Skip to main content

Kinetochore-Microtubule Interactions

  • Chapter
  • First Online:
The Kinetochore:
  • 620 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, R. R., S. P. Wheatley, et al. 2000. INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr Biol 10: 1075–8.

    Article  Google Scholar 

  • Andrews, P. D., E. Knatko, et al. 2003. Mitotic mechanics: the auroras come into view. Curr Opin Cell Biol 15: 672–83.

    Article  CAS  Google Scholar 

  • Andrews, P. D., Y. Ovechkina, et al. 2004. Aurora B regulates MCAK at the mitotic centromere. Dev Cell 6: 253–68.

    Article  Google Scholar 

  • Asbury, C. L., D. R. Gestaut, et al. 2006. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc Natl Acad Sci USA 103: 9873–8.

    Article  CAS  Google Scholar 

  • Biggins, S. and A. W. Murray 2001. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev 15: 3118–29.

    Article  Google Scholar 

  • Biggins, S., F. F. Severin, et al. 1999. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev 13: 532–44.

    Article  Google Scholar 

  • Buvelot, S., S. Y. Tatsutani, et al. 2003. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly. J Cell Biol 160: 329–39.

    Article  CAS  Google Scholar 

  • Carazo-Salas, R. E., O. J. Gruss, et al. 2001. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol 3: 228–34.

    Article  CAS  Google Scholar 

  • Carmena, M. and W. C. Earnshaw 2003. The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4: 842–54.

    Article  CAS  Google Scholar 

  • Caudron, M., G. Bunt, et al. 2005. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309: 1373–6.

    Article  CAS  Google Scholar 

  • Chan, C. S. and D. Botstein 1993. Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135: 677–91.

    Google Scholar 

  • Cheeseman, I. M., S. Anderson, et al. 2002. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111: 163–72.

    Article  Google Scholar 

  • Cheeseman, I. M., J. S. Chappie, et al. 2006. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127: 983–97.

    Article  CAS  Google Scholar 

  • Cimini, D. 2007. Detection and correction of merotelic kinetochore orientationby Aurora B and its partners. Cell Cycle 6: 1558–64.

    Article  Google Scholar 

  • Compton, D. A. 2002. Chromosome segregation: pulling from the poles. Curr Biol 12: R651–3.

    Article  Google Scholar 

  • Czaban, B. B. and A. Forer 1985. The kinetic polarities of spindle microtubules in vivo, in crane-fly spermatocytes. I. Kinetochore microtubules that re-form after treatment with colcemid. J Cell Sci 79: 1–37.

    PubMed  CAS  Google Scholar 

  • De Brabander, M., G. Geuens, et al. 1981. Nucleated assembly of mitotic microtubules in living PTK2 cells after release from nocodazole treatment. Cell Motil 1: 469–83.

    Google Scholar 

  • DeLuca, J. G., W. E. Gall, et al. 2006. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127: 969–82.

    Article  CAS  Google Scholar 

  • Dewar, H., K. Tanaka, et al. 2004. Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 428: 93–7.

    Article  CAS  Google Scholar 

  • Dong, Y., K. J. Vanden Beldt, et al. 2007. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat Cell Biol 9: 516–22.

    Article  CAS  Google Scholar 

  • Efremov, A., E. L. Grishchuk, et al. 2007. In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions. Proc Natl Acad Sci U S A 104: 19017–22.

    Article  Google Scholar 

  • Emanuele, M. J. and P. T. Stukenberg 2007. Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment. Cell 130: 893–905.

    Article  CAS  Google Scholar 

  • Francisco, L., W. Wang, et al. 1994. Type 1 protein phosphatase acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Mol Cell Biol 14: 4731–40.

    Google Scholar 

  • Franck, A. D., A. F. Powers, et al. 2007. Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nat Cell Biol 9: 832–7.

    Article  CAS  Google Scholar 

  • Gardner, M. K., C. G. Pearson, et al. 2005. Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. Mol Biol Cell 16: 3764–75.

    Article  CAS  Google Scholar 

  • Gorbsky, G. J., P. J. Sammak, et al. 1987. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J Cell Biol 104: 9–18.

    Article  Google Scholar 

  • Goshima, G. and M. Yanagida 2000. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100: 619–33.

    Article  Google Scholar 

  • Grishchuk, E. L., M. I. Molodtsov, et al. 2005. Force production by disassembling microtubules. Nature 438: 384–8.

    Article  CAS  Google Scholar 

  • Gruss, O. J. and I. Vernos 2004. The mechanism of spindle assembly: functions of Ran and its target TPX2. J Cell Biol 1667: 94–55.

    Article  Google Scholar 

  • Hanisch, A., H. H. Sillje, et al. 2006. Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. Embo J 25: 5504–15.

    Article  CAS  Google Scholar 

  • Hauf, S., R. W. Cole, et al. 2003. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161: 281–94.

