Skip to main content

Mass Spectrometry Based Proteomics in Cancer Research

  • Chapter
  • First Online:
Book cover Modern Molecular Biology

Abstract

Proteomics has become an important component of biological and ­clinical research. Numerous proteomics methods have been developed to identify and quantify the proteins present in biological and clinical samples (Gerber et al., Proc Natl Acad Sci U S A 100:6940–6945, 2003; Ong et al., Methods 29:124–130, 2003). Differences among cell types or treatment groups have been used to identify cellular functions and pathways affected by disease or perturbations (Wright et al., Genome Biol 5:R4, 2003; Durr et al., Nat Biotechnol 22:985–992, 2004), new components and changes in the composition of protein complexes and ­organelles (Andersen et al., Nature 426:570–574, 2003; Blagoev et al., Nat Biotechnol 21:315–318, 2003; Ranish et al., Nat Genet 36:707–713, 2004), and putative disease biomarkers (Marko-Varga et al., J Proteome Res 4:1200–1212, 2005). Despite widespread success, the application of these approaches to discovery of relevant protein markers from clinical samples has been hampered by sample complexity and variability. To begin to broach this challenge, complex experimental protocols for enrichment, separation, and quantification have been developed for selective or comprehensive proteome analysis. In this chapter, we describe techniques for enrichment, separation, quantification, fundamentals of mass spectrometry, and the computational analysis of data generated by these processes within the context of using these approaches for asking and answering biologically and clinically important questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Manilla G, Atwood Guo Y, Warren NL, Orlando R, Pierce M (2006) Tools for glycoproteomic analysis:  size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res 5:701–708.

    Article  PubMed  CAS  Google Scholar 

  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–574.

    Article  PubMed  CAS  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867.

    Article  PubMed  CAS  Google Scholar 

  • Bakhtiar R, Guan Z (2005) Electron capture dissociation mass spectrometry in characterization of post-translational modifications. Biochem Biophys Res Commun 334:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ (2005) Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Methods 2:587–589.

    Article  PubMed  CAS  Google Scholar 

  • Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M (2003) A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nat Biotechnol 21:315–318.

    Article  PubMed  CAS  Google Scholar 

  • Blagoev B, Ong S-E, Kratchmarova I, Mann M (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22:1139–1145.

    Article  PubMed  CAS  Google Scholar 

  • Bondarenko PV, Chelius D, Shaler TA (2002) Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography−tandem mass spectrometry. Anal Chem 74:4741–4749.

    Article  PubMed  CAS  Google Scholar 

  • Brill LM, Motamedchaboki K, Wu S, Wolf DA (2009) Comprehensive proteomic analysis of Schizosaccharomyces pombe by two-dimensional HPLC-tandem mass spectrometry. Methods 48:311–319.

    Article  PubMed  CAS  Google Scholar 

  • Brunner E, Ahrens CH, Mohanty S, Baetschmann H, Loevenich S, Potthast F, Deutsch EW, Panse C, de Lichtenberg U, Rinner O, Lee H, Pedrioli PG, Malmstrom J, Koehler K, Schrimpf S, Krijgsveld J, Kregenow F, Heck AJ, Hafen E, Schlapbach R, Aebersold R (2007) A high-quality catalog of the Drosophila melanogaster proteome. Nat Biotechnol 25:576–583.

    Article  PubMed  CAS  Google Scholar 

  • Bunkenborg J, Pilch BJ, Podtelejnikov AV, Wisniewski JR (2004) Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 4:454–465.

    Article  PubMed  CAS  Google Scholar 

  • Burke TW, Mant CT, Black JA, Hodges RS (1989) Strong cation-exchange high-performance liquid chromatography of peptides. Effect of non-specific hydrophobic interactions and linearization of peptide retention behaviour. J Chromatogr 476:377–389.

    Article  PubMed  CAS  Google Scholar 

  • Bylund D, Danielsson R, Malmquist G, Markides KE (2002) Chromatographic alignment by warping and dynamic programming as a pre-processing tool for PARAFAC modelling of liquid chromatography–mass spectrometry data. J Chromatogr A 961:237–244.

    Article  PubMed  CAS  Google Scholar 

  • Che F-y, Fricker LD (2002) Quantitation of neuropeptides in Cpefat/Cpefat mice using differential isotopic tags and mass spectrometry. Anal Chem 74:3190–3198.

    Article  PubMed  CAS  Google Scholar 

  • Chelius D, Bondarenko PV (2002) Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res 1:317–323.

    Article  PubMed  CAS  Google Scholar 

  • Chelius D, Zhang T, Wang G, Shen R-F (2003) Global protein identification and quantification technology using two-dimensional liquid chromatography nanospray mass spectrometry. Anal Chem 75:6658–6665.

    Article  PubMed  CAS  Google Scholar 

  • Colinge J, Masselot A, Giron M, Dessingy T, Magnin J (2003) OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 3:1454–1463.

    Article  PubMed  CAS  Google Scholar 

  • Comisarow MB, Marshall AG (1974) Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett 25:282–283.

    Article  CAS  Google Scholar 

  • Cooper HJ, Hudgins RR, Hakansson K, Marshall AG (2002) Characterization of amino acid side chain losses in electron capture dissociation. J Am Soc Mass Spectrom 13:241–249.

    Article  PubMed  CAS  Google Scholar 

  • Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467.

    Article  PubMed  CAS  Google Scholar 

  • Craig R, Cortens JP, Beavis RC (2005) The use of proteotypic peptide libraries for protein identification. Rapid Commun Mass Spectrom 19:1844–1850.

    Article  PubMed  CAS  Google Scholar 

  • Craig R, Cortens JC, Fenyo D, Beavis RC (2006) Using annotated peptide mass spectrum libraries for protein identification. J Proteome Res 5:1843–1849.

    Article  PubMed  CAS  Google Scholar 

  • Cummings RD, Kornfeld S (1982) Fractionation of asparagine-linked oligosaccharides by serial lectin-Agarose affinity chromatography. A rapid, sensitive, and specific technique. J Biol Chem 257:11235–11240.

    PubMed  CAS  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217.

    Article  PubMed  CAS  Google Scholar 

  • Durr E, Yu J, Krasinska KM, Carver LA, Yates JR, Testa JE, Oh P, Schnitzer JE (2004) Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol 22:985–992.

    Article  PubMed  CAS  Google Scholar 

  • Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214.

    Article  PubMed  CAS  Google Scholar 

  • Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino-acid-sequence in a protein database. J Am Soc Mass Spectrom 5:976–989.

    Article  CAS  Google Scholar 

  • Faca V, Pitteri SJ, Newcomb L, Glukhova V, Phanstiel D, Krasnoselsky A, Zhang Q, Struthers J, Wang H, Eng J, Fitzgibbon M, McIntosh M, Hanash S (2007) Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes. J Proteome Res 6:3558–3565.

    Article  PubMed  CAS  Google Scholar 

  • Fan X, She YM, Bagshaw RD, Callahan JW, Schachter H, Mahuran DJ (2004) A method for proteomic identification of membrane-bound proteins containing Asn-linked oligosaccharides. Anal Biochem 332:178–186.

    Article  PubMed  CAS  Google Scholar 

  • Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305.

    Article  PubMed  CAS  Google Scholar 

  • Frank A, Pevzner P (2005) PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem 77:964–973.

    Article  PubMed  CAS  Google Scholar 

  • Frewen BE, Merrihew GE, Wu CC, Noble WS, MacCoss MJ (2006) Analysis of peptide MS/MS spectra from large-scale proteomics experiments using spectrum libraries. Anal Chem 78:5678–5684.

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Opiteck GJ, Friedrichs MS, Dongre AR, Hefta SA (2003) Changes in the protein expression of yeast as a function of carbon source. J Proteome Res 2:643–649.

    Article  PubMed  CAS  Google Scholar 

  • Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964.

    Article  PubMed  CAS  Google Scholar 

  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100:6940–6945.

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist A, Au CE, Hiding J, Bell AW, Fernandez-Rodriguez J, Lesimple S, Nagaya H, Roy L, Gosline SJ, Hallett M, Paiement J, Kearney RE, Nilsson T, Bergeron JJ (2006) Quantitative proteomics analysis of the secretory pathway. Cell 127:1265–1281.

    Article  PubMed  CAS  Google Scholar 

  • Glocker MO, Borchers C, Fiedler W, Suckau D, Przybylski M (1994) Molecular characterization of surface topology in protein tertiary structures by amino-acylation and mass spectrometric peptide mapping. Bioconjug Chem 5:583–590.

    Article  PubMed  CAS  Google Scholar 

  • Goodlett DR, Keller A, Watts JD, Newitt R, Yi EC, Purvine S, Eng JK, von Haller P, Aebersold R, Kolker E (2001) Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun Mass Spectrom 15:1214–1221.

    Article  Google Scholar 

  • Goshe MB, Conrads TP, Panisko EA, Angell NH, Veenstra TD, Smith RD (2001) Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal Chem 73:2578–2586.

    Article  PubMed  CAS  Google Scholar 

  • Goshe MB, Veenstra TD, Panisko EA, Conrads TP, Angell NH, Smith RD (2002) Phosphoprotein isotope-coded affinity tags:  application to the enrichment and identification of low-abundance phosphoproteins. Anal Chem 74:607–616.

    Article  PubMed  CAS  Google Scholar 

  • Gruhler A, Schulze WX, Matthiesen R, Mann M, Jensen ON (2005) Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol Cell Proteomics 4:1697–1709.

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999.

    Article  PubMed  CAS  Google Scholar 

  • Hansen KC, Schmitt-Ulms G, Chalkley RJ, Hirsch J, Baldwin MA, Burlingame AL (2003) Mass spectrometric analysis of protein mixtures at low levels using cleavable C-13-isotope-coded affinity tag and multidimensional chromatography. Mol Cell Proteomics 2:299–314.

    PubMed  CAS  Google Scholar 

  • Hardman M, Makarov AA (2003) Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal Chem 75:1699–1705.

    Article  PubMed  CAS  Google Scholar 

  • Higgs RE, Knierman MD, Gelfanova V, Butler JP, Hale JE (2005) Comprehensive label-free method for the relative quantification of proteins from biological samples. J Proteome Res 4:1442–1450.

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi J (2004) Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj J 21:35–40.

    Article  PubMed  Google Scholar 

  • Hsu J-L, Huang S-Y, Chow N-H, Chen S-H (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75:6843–6852.

    Article  PubMed  CAS  Google Scholar 

  • Hsu J-L, Huang S-Y, Chen S-H (2006) Dimethyl multiplexed labeling combined with microcolumn separation and MS analysis for time course study in proteomics. Electrophoresis 27:3652–3660.

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443.

    Article  PubMed  CAS  Google Scholar 

  • Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272.

    Article  PubMed  CAS  Google Scholar 

  • Jaitly N, Monroe ME, Petyuk VA, Clauss TRW, Adkins JN, Smith RD (2006) Robust algorithm for alignment of liquid chromatography mass spectrometry analyses in an accurate mass and time tag data analysis pipeline. Anal Chem 78:7397–7409.

    Article  PubMed  CAS  Google Scholar 

  • James P, Quadroni M, Carafoli E, Gonnet G (1993) Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun 195:58–64.

    Article  PubMed  CAS  Google Scholar 

  • Jensen ON, Podtelejnikov AV, Mann M (1997) Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching. Anal Chem 69:4741–4750.

    Article  PubMed  CAS  Google Scholar 

  • Ji J, Chakraborty A, Geng M, Zhang X, Amini A, Bina M, Regnier F (2000) Strategy for qualitative and quantitative analysis in proteomics based on signature peptides. J Chromatogr B Biomed Sci Appl 745:197–210.

    Article  PubMed  CAS  Google Scholar 

  • Ji C, Guo N, Li L (2005) Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis. J Proteome Res 4:2099–2108.

    Article  PubMed  CAS  Google Scholar 

  • Johnson KL, Muddiman DC (2004) A method for calculating 16o/18o peptide ion ratios for the relative quantification of proteomes. J Am Soc Mass Spectrom 15:437–445.

    Article  PubMed  CAS  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301.

    Article  PubMed  CAS  Google Scholar 

  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392.

    Article  PubMed  CAS  Google Scholar 

  • Khalsa-Moyers G, McDonald WH (2006) Developments in mass spectrometry for the analysis of complex protein mixtures. Brief Funct Genomic Proteomic 5:98–111.

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick DS, Gerber SA, Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35:265–273.

    Article  PubMed  CAS  Google Scholar 

  • Kito K, Ota K, Fujita T, Ito T (2007) A synthetic protein approach toward accurate mass spectrometric quantification of component stoichiometry of multiprotein complexes. J Proteome Res 6:792–800.

    Article  PubMed  CAS  Google Scholar 

  • Krijgsveld J, Ketting RF, Mahmoudi T, Johansen J, Artal-Sanz M, Verrijzer CP, Plasterk RHA, Heck AJR (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21:927–931.

    Article  PubMed  CAS  Google Scholar 

  • Lam H, Deutsch EW, Eddes JS, Eng JK, King N, Stein SE, Aebersold R (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7:655–667.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Steen H, Gygi SP (2003) Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents: the yeast salinity stress response. Mol Cell Proteomics 2:1198–1204.

    Article  PubMed  CAS  Google Scholar 

  • Li X-j, Yi EC, Kemp CJ, Zhang H, Aebersold R (2005) A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography–mass spectrometry. Mol Cell Proteomics 4:1328–1340.

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201.

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Han H, Chang SB, Lee SW (2004) Isotope-coded N-terminal sulfonation of peptides allows quantitative proteomic analysis with increased de novo peptide sequencing capability. Rapid Commun Mass Spectrom 18:3019–3027.

    Article  PubMed  CAS  Google Scholar 

  • Louris JN, Cooks RG, Syka JEP, Kelley PE, Stafford GC, Todd JFJ (1987) Instrumentation, applications, and energy deposition in quadrupole ion-trap tandem mass spectrometry. Anal Chem 59:1677–1685.

    Article  CAS  Google Scholar 

  • Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25:117–124.

    Article  PubMed  CAS  Google Scholar 

  • Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17:2337–2342.

    Article  PubMed  CAS  Google Scholar 

  • Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162.

    Article  PubMed  CAS  Google Scholar 

  • Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B, Schmitt R, Werner T, Kuster B, Aebersold R (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25:125–131.

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Hojrup P, Roepstorff P (1993) Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom 22:338–345.

    Article  PubMed  CAS  Google Scholar 

  • March RE (1997) An introduction to quadrupole ion trap mass spectrometry. J Mass Spectrom 32:351–369.

    Article  CAS  Google Scholar 

  • Marko-Varga G, Lindberg H, Lofdahl CG, Jonsson P, Hansson L, Dahlback M, Lindquist E, Johansson L, Foster M, Fehniger TE (2005) Discovery of biomarker candidates within disease by protein profiling: principles and concepts. J Proteome Res 4:1200–1212.

    Article  PubMed  CAS  Google Scholar 

  • Mason DE, Liebler DC (2003) Quantitative analysis of modified proteins by LC−MS/MS of peptides labeled with phenyl isocyanate. J Proteome Res 2:265–272.

    Article  PubMed  CAS  Google Scholar 

  • McLafferty FW, Horn DM, Breuker K, Ge Y, Lewis MA, Cerda B, Zubarev RA, Carpenter BK (2001) Electron capture dissociation of gaseous multiply charged ions by Fourier-transform ion cyclotron resonance. J Am Soc Mass Spectrom 12:245–249.

    Article  PubMed  CAS  Google Scholar 

  • Nesvizhskii AI, Vitek O, Aebersold R (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods 4:787–797.

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Owa T, Sato T, Boucher B, Daniels S, Yamanaka H, Shinohara Y, Yokoi A, Kuromitsu J, Nagasu T (2003) Quantitative chemical proteomics for identifying candidate drug targets. Anal Chem 75:2159–2165.

    Article  PubMed  CAS  Google Scholar 

  • Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502.

    Article  PubMed  CAS  Google Scholar 

  • Olsen JV, Andersen JR, Nielsen PA, Nielsen ML, Figeys D, Mann M, Wisniewski JR (2004) HysTag – a novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. Mol Cell Proteomics 3:82–92.

    PubMed  CAS  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648.

    Article  PubMed  CAS  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386.

    Article  PubMed  CAS  Google Scholar 

  • Ong SE, Foster LJ, Mann M (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29:124–130.

    Article  PubMed  CAS  Google Scholar 

  • Ono M, Shitashige M, Honda K, Isobe T, Kuwabara H, Matsuzuki H, Hirohashi S, Yamada T (2006) Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry. Mol Cell Proteomics 5:1338–1347.

    Article  PubMed  CAS  Google Scholar 

  • Pappin DJ, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3:327–332.

    Article  PubMed  CAS  Google Scholar 

  • Parish R (1989) Comparison of linear regression methods when both variables contain error: relation to clinical studies. Ann Pharmacother 23:891–898.

    CAS  Google Scholar 

  • Park K-S, Mohapatra DP, Misonou H, Trimmer JS (2006) Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science 313:976–979.

    Article  PubMed  CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567.

    Article  PubMed  CAS  Google Scholar 

  • Porath J (1992) Immobilized metal ion affinity chromatography. Protein Expr Purif 3:263–281.

    Article  PubMed  CAS  Google Scholar 

  • Qian W-J, Goshe MB, Camp DG, Yu L-R, Tang K, Smith RD (2003) Phosphoprotein isotope-coded solid-phase tag approach for enrichment and quantitative analysis of phosphopeptides from complex mixtures. Anal Chem 75:5441–5450.

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Fernandez A, Lopez-Ferrer D, Vazquez J (2007) Improved method for differential expression proteomics using trypsin-catalyzed 18O labeling with a correction for labeling efficiency. Mol Cell Proteomics 6:1274–1286.

    Article  PubMed  CAS  Google Scholar 

  • Ranish JA, Hahn S, Lu Y, Yi EC, Li XJ, Eng J, Aebersold R (2004) Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nat Genet 36:707–713.

    Article  PubMed  CAS  Google Scholar 

  • Rao KCS, Carruth RT, Miyagi M (2005) Proteolytic 18O labeling by peptidyl-Lys metalloendopeptidase for comparative proteomics. J Proteome Res 4:507–514.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JA, Tanford C (1970) The gross conformation of protein-sodium dodecyl sulfate complexes. J Biol Chem 245:5161–5165.

    PubMed  CAS  Google Scholar 

  • Reynolds KJ, Yao X, Fenselau C (2002) Proteolytic 18O labeling for comparative proteomics:  evaluation of endoprotease Glu-C as the catalytic agent. J Proteome Res 1:27–33.

    Article  PubMed  CAS  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169.

    Article  PubMed  CAS  Google Scholar 

  • Saito A, Nagasaki M, Oyama M, Kozuka-Hata H, Semba K, Sugano S, Yamamoto T, Miyano S (2007) AYUMS: an algorithm for completely automatic quantitation based on LC-MS/MS proteome data and its application to the analysis of signal transduction. BMC Bioinform 8:15.

    Article  CAS  Google Scholar 

  • Salomon AR, Ficarro SB, Brill LM, Brinker A, Phung QT, Ericson C, Sauer K, Brock A, Horn DM, Schultz PG, Peters EC (2003) Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc Natl Acad Sci U S A 100:443–448.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15.

    Article  PubMed  CAS  Google Scholar 

  • Schnölzer M, Jedrzejewski P, Lehmann WD (1996) Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis 17:945–953.

    Article  Google Scholar 

  • Schuchardt S, Sickmann A (2007) Protein identification using mass spectrometry: a method overview. EXS 97:141–170.

    PubMed  CAS  Google Scholar 

  • Senko MW, Hendrickson CL, Emmett MR, Shi SD, Marshall AG (1997) External accumulation of ions for enhanced electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 8:970–976.

    Article  CAS  Google Scholar 

  • Shukla AK, Futrell JH (2000) Tandem mass spectrometry: dissociation of ions by collisional activation. J Mass Spectrom 35:1069–1090.

    Article  PubMed  CAS  Google Scholar 

  • Sleno L, Volmer DA (2004) Ion activation methods for tandem mass spectrometry. J Mass Spectrom 39:1091–1112.

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter EF, Ferguson PL, Tang K, Smith RD (2003) Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry. J Am Soc Mass Spectrom 14:980–991.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter EF, Kangas LJ, Petritis K, Mottaz HM, Anderson GA, Shen Y, Jacobs JM, Camp DG 2nd, Smith RD (2004) Application of peptide LC retention time information in a discriminant function for peptide identification by tandem mass spectrometry. J Proteome Res 3:760–769.

    Article  PubMed  CAS  Google Scholar 

  • Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004a) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533.

    Article  PubMed  CAS  Google Scholar 

  • Syka JEP, Marto JA, Bai DL, Horning S, Senko MW, Schwartz JC, Ueberheide B, Garcia B, Busby S, Muratore T, Shabanowitz J, Hunt DF (2004b) Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J Proteome Res 3:621–626.

    Article  PubMed  CAS  Google Scholar 

  • Tang H, Arnold RJ, Alves P, Xun Z, Clemmer DE, Novotny MV, Reilly JP, Radivojac P (2006) A computational approach toward label-free protein quantification using predicted peptide detectability. Bioinformatics 22:e481–e488.

    Article  PubMed  CAS  Google Scholar 

  • Tao WA, Wollscheid B, O’Brien R, Eng JK, Li X-j, Bodenmiller B, Watts JD, Hood L, Aebersold R (2005) Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat Methods 2:591–598.

    Article  PubMed  CAS  Google Scholar 

  • Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C (2003) Tandem mass tags:  a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904.

    Article  PubMed  CAS  Google Scholar 

  • Wada Y, Tajiri M, Yoshida S (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 76:6560–6565.

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Zhou H, Lin H, Roy S, Shaler TA, Hill LR, Norton S, Kumar P, Anderle M, Becker CH (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem 75:4818–4826.

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Tang H, Fitzgibbon MP, Mcintosh M, Coram M, Zhang H, Yi E, Aebersold R (2007) A statistical method for chromatographic alignment of LC-MS data. Biostatistics 8:357–367.

    Article  PubMed  Google Scholar 

  • Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci U S A 104:5860–5865.

    Article  PubMed  CAS  Google Scholar 

  • Wright ME, Eng J, Sherman J, Hockenbery DM, Nelson PS, Galitski T, Aebersold R (2003) Identification of androgen-coregulated protein networks from the microsomes of human prostate cancer cells. Genome Biol 5:R4.

    Article  PubMed  Google Scholar 

  • Wu CC, MacCoss MJ, Howell KE, Matthews DE, Yates JR (2004) Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal Chem 76:4951–4959.

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Hancock WS (2004) Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J Chromatogr A 1053:79–88.

    PubMed  CAS  Google Scholar 

  • Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73:2836–2842.

    Article  PubMed  CAS  Google Scholar 

  • Yates JR 3rd, Morgan SF, Gatlin CL, Griffin PR, Eng JK (1998) Method to compare collision-induced dissociation spectra of peptides: potential for library searching and subtractive analysis. Anal Chem 70:3557–3565.

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Regnier FE (2002) Minimizing resolution of isotopically coded peptides in comparative proteomics. J Proteome Res 1:139–147.

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Sioma CS, Wang S, Regnier FE (2001) Fractionation of isotopically labeled peptides in quantitative proteomics. Anal Chem 73:5142–5149.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Jin QK, Carr SA, Annan RS (2002) N-terminal peptide labeling strategy for incorporation of isotopic tags: a method for the determination of site-specific absolute phosphorylation stoichiometry. Rapid Commun Mass Spectrom 16:2325–2332.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Li X-j, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Yi EC, Li XJ, Mallick P, Kelly-Spratt KS, Masselon CD, Camp DG 2nd, Smith RD, Kemp CJ, Aebersold R (2005a) High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol Cell Proteomics 4:144–155.

    PubMed  CAS  Google Scholar 

  • Zhang J, Schubothe K, Li B, Russell S, Lebrilla CB (2005b) Infrared multiphoton dissociation of O-linked mucin-type oligosaccharides. Anal Chem 77:208–214.

    Article  PubMed  CAS  Google Scholar 

  • Zubarev RA (2004) Electron-capture dissociation tandem mass spectrometry. Curr Opin Biotechnol 15:12–16.

    Article  PubMed  CAS  Google Scholar 

  • Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A non-ergodic process. J Am Chem Soc 120:3265–3266.

    Article  CAS  Google Scholar 

  • Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, Carpenter BK, McLafferty FW (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Mallick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Abbani, M.A., Mallick, P., Vogelsang, M.S. (2010). Mass Spectrometry Based Proteomics in Cancer Research. In: Yegnasubramanian, S., Isaacs, W. (eds) Modern Molecular Biology. Applied Bioinformatics and Biostatistics in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69745-1_7

Download citation

Publish with us

Policies and ethics