vitro model for the study of benign prostatic hyperplasia. Prostate Suppl 9:15–20

    PubMed  CAS  Google Scholar 

  • Hammond TG, Hammond JM (2001) Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol 281:F12–25

    PubMed  CAS  Google Scholar 

  • Hayashi N, Cunha GR (1991) Mesenchyme-induced changes in the neoplastic characteristics of the Dunning prostatic adenocarcinoma. Cancer Res 51:4924–4930

    PubMed  CAS  Google Scholar 

  • Hayward SW (2002) Approaches to modeling stromal-epithelial interactions. J Urol 168:1165–1172

    PubMed  Google Scholar 

  • Hayward SW, Cunha GR, Dahiya R (1996) Normal development and carcinogenesis of the prostate. A unifying hypothesis. Ann N Y Acad Sci 784:50–62

    PubMed  CAS  Google Scholar 

  • Hayward SW, Dahiya R, Cunha GR, Bartek J, Deshpande N, Narayan P (1995) Establishment and characterization of an immortalized but non-transformed human prostate epithelial cell line: BPH-1. In Vitro Cell Dev Biol Anim 31:14–24

    PubMed  CAS  Google Scholar 

  • Hayward SW, Del Buono R, Deshpande N, Hall PA (1992) A functional model of adult human prostate epithelium. The role of androgens and stroma in architectural organisation and the maintenance of differentiated secretory function. J Cell Sci 102(Pt 2):361–372

    PubMed  CAS  Google Scholar 

  • Hayward SW, Haughney PC, Rosen MA, Greulich KM, Weier HU, Dahiya R, Cunha GR (1998) Interactions between adult human prostatic epithelium and rat urogenital sinus mesenchyme in a tissue recombination model. Differentiation 63:131–140

    PubMed  CAS  Google Scholar 

  • Hayward SW, Rosen MA, Cunha GR (1997) Stromal-epithelial interactions in the normal and neoplastic prostate. Br J Urol 79(Suppl 2):18–26

    PubMed  Google Scholar 

  • Hayward SW, Wang Y, Cao M, Hom YK, Zhang B, Grossfeld GD, Sudilovsky D, Cunha GR (2001) Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res 61:8135–8142

    PubMed  CAS  Google Scholar 

  • Hayward SW, Wang Y, Day ML (2003) Rescue and isolation of Rb-deficient prostate epithelium by tissue recombination. Methods Mol Biol 218:17–33

    PubMed  CAS  Google Scholar 

  • He Y, Franco OE, Jiang M, Williams K, Love HD, Coleman IM, Nelson PS, Hayward SW (2007) Tissue-specific consequences of cyclin D1 overexpression in prostate cancer progression. Cancer Res 67:8188–8197

    PubMed  CAS  Google Scholar 

  • Hebner C, Weaver VM, Debnath J (2008) Modeling morphogenesis and oncogenesis in three-dimensional breast epithelial cultures. Annu Rev Pathol 3:313–339

    PubMed  CAS  Google Scholar 

  • Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    PubMed  CAS  Google Scholar 

  • Hicks RM (1980) Initiation and promotion in the transitional epithelium of the rat bladder. Br J Cancer 41:504–505

    PubMed  CAS  Google Scholar 

  • Hicks RM, Chowaniec J (1977) The importance of synergy between weak carcinogens in the induction of bladder cancer in experimental animals and humans. Cancer Res 37:2943–2949

    PubMed  CAS  Google Scholar 

  • Hicks RM, Wakefield JSJ (1972) Rapid induction of bladder cancer in rats with N-methyl-N-nitrosourea. I. Histology. Chem Biol Interact 5:139–152

    PubMed  CAS  Google Scholar 

  • Hill R, Song Y, Cardiff RD, Van Dyke T (2005) Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123:1001–1011

    PubMed  CAS  Google Scholar 

  • Hodges GM, Hicks RM, Spacey GD (1977) Epithelial-stromal interactions in normal and chemical carcinogen-treated adult bladder. Cancer Res 37:3720–3730

    PubMed  CAS  Google Scholar 

  • Houghton J, Wang TC (2005) Helicobacter pylori and gastric cancer: a new paradigm for inflammation-associated epithelial cancers. Gastroenterology 128:1567–1578

    PubMed  CAS  Google Scholar 

  • Huang S, Van Arsdall M, Tedjarati S, McCarty M, Wu W, Langley R, Fidler IJ (2002) Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst 94:1134–1142

    PubMed  CAS  Google Scholar 

  • Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem J 322(Pt 3):809–814

    PubMed  CAS  Google Scholar 

  • Ishii K, Shappell SB, Matusik RJ, Hayward SW (2005) Use of tissue recombination to predict phenotypes of transgenic mouse models of prostate carcinoma. Lab Invest 85:1086–1103

    PubMed  CAS  Google Scholar 

  • Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, Uehira M (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17:177–181

    PubMed  CAS  Google Scholar 

  • Ittman M, Mansukhani A (1997) Expression of fibroblast growth factors (FGFs) and FGF receptors in human prostate. J Urol 157:351–356

    PubMed  CAS  Google Scholar 

  • Itzkowitz SH, Yio X (2004) Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287:G7–17

    PubMed  CAS  Google Scholar 

  • Iwano M, Fischer A, Okada H, Plieth D, Xue C, Danoff TM, Neilson EG (2001) Conditional abatement of tissue fibrosis using nucleoside analogs to selectively corrupt DNA replication in transgenic fibroblasts. Mol Ther 3:149–159

    PubMed  CAS  Google Scholar 

  • Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350

    PubMed  CAS  Google Scholar 

  • Jacquot J, Spilmont C, Burlet H, Fuchey C, Buisson AC, Tournier JM, Gaillard D, Puchelle E (1994) Glandular-like morphogenesis and secretory activity of human tracheal gland cells in a three-dimensional collagen gel matrix. J Cell Physiol 161:407–418

    PubMed  CAS  Google Scholar 

  • Jodele S, Chantrain CF, Blavier L, Lutzko C, Crooks GM, Shimada H, Coussens LM, Declerck YA (2005) The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res 65:3200–3208

    PubMed  CAS  Google Scholar 

  • Jura N, Archer H, Bar-Sagi D (2005) Chronic pancreatitis, pancreatic adenocarcinoma and the black box in-between. Cell Res 15:72–77

    PubMed  CAS  Google Scholar 

  • Kang KI, Meng X, Devin-Leclerc J, Bouhouche I, Chadli A, Cadepond F, Baulieu EE, Catelli MG (1999) The molecular chaperone Hsp90 can negatively regulate the activity of a glucocorticosteroid-dependent promoter. Proc Natl Acad Sci USA 96:1439–1444

    PubMed  CAS  Google Scholar 

  • Kiaris H, Chatzistamou I, Trimis G, Frangou-Plemmenou M, Pafiti-Kondi A, Kalofoutis A (2005) Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis. Cancer Res 65:1627–1630

    PubMed  CAS  Google Scholar 

  • Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    PubMed  CAS  Google Scholar 

  • Klingelhofer J, Ambartsumian NS, Lukanidin EM (1997) Expression of the metastasis-associated mts1 gene during mouse development. Dev Dyn 210:87–95

    PubMed  CAS  Google Scholar 

  • Kornfeld D, Ekbom A, Ihre T (1997) Is there an excess risk for colorectal cancer in patients with ulcerative colitis and concomitant primary sclerosing cholangitis? A population based study. Gut 41:522–525

    PubMed  CAS  Google Scholar 

  • Kuhbandner S, Brummer S, Metzger D, Chambon P, Hofmann F, Feil R (2000) Temporally controlled somatic mutagenesis in smooth muscle. Genesis 28:15–22

    PubMed  CAS  Google Scholar 

  • Kunz-Schughart LA, Heyder P, Schroeder J, Knuechel R (2001) A heterologous 3-D coculture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation. Exp Cell Res 266:74–86

    PubMed  CAS  Google Scholar 

  • Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 101:4966–4971

    PubMed  CAS  Google Scholar 

  • Kurita T, Lee KJ, Cooke PS, Lydon JP, Cunha GR (2000) Paracrine regulation of epithelial progesterone receptor and lactoferrin by progesterone in the mouse uterus. Biol Reprod 62:831–838

    PubMed  CAS  Google Scholar 

  • Kurita T, Wang YZ, Donjacour AA, Zhao C, Lydon JP, O’Malley BW, Isaacs JT, Dahiya R, Cunha GR (2001) Paracrine regulation of apoptosis by steroid hormones in the male and female reproductive system. Cell Death Differ 8:192–200

    PubMed  CAS  Google Scholar 

  • Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C (2002) Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 32:355–357

    PubMed  CAS  Google Scholar 

  • Kveiborg M, Frohlich C, Albrechtsen R, Tischler V, Dietrich N, Holck P, Kronqvist P, Rank F, Mercurio AM, Wewer UM (2005) A role for ADAM12 in breast tumor progression and stromal cell apoptosis. Cancer Res 65:4754–4761

    PubMed  CAS  Google Scholar 

  • Kwabi-Addo B, Ozen M, Ittmann M (2004) The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer 11:709–724

    PubMed  CAS  Google Scholar 

  • Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA 89:6232–6236

    PubMed  CAS  Google Scholar 

  • Lane WJ, Dias S, Hattori K, Heissig B, Choy M, Rabbany SY, Wood J, Moore MA, Rafii S (2000) Stromal-derived factor 1-induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases. Blood 96:4152–4159

    PubMed  CAS  Google Scholar 

  • Lee EY, Lee WH, Kaetzel CS, Parry G, Bissell MJ (1985) Interaction of mouse mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion. Proc Natl Acad Sci USA 82:1419–1423

    PubMed  CAS  Google Scholar 

  • Lee EY, Parry G, Bissell MJ (1984) Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J Cell Biol 98:146–155

    PubMed  CAS  Google Scholar 

  • Lee GY, Kenny PA, Lee EH, Bissell MJ (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4:359–365

    PubMed  CAS  Google Scholar 

  • Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68

    PubMed  CAS  Google Scholar 

  • Lipschutz JH, Foster BA, Cunha GR (1997) Differentiation of rat neonatal ventral prostates grown in a serum-free organ culture system. Prostate 32:35–42

    PubMed  CAS  Google Scholar 

  • Littlepage LE, Egeblad M, Werb Z (2005) Coevolution of cancer and stromal cellular responses. Cancer Cell 7:499–500

    PubMed  CAS  Google Scholar 

  • Manes S, Llorente M, Lacalle RA, Gomez-Mouton C, Kremer L, Mira E, Martinez AC (1999) The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J Biol Chem 274:6935–6945

    PubMed  CAS  Google Scholar 

  • Manes S, Mira E, Barbacid MM, Cipres A, Fernandez-Resa P, Buesa JM, Merida I, Aracil M, Marquez G, Martinez AC (1997) Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J Biol Chem 272:25706–25712

    PubMed  CAS  Google Scholar 

  • Mantovani A, Romero P, Palucka AK, Marincola FM (2008) Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371:771–783

    PubMed  CAS  Google Scholar 

  • Marker PC, Donjacour AA, Dahiya R, Cunha GR (2003) Hormonal, cellular, and molecular control of prostatic development. Dev Biol 253:165–174

    PubMed  CAS  Google Scholar 

  • Matsumoto N, Yoshida T, Yamashita K, Numata Y, Okayasu I (2003) Possible alternative carcinogenesis pathway featuring microsatellite instability in colorectal cancer stroma. Br J Cancer 89:707–712

    PubMed  CAS  Google Scholar 

  • Memarzadeh S, Xin L, Mulholland DJ, Mansukhani A, Wu H, Teitell MA, Witte ON (2007) Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. Cancer Cell 12:572–585

    PubMed  CAS  Google Scholar 

  • Miwa T, Koyama T, Shirai M (2000) Muscle specific expression of Cre recombinase under two actin promoters in transgenic mice. Genesis 26:136–138

    PubMed  CAS  Google Scholar 

  • Moul JW, Lipo DR (1999) Prostate cancer in the late 1990s: hormone refractory disease options. Urol Nurs 19:125–131, quiz 132–123

    PubMed  CAS  Google Scholar 

  • Naiche LA, Papaioannou VE (2007) Tbx4 is not required for hindlimb identity or post-bud hindlimb outgrowth. Development 134:93–103

    PubMed  CAS  Google Scholar 

  • Nakamura E, Nguyen MT, Mackem S (2006) Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev Dyn 235:2603–2612

    PubMed  CAS  Google Scholar 

  • Nakamura T, Matsumoto K, Kiritoshi A, Tano Y (1997) Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res 57:3305–3313

    PubMed  CAS  Google Scholar 

  • Nelson WG, DeWeese TL, DeMarzo AM (2002) The diet, prostate inflammation, and the development of prostate cancer. Cancer Metastasis Rev 21:3–16

    PubMed  CAS  Google Scholar 

  • Neubauer BL, Chung LWK, McCormick KA, Taguchi O, Thompson TC, Cunha GR (1983) Epithelial-mesenchymal interactions in prostatic development. II. Biochemical observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. J Cell Biol 96:1671–1676

    PubMed  CAS  Google Scholar 

  • Noble RL (1977) Sex steroids as a cause of adenocarcinoma of the dorsal prostate in Nb rats, and their influence on the growth of transplants. Oncology 34:138–141

    PubMed  CAS  Google Scholar 

  • Noble RL (1980) Production of Nb rat carcinoma of the dorsal prostate and response of estrogen-dependent transplants to sex hormones and tamoxifen. Cancer Res 40:3547–3550

    PubMed  CAS  Google Scholar 

  • Ohuchida K, Mizumoto K, Murakami M, Qian LW, Sato N, Nagai E, Matsumoto K, Nakamura T, Tanaka M (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64:3215–3222

    PubMed  CAS  Google Scholar 

  • Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011

    PubMed  CAS  Google Scholar 

  • Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271:15292–15297

    PubMed  CAS  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573

    Google Scholar 

  • Papini S, Rosellini A, Campani D, DeMatteis A, Selli C, Revoltella RP (2004) Selective growth of epithelial basal cells from human prostate in a three-dimensional organ culture. Prostate 59:383–392

    PubMed  CAS  Google Scholar 

  • Papini S, Rosellini A, De Matteis A, Campani D, Selli C, Caporali A, Bettuzzi S, Revoltella RP (2007) Establishment of an organotypic in vitro culture system and its relevance to the characterization of human prostate epithelial cancer cells and their stromal interactions. Pathol Res Pract 203:209–216

    PubMed  Google Scholar 

  • Paterson RF, Ulbright TM, MacLennan GT, Zhang S, Pan CX, Sweeney CJ, Moore CR, Foster RS, Koch MO, Eble JN, Cheng L (2003) Molecular genetic alterations in the laser-capture-microdissected stroma adjacent to bladder carcinoma. Cancer 98:1830–1836

    PubMed  CAS  Google Scholar 

  • Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA 89:9064–9068

    PubMed  CAS  Google Scholar 

  • Pierce G, Shikes R, Fink L (1978) Cancer: a problem of developmental biology. Q Rev Biol 54:183–184

    Google Scholar 

  • Polnaszek N, Kwabi-Addo B, Peterson LE, Ozen M, Greenberg NM, Ortega S, Basilico C, Ittmann M (2003) Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Res 63:5754–5760

    PubMed  CAS  Google Scholar 

  • Postovit LM, Seftor EA, Seftor RE, Hendrix MJ (2006) A three-dimensional model to study the epigenetic effects induced by the microenvironment of human embryonic stem cells. Stem Cells 24:501–505

    PubMed  CAS  Google Scholar 

  • Regan CP, Manabe I, Owens GK (2000) Development of a smooth muscle-targeted cre recombinase mouse reveals novel insights regarding smooth muscle myosin heavy chain promoter regulation. Circ Res 87:363–369

    PubMed  CAS  Google Scholar 

  • Ricke WA, Ishii K, Ricke EA, Simko J, Wang Y, Hayward SW, Cunha GR (2006) Steroid hormones stimulate human prostate cancer progression and metastasis. Int J Cancer 118:2123–2131

    PubMed  CAS  Google Scholar 

  • Ricke WA, McPherson SJ, Bianco JJ, Cunha GR, Wang Y, Risbridger GP (2007a) Prostatic hormonal carcinogenesis is mediated by in situ estrogen production and estrogen receptor alpha signaling. FASEB J 22(5):1512–20

    PubMed  Google Scholar 

  • Ricke WA, Wang Y, Cunha GR (2007b) Steroid hormones and carcinogenesis of the prostate: the role of estrogens. Differentiation 75:871–882

    PubMed  CAS  Google Scholar 

  • Robinson GW, Wagner KU, Hennighausen L (2001) Functional mammary gland development and oncogene-induced tumor formation are not affected by the absence of the retinoblastoma gene. Oncogene 20:7115–7119

    PubMed  CAS  Google Scholar 

  • Ronnov-Jessen L, Petersen OW, Bissell MJ (1996) Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76:69–125

    PubMed  CAS  Google Scholar 

  • Ropiquet F, Giri D, Kwabi-Addo B, Schmidt K, Ittmann M (2000) FGF-10 is expressed at low levels in the human prostate. Prostate 44:334–338

    PubMed  CAS  Google Scholar 

  • Roskelley CD, Desprez PY, Bissell MJ (1994) Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc Natl Acad Sci USA 91:12378–12382

    PubMed  CAS  Google Scholar 

  • Sakai T, Larsen M, Yamada KM (2003) Fibronectin requirement in branching morphogenesis. Nature 423:876–881

    PubMed  CAS  Google Scholar 

  • Salcedo R, Oppenheim JJ (2003) Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 10:359–370

    PubMed  CAS  Google Scholar 

  • Sauer B (2002) Cre/lox: one more step in the taming of the genome. Endocrine 19:221–228

    PubMed  CAS  Google Scholar 

  • Seitz HK, Stickel F (2006) Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol Chem 387:349–360

    PubMed  CAS  Google Scholar 

  • Song Z, Wu X, Powell WC, Cardiff RD, Cohen MB, Tin RT, Matusik RJ, Miller GJ, Roy-Burman P (2002) Fibroblast growth factor 8 isoform B overexpression in prostate epithelium: a new mouse model for prostatic intraepithelial neoplasia. Cancer Res 62:5096–5105

    PubMed  CAS  Google Scholar 

  • Staack A, Donjacour AA, Brody J, Cunha GR, Carroll P (2003) Mouse urogenital development: a practical approach. Differentiation 71:402–413

    PubMed  Google Scholar 

  • Sugimura Y, Foster BA, Hom YK, Lipschutz JH, Rubin JS, Finch PW, Aaronson SA, Hayashi N, Kawamura J, Cunha GR (1996) Keratinocyte growth factor (KGF) can replace testosterone in the ductal branching morphogenesis of the rat ventral prostate. Int J Dev Biol 40:941–951

    PubMed  CAS  Google Scholar 

  • Sutherland RM, Inch WR, McCredie JA, Kruuv J (1970) A multi-component radiation survival curve using an in vitro tumour model. Int J Radiat Biol Relat Stud Phys Chem Med 18:491–495

    PubMed  CAS  Google Scholar 

  • Tan W, Krishnaraj R, Desai TA (2001) Evaluation of nanostructured composite collagen – chitosan matrices for tissue engineering. Tissue Eng 7:203–210

    PubMed  CAS  Google Scholar 

  • Thompson TC, Southgate J, Kitchener G, Land H (1989) Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 56:917–930

    PubMed  CAS  Google Scholar 

  • Thomson AA (2001) Role of androgens and fibroblast growth factors in prostatic development. Reproduction 121:187–195

    PubMed  CAS  Google Scholar 

  • Tuxhorn JA, Ayala GE, Rowley DR (2001) Reactive stroma in prostate cancer progression. J Urol 166:2472–2483

    PubMed  CAS  Google Scholar 

  • Tyson DR, Inokuchi J, Tsunoda T, Lau A, Ornstein DK (2007) Culture requirements of prostatic epithelial cell lines for acinar morphogenesis and lumen formation in vitro: role of extracellular calcium. Prostate 67:1601–1613

    PubMed  CAS  Google Scholar 

  • Wang R, Xu J, Juliette L, Castilleja A, Love J, Sung SY, Zhau HE, Goodwin TJ, Chung LW (2005) Three-dimensional co-culture models to study prostate cancer growth, progression, and metastasis to bone. Semin Cancer Biol 15:353–364

    PubMed  CAS  Google Scholar 

  • Wang Y, Hayward SW, Donjacour AA, Young P, Jacks T, Sage J, Dahiya R, Cardiff RD, Day ML, Cunha GR (2000) Sex hormone-induced carcinogenesis in Rb-deficient prostate tissue. Cancer research 60:6008–6017

    PubMed  CAS  Google Scholar 

  • Wang YZ, Wong YC (1998) Sex hormone-induced prostatic carcinogenesis in the noble rat: the role of insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in the development of prostate cancer. Prostate 35:165–177

    PubMed  CAS  Google Scholar 

  • Webber MM, Bello D, Kleinman HK, Hoffman MP (1997) Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis 18:1225–1231

    PubMed  CAS  Google Scholar 

  • Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271:10079–10086

    PubMed  CAS  Google Scholar 

  • Williams K, Fernandez S, Stien X, Ishii K, Love HD, Lau YF, Roberts RL, Hayward SW (2005) Unopposed c-MYC expression in benign prostatic epithelium causes a cancer phenotype. Prostate 63:369–384

    PubMed  CAS  Google Scholar 

  • Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974

    PubMed  CAS  Google Scholar 

  • Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610

    PubMed  CAS  Google Scholar 

  • Zhang J, Thomas TZ, Kasper S, Matusik RJ (2000) A small composite probasin promoter confers high levels of prostate-specific gene expression through regulation by androgens and glucocorticoids in vitro and in vivo. Endocrinology 141:4698–4710

    PubMed  CAS  Google Scholar 

  • Zhang M, Xuan S, Bouxsein ML, von Stechow D, Akeno N, Faugere MC, Malluche H, Zhao G, Rosen CJ, Efstratiadis A, Clemens TL (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 277:44005–44012

    PubMed  CAS  Google Scholar 

  • Zheng B, Zhang Z, Black CM, de Crombrugghe B, Denton CP (2002) Ligand-dependent genetic recombination in fibroblasts: a potentially powerful technique for investigating gene function in fibrosis. Am J Pathol 160:1609–1617

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of the authors is supported by funding through NIH grants U54 CA126505, U54 CA113007, R01 DK067049, by DOD-PCRP grant W81XWH-07-1-0479 and by the Frances Williams Preston Laboratories of the TJ Martell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon W. Hayward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Franco, O.E., Strand, D.W., Hayward, S.W. (2012). Modeling Stromal–Epithelial Interactions. In: Green, J., Ried, T. (eds) Genetically Engineered Mice for Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69805-2_20

Download citation

Publish with us

Policies and ethics