Skip to main content

Chromatin Remodeling and Androgen Receptor-Mediated Transcription

  • Chapter
  • First Online:

Abstract

It has become apparent that the expression of human genes in chromatin is regulated by post-translational structural changes in histones, which form the major protein component of nucleosomes in chromatin. The process is generally referred to as chromatin epigenetics. Recently, it was demonstrated that histone amino-terminal tails, which extend from the core of nucleosomes out of chromatin, are methylated or acetylated at lysine residues with profound effects on gene structure and function. Since some of these changes are inherited from cells to daughter cells, lineages are established with stable histone modifications. In this way the regulation of androgen receptor-mediated transcription of target genes and the phenotype of androgen receptor-mediated prostate cancer progression are affected. The detail of this novel level of regulation is being pursued by many investigators and is summarized in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alen, P., Claessens, F., Verhoeven, G., Rombauts, W., and Peeters, B.(1999). The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol. Cell. Biol.19:6085–6097.

    PubMed  CAS  Google Scholar 

  • Allis, C. D., Berger, S. L., Cote, J., Dent, S., Jenuwien, T., Kouzarides, T., Pillus, L., Reinberg, D., Shi, Y., Shiekhatter, R., Shilatifard, A., Workman, J., and Zhang, Y.(2007). New nomenclature for chromatin-modifying enzymes. Cell131:633–636.

    Article  PubMed  CAS  Google Scholar 

  • Balk, S.(2002). Androgen receptor as a target in androgen-independent prostate cancer. Urology60:132–138.

    Article  PubMed  Google Scholar 

  • Bannister, A. J., Schneider, R., Myers, F. A., Thorne, A. W., Crane-Robinson, C., and Kouzarides, T.(2005). Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J. Biol. Chem.280:17732–17736.

    Article  PubMed  CAS  Google Scholar 

  • Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K.(2007). High-resolution profiling of histone methylations in the human genome. Cell129:823–837.

    Article  PubMed  CAS  Google Scholar 

  • Berger, S. L.(2007). The complex language of chromatin regulation during transcription. Nature447:407–412.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, B. E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D. K., Huebert, D. J., McMahon, S., Karlsson, E. K., Kulbokas, E. J., III, Gingeras, T. R., Schreiber, S. L., and Lander, E. S.(2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell120:169–181.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L., and Lander, E. S.(2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125:315–326.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, B. E., Meissner, A., and Lander, E. S.(2007). The mammalian epigenome. Cell128:669–681.

    Article  PubMed  CAS  Google Scholar 

  • Bolton, E. C., So, A. Y., Chaivorapol, C., Haqq, C. M., Li, H., and Yamamoto, K. R.(2007). Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev.21:2005–2017.

    Article  PubMed  CAS  Google Scholar 

  • Bubendorf, L., Kononen, J., Koivisto, P., Schraml, P., Moch, H., Gasser, T. C., Willi, N., Mihatsch, M. J., Sauter, G., and Kallioniemi, O. P.(1999). Survey of gene amplifications during prostate cancer progression by high-throughput fluorescence in situ hybridization on tissue microarrays. Cancer Res.59:803–806.

    PubMed  CAS  Google Scholar 

  • Buchanan, G., Irvine, R. A., Coetzee, G. A., and Tilley, W. D.(2001). Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev.20:207–223.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, G., Yang, M., Cheong, A., Harris, J. M., Irvine, R. A., Lambert, P. F., Moore, N. L., Raynor, M., Neufing, P. J., Coetzee, G. A., and Tilley, W. D.(2004). Structural and functional consequences of glutamine tract variation in the androgen receptor. Hum. Mol. Genet.13:1677–1692.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, G., Ricciardelli, C., Harris, J. M., Prescott, J., Yu, Z. C., Jia, L., Butler, L. M., Marshall, V. R., Scher, H. I., Gerald, W. L., Coetzee, G. A., and Tilley, W. D.(2007). Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein alpha. Cancer Res.67:1008710096.

    Google Scholar 

  • Carroll, J. S., Meyer, C. A., Song, J., Li, W., Geistlinger, T. R., Eeckhoute, J., Brodsky, A. S., Keeton, E. K., Fertuck, K. C., Hall, G. F., Wang, Q., Bekiranov, S., Sementchenko, V., Fox, E. A., Silver, P. A., Gingeras, T. R., Liu, X. S., and Brown, M.(2006). Genome-wide analysis of estrogen receptor binding sites. Nat. Genet.38:1289–1297.

    Article  PubMed  CAS  Google Scholar 

  • Catz, S. D., and Johnson, J. L.(2003). BCL-2 in prostate cancer: a minireview. Apoptosis8:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Cawley, S., Bekiranov, S., Ng, H. H., Kapranov, P., Sekinger, E. A., Kampa, D., Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A. J., Wheeler, R., Wong, B., Drenkow, J., Yamanaka, M., Patel, S., Brubaker, S., Tammana, H., Helt, G., Struhl, K., and Gingeras, T. R.(2004). Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell116:499–509.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. D., Welsbie, D. S., Tran, C., Baek, S. H., Chen, R., Vessella, R., Rosenfeld, M. G., and Sawyers, C. L.(2004). Molecular determinants of resistance to antiandrogen therapy. Nat. Med.10:33–39.

    Article  PubMed  Google Scholar 

  • Couture, J. F., and Trievel, R. C.(2006). Histone-modifying enzymes: encrypting an enigmatic epigenetic code. Curr. Opin. Struct. Biol.16:753–760.

    Article  PubMed  CAS  Google Scholar 

  • Darzacq, X., Shav-Tal, Y., de Turris, V., Brody, Y., Shenoy, S. M., Phair, R. D., and Singer, R. H.(2007). In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol.14:796–806.

    Article  PubMed  CAS  Google Scholar 

  • Debes, J. D., and Tindall, D. J.(2004). Mechanisms of androgen-refractory prostate cancer. N. Engl. J. Med.351:1488–1490.

    Article  PubMed  CAS  Google Scholar 

  • Ergun, A., Lawrence, C. A., Kohanski, M. A., Brennan, T. A., and Collins, J. J.(2007). A network biology approach to prostate cancer. Mol. Syst. Biol.3:82.

    Article  PubMed  Google Scholar 

  • Euskirchen, G., Royce, T. E., Bertone, P., Martone, R., Rinn, J. L., Nelson, F. K., Sayward, F., Luscombe, N. M., Miller, P., Gerstein, M., Weissman, S., and Snyder, M.(2004). CREB binds to multiple loci on human chromosome 22. Mol. Cell. Biol.24:3804–3814.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, A. P.(2007a). An epigenetic approach to cancer etiology. Cancer J.13:70–74.

    Article  CAS  Google Scholar 

  • Feinberg, A. P.(2007b). Phenotypic plasticity and the epigenetics of human disease. Nature447:433–440.

    Article  CAS  Google Scholar 

  • Feldman, B. J., and Feldman, D.(2001). The development of androgen-independent prostate cancer. Nat. Rev. Cancer1:34–45.

    Article  PubMed  CAS  Google Scholar 

  • Gaston, K. E., Kim, D., Singh, S., Ford, O. H., III, and Mohler, J. L.(2003). Racial differences in androgen receptor protein expression in men with clinically localized prostate cancer. J. Urol.170:990–993.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, C. W., Johnson, R. T., Jr., Mohler, J. L., French, F. S., and Wilson, E. M.(2001). Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res.61:2892–2898.

    PubMed  CAS  Google Scholar 

  • Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R., and Young, R. A.(2007). A chromatin landmark and transcription initiation at most promoters in human cells. Cell130:77–88.

    Article  PubMed  CAS  Google Scholar 

  • Han, G., Buchanan, G., Ittmann, M., Harris, J. M., Yu, X., Demayo, F. J., Tilley, W., and Greenberg, N. M.(2005). Mutation of the androgen receptor causes oncogenic transformation of the prostate. Proc. Natl Acad. Sci. U. S. A.102:1151–1156.

    Article  PubMed  CAS  Google Scholar 

  • He, B., Kemppainen, J. A., Voegel, J. J., Gronemeyer, H., and Wilson, E. M.(1999). Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J. Biol. Chem.274:37219–37225.

    Article  PubMed  CAS  Google Scholar 

  • Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching, C. W., Hawkins, R. D., Barrera, L. O., Van Calcar, S., Qu, C., Ching, K. A., Wang, W., Weng, Z., Green, R. D., Crawford, G. E., and Ren, B.(2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet.39:311–318.

    Article  PubMed  CAS  Google Scholar 

  • Holbert, M. A., and Marmorstein, R.(2005). Structure and activity of enzymes that remove histone modifications. Curr. Opin. Struct. Biol.15:673–680.

    Article  PubMed  CAS  Google Scholar 

  • Holzbeierlein, J., Lal, P., LaTulippe, E., Smith, A., Satagopan, J., Zhang, L., Ryan, C., Smith, S., Scher, H., Scardino, P., Reuter, V., and Gerald, W. L.(2004). Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am. J. Pathol.164:217–227.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R. A., Yu, M. C., Ross, R. K., and Coetzee, G. A.(1995). The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res.55:1937–1940.

    PubMed  CAS  Google Scholar 

  • Irvine, R. A., Ma, H., Yu, M. C., Ross, R. K., Stallcup, M. R., and Coetzee, G. A.(2000). Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Hum. Mol. Genet.9:267–274.

    Article  PubMed  CAS  Google Scholar 

  • Jenster, G.(1999). The role of the androgen receptor in the development and progression of prostate cancer. Semin. Oncol.26:407–421.

    PubMed  CAS  Google Scholar 

  • Jia, L., Shen, H. C., Wantroba, M., Khalid, O., Liang, G., Wang, Q., Gentzschein, E., Pinski, J. K., Stanczyk, F. Z., Jones, P. A., and Coetzee, G. A.(2006). Locus-wide chromatin remodeling and enhanced androgen receptor-mediated transcription in recurrent prostate tumor cells. Mol. Cell. Biol.26:7331–7341.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P. A., and Baylin, S. B.(2007). The epigenomics of cancer. Cell128:683–692.

    Article  PubMed  CAS  Google Scholar 

  • Kahl, P., Gullotti, L., Heukamp, L. C., Wolf, S., Friedrichs, N., Vorreuther, R., Solleder, G., Bastian, P. J., Ellinger, J., Metzger, E., Schule, R., and Buettner, R.(2006). Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res.66:11341–11347.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T. H., Abdullaev, Z. K., Smith, A. D., Ching, K. A., Loukinov, D. I., Green, R. D., Zhang, M. Q., Lobanenkov, V. V., and Ren, B.(2007). Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell128:1231–1245.

    Article  PubMed  CAS  Google Scholar 

  • Klokk, T. I., Kurys, P., Elbi, C., Nagaich, A. K., Hendarwanto, A., Slagsvold, T., Chang, C. Y., Hager, G. L., and Saatcioglu, F.(2007). Ligand-specific dynamics of the androgen receptor at its response element in living cells. Mol. Cell. Biol.27:1823–1843.

    Article  PubMed  CAS  Google Scholar 

  • Koivisto, P. A., and Helin, H. J.(1999). Androgen receptor gene amplification increases tissue PSA protein expression in hormone-refractory prostate carcinoma. J. Pathol.189:219–223.

    Article  PubMed  CAS  Google Scholar 

  • Koivisto, P., Kononen, J., Palmberg, C., Tammela, T., Hyytinen, E., Isola, J., Trapman, J., Cleutjens, K., Noordzij, A., Visakorpi, T., and Kallioniemi, O. P.(1997). Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res.57:314–319.

    PubMed  CAS  Google Scholar 

  • Kosak, S. T., and Groudine, M.(2004). Form follows function: the genomic organization of cellular differentiation. Genes Dev.18:1371–1384.

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides, T.(2007). SnapShot: histone-modifying enzymes. Cell131:822.

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski, J. M., Ellis, W. J., and Grayhack, J. T.(1991). Advanced prostatic carcinoma. Early versus late endocrine therapy. Urol. Clin. North Am.18:15–24.

    PubMed  CAS  Google Scholar 

  • Kumar, R., and Thompson, E. B.(2003). Transactivation functions of the N-terminal domains of nuclear hormone receptors: protein folding and coactivator interactions. Mol. Endocrinol.17:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Li, B., Carey, M., and Workman, J. L.(2007). The role of chromatin during transcription. Cell128:707–719.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Zhang, D., Fu, J., Huang, Z., and Wong, J. (2009). Structural and functional analysis of androgen receptor in chromatin. Mol. Endocrinol. [Epub ahead of print, doi:10.1210/me.2006-0221]

    Google Scholar 

  • Liang, G., Lin, J. C., Wei, V., Yoo, C., Cheng, J. C., Nguyen, C. T., Weisenberger, D. J., Egger,G., Takai, D., Gonzales, F. A., and Jones, P. A.(2004). Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc. Natl Acad. Sci. U. S. A.101:7357–7362.

    Article  PubMed  CAS  Google Scholar 

  • Ling, M. T., Chan, K. W., and Choo, C. K.(2001). Androgen induces differentiation of a human papillomavirus 16 E6/E7 immortalized prostate epithelial cell line. J. Endocrinol.170:287–296.

    Article  PubMed  CAS  Google Scholar 

  • Linja, M. J., Savinainen, K. J., Saramaki, O. R., Tammela, T. L., Vessella, R. L., and Visakorpi, T.(2001). Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res.61:3550–3555.

    PubMed  CAS  Google Scholar 

  • Ma, H., Hong, H., Huang, S. M., Irvine, R. A., Webb, P., Kushner, P. J., Coetzee, G. A., and Stallcup, M. R.(1999). Multiple signal input and output domains of the 160-kilodalton nuclear receptor coactivator proteins. Mol. Cell. Biol.19:6164–6173.

    PubMed  CAS  Google Scholar 

  • Marshall, T. W., Link, K. A., Petre-Draviam, C. E., and Knudsen, K. E.(2003). Differential requirement of SWI/SNF for androgen receptor activity. J. Biol. Chem.278:30605–30613.

    Article  PubMed  CAS  Google Scholar 

  • Martone, R., Euskirchen, G., Bertone, P., Hartman, S., Royce, T. E., Luscombe, N. M., Rinn, J. L., Nelson, F. K., Miller, P., Gerstein, M., Weissman, S., and Snyder, M.(2003). Distribution of NF-kappaB-binding sites across human chromosome 22. Proc. Natl Acad. Sci. U. S. A.100:12247–12252.

    Article  PubMed  CAS  Google Scholar 

  • Massie, C. E., Adryan, B., Barbosa-Morais, N. L., Lynch, A. G., Tran, M. G., Neal, D. E., and Mills, I. G.(2007). New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep.8:871–878.

    Article  PubMed  CAS  Google Scholar 

  • Metzger, E., Wissmann, M., and Schule, R.(2006). Histone demethylation and androgen-dependent transcription. Curr. Opin. Genet. Dev.16:513–517.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., Lee, W., Mendenhall, E., O'Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E. S., and Bernstein, B. E.(2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature448:553–560.

    Article  PubMed  CAS  Google Scholar 

  • Murtha, P., Tindall, D. J., and Young, C. Y.(1993). Androgen induction of a human prostate-specific kallikrein, hKLK2: characterization of an androgen response element in the 5′ promoter region of the gene. Biochemistry32:6459–6464.

    Article  PubMed  CAS  Google Scholar 

  • Muse, G. W., Gilchrist, D. A., Nechaev, S., Shah, R., Parker, J. S., Grissom, S. F., Zeitlinger, J., and Adelman, K.(2007). RNA polymerase is poised for activation across the genome. Nat. Genet.39:1507–1511.

    Article  PubMed  CAS  Google Scholar 

  • Pratt, W. B., and Toft, D. O.(1997). Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev.18:306–360.

    Article  PubMed  CAS  Google Scholar 

  • Remenyi, A., Scholer, H. R., and Wilmanns, M.(2004). Combinatorial control of gene expression. Nat. Struct. Mol. Biol.11:812–815.

    Article  PubMed  CAS  Google Scholar 

  • Ricciardelli, C., Choong, C. S., Buchanan, G., Vivekanandan, S., Neufing, P., Stahl, J., Marshall, V. R., Horsfall, D. J., and Tilley, W. D.(2005). Androgen receptor levels in prostate cancer epithelial and peritumoral stromal cells identify non-organ confined disease. Prostate63:1928.

    Article  Google Scholar 

  • Rivenbark, A. G., and Strahl, B. D.(2007). Molecular biology. Unlocking cell fate. Science318:403–404.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O. L., He, A., Marra, M., Snyder, M., and Jones, S.(2007). Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods4:651–657.

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld, M. G., and Glass, C. K.(2001). Coregulator codes of transcriptional regulation by nuclear receptors. J. Biol. Chem.276:36865–36868.

    Article  PubMed  CAS  Google Scholar 

  • Savarese, F., and Grosschedl, R.(2006). Blurring cis and trans in gene regulation. Cell126:248–250.

    Article  PubMed  CAS  Google Scholar 

  • Scher, H. I., Buchanan, G., Gerald, W., Butler, L. M., and Tilley, W. D.(2004). Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. Endocr. Relat. Cancer11:459–476.

    Article  PubMed  CAS  Google Scholar 

  • Schuurmans, A. L., Bolt, J., Veldscholte, J., and Mulder, E.(1991). Regulation of growth of LNCaP human prostate tumor cells by growth factors and steroid hormones. J. Steroid Biochem. Mol. Biol.40:193–197.

    Article  PubMed  CAS  Google Scholar 

  • Sellers, W. R., and Loda, M.(2002). The EZH2 polycomb transcriptional repressor – a marker or mover of metastatic prostate cancer? Cancer Cell2:349–350.

    Article  PubMed  CAS  Google Scholar 

  • Seo, S., and Kroll, K. L.(2006). Geminin's double life: chromatin connections that regulate transcription at the transition from proliferation to differentiation. Cell Cycle5:374–379.

    Article  PubMed  CAS  Google Scholar 

  • Shen, H. C., Buchanan, G., Butler, L. M., Prescott, J., Henderson, M., Tilley, W. D., and Coetzee, G. A.(2005). GRIP1 mediates the interaction between the amino- and carboxyl-termini of the androgen receptor. Biol. Chem.386:69–74.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y.(2007). Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet.8:829–833.

    Article  PubMed  CAS  Google Scholar 

  • Strahl, B. D., and Allis, C. D.(2000). The language of covalent histone modifications. Nature403:41–45.

    Article  PubMed  CAS  Google Scholar 

  • Swigut, T., and Wysocka, J.(2007). H3K27 demethylases, at long last. Cell131:29–32.

    Article  PubMed  CAS  Google Scholar 

  • Tanner, T., Claessens, F., and Haelens, A.(2004). The hinge region of the androgen receptor plays a role in proteasome-mediated transcriptional activation. Ann. N. Y. Acad. Sci.1030:587–592.

    Article  PubMed  CAS  Google Scholar 

  • Trojer, P., and Reinberg, D.(2007). Facultative heterochromatin: is there a distinctive molecular signature? Mol. Cell28:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Tyagi, R. K., Lavrovsky, Y., Ahn, S. C., Song, C. S., Chatterjee, B., and Roy, A. K.(2000). Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol. Endocrinol.14:1162–1174.

    Article  PubMed  CAS  Google Scholar 

  • Varambally, S., Dhanasekaran, S. M., Zhou, M., Barrette, T. R., Kumar-Sinha, C., Sanda, M. G., Ghosh, D., Pienta, K. J., Sewalt, R. G., Otte, A. P., Rubin, M. A., and Chinnaiyan, A. M.(2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419:624–629.

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen, M., Mulder, K. W., Denissov, S., Pijnappel, W. W., van Schaik, F. M., Varier, R. A., Baltissen, M. P., Stunnenberg, H. G., Mann, M., and Timmers, H. T.(2007). Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell131:58–69.

    Article  PubMed  CAS  Google Scholar 

  • Villa, R., Pasini, D., Gutierrez, A., Morey, L., Occhionorelli, M., Vire, E., Nomdedeu, J. F., Jenuwein, T., Pelicci, P. G., Minucci, S., Fuks, F., Helin, K., and Di Croce, L.(2007). Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell11:513–525.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Li, W., Liu, X. S., Carroll, J. S., Janne, O. A., Keeton, E. K., Chinnaiyan, A. M., Pienta, K. J., and Brown, M.(2007). A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol. Cell27:380–392.

    Article  PubMed  Google Scholar 

  • Wei, C. L., Wu, Q., Vega, V. B., Chiu, K. P., Ng, P., Zhang, T., Shahab, A., Yong, H. C., Fu, Y., Weng, Z., Liu, J., Zhao, X. D., Chew, J. L., Lee, Y. L., Kuznetsov, V. A., Sung, W. K., Miller, L. D., Lim, B., Liu, E. T., Yu, Q., Ng, H. H., and Ruan, Y.(2006). A global map of p53 transcription-factor binding sites in the human genome. Cell124:207–219.

    Article  PubMed  CAS  Google Scholar 

  • Xie, X., Mikkelsen, T. S., Gnirke, A., Lindblad-Toh, K., Kellis, M., and Lander, E. S.(2007). Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc. Natl Acad. Sci. U. S. A.104:7145–7150.

    Article  PubMed  CAS  Google Scholar 

  • Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J., and Zhang, Y.(2006). JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell125:483–495.

    Article  PubMed  CAS  Google Scholar 

  • Yu, X., Gupta, A., Wang, Y., Suzuki, K., Mirosevich, J., Orgebin-Crist, M. C., and Matusik, R. J.(2005). Foxa1 and Foxa2 interact with the androgen receptor to regulate prostate and epididymal genes differentially. Ann. N. Y. Acad. Sci.1061:77–93.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, P., Zhou, W., Wang, J., Puc, J., Ohgi, K. A., Erdjument-Bromage, H., Tempst, P., Glass, C. K., and Rosenfeld, M. G.(2007). A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol. Cell27:609–621.

    Article  PubMed  CAS  Google Scholar 

  • Zoubeidi, A., Zardan, A., Beraldi, E., Fazli, L., Sowery, R., Rennie, P., Nelson, C., and Gleave, M.(2007). Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res.67:10455–10465.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yankel Gabet for critically reviewing the manuscript. We acknowledge the following grant support: W81XWH-04-1-0823 and W81XWH-07-1-0067 to GAC, and W81XWH-05-1-0025 to BF from the US Department of Defense; CA109147 to GAC and DK071122 to BF from the National Institutes of Health; IRG-58-007-48 to LJ from the American Cancer Society; Awards from the Prostate Cancer Foundation to GAC; The J. Harold and Edna L. LaBriola Chair in Genetic Orthopaedic Research, held by BF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard A. Coetzee .

Editor information

James Mohler Donald Tindall

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jia, L., Khalid, O., Frenkel, B., Coetzee, G.A. (2009). Chromatin Remodeling and Androgen Receptor-Mediated Transcription. In: Mohler, J., Tindall, D. (eds) Androgen Action in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69179-4_18

Download citation

Publish with us

Policies and ethics