    Article  CAS  Google Scholar 

  • Hayden, J. H., S. S. Bowser, et al. 1990. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J Cell Biol 111: 1039–45.

    Article  Google Scholar 

  • He, X., S. Asthana, et al. 2000. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101: 763–75.

    Article  Google Scholar 

  • He, X., D. R. Rines, et al. 2001. Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106: 195–206.

    Article  Google Scholar 

  • Hegemann, J. H. and U. N. Fleig 1993. The centromere of budding yeast. Bioessays 15: 451–60.

    Article  Google Scholar 

  • Higuchi, T. and F. Uhlmann 2005. Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. Nature 433: 171–6.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt, E. R. and M. A. Hoyt 2000. Mitotic motors in Saccharomyces cerevisiae. Biochim Biophys Acta 1496: 99–116.

    Article  Google Scholar 

  • Hsu, J. Y., Z. W. Sun, et al. 2000. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102: 279–91.

    Article  Google Scholar 

  • Indjeian, V. B., B. M. Stern, et al. 2005. The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science 307: 130–3.

    Article  CAS  Google Scholar 

  • Jelluma, N., A. B. Brenkman, et al. 2008. Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell 132: 233–46.

    Article  CAS  Google Scholar 

  • Jones, M. H., B. J. Huneycutt, et al. 2005. Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis. Curr Biol 15: 160–5.

    Article  CAS  Google Scholar 

  • Joseph, J., S. H. Tan, et al. 2002. SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J Cell Biol 156: 595–602.

    Article  CAS  Google Scholar 

  • Kaitna, S., M. Mendoza, et al. 2000. Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr Biol 10: 1172–81.

    Article  Google Scholar 

  • Kalab, P., R. T. Pu, et al. 1999. The ran GTPase regulates mitotic spindle assembly. Curr Biol 9: 481–4.

    Article  Google Scholar 

  • Kalab, P., K. Weis, et al. 2002. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295: 2452–6.

    Article  Google Scholar 

  • Kallio, M. J., M. L. McCleland, et al. 2002. Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr Biol 12: 900–5.

    Article  Google Scholar 

  • Kapoor, T. M. and D. A. Compton 2002. Searching for the middle ground: mechanisms of chromosome alignment during mitosis. J Cell Biol 157: 551–6.

    Article  CAS  Google Scholar 

  • Kapoor, T. M., M. A. Lampson, et al. 2006. Chromosomes can congress to the metaphase plate before biorientation. Science 311: 388–91.

    Article  CAS  Google Scholar 

  • Katis, V. L., M. Galova, et al. 2004. Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr Biol 14: 560–72.

    Article  CAS  Google Scholar 

  • Kerrebrock, A. W., D. P. Moore, et al. 1995. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell 83: 247–56.

    Article  Google Scholar 

  • Khodjakov, A., R. W. Cole, et al. 2000. Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 10: 59–67.

    Article  Google Scholar 

  • Khodjakov, A., L. Copenagle, et al. 2003. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J Cell Biol 160: 671–83.

    Article  CAS  Google Scholar 

  • King, E. M., N. Rachidi, et al. 2007. Ipl1p-dependent phosphorylation of Mad3p is required for the spindle checkpoint response to lack of tension at kinetochores. Genes Dev 21: 1163–8.

    Article  CAS  Google Scholar 

  • King, J. M., T. S. Hays, et al. 2000. Dynein is a transient kinetochore component whose binding is regulated by microtubule attachment, not tension. J Cell Biol 151: 739–48.

    Article  Google Scholar 

  • Kirschner, M. and T. Mitchison 1986. Beyond self-assembly: from microtubules to morphogenesis. Cell 45: 329–42.

    Article  Google Scholar 

  • Kitajima, T. S., S. A. Kawashima, et al. 2004. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427: 510–7.

    Article  PubMed  CAS  Google Scholar 

  • Kitajima, T. S., T. Sakuno, et al. 2006. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441: 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, E., K. Tanaka et al. 2007. Kinetochore microtubule interaction during S phase in Saccharomyces Cerevisiae. Genes Dev 21: 3319–3330.

    Article  PubMed  CAS  Google Scholar 

  • Knowlton, A. L., W. Lan, et al. 2006. Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr Biol 1617: 17–10.

    Article  CAS  Google Scholar 

  • Lampson, M. A., K. Renduchitala, et al. 2004. Correcting improper chromosome-spindle attachments during cell division. Nat Cell Biol 6: 232–7.

    Google Scholar 

  • Lan, W., X. Zhang, et al. 2004. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol 14: 273–86.

    Google Scholar 

  • Liu, X., I. McLeod, et al. 2005. Molecular analysis of kinetochore architecture in fission yeast. Embo J 24: 2919–30.

    Article  CAS  Google Scholar 

  • Maddox, P., A. Desai, et al. 2002. Poleward microtubule flux is a major component of spindle dynamics and anaphase a in mitotic Drosophila embryos. Curr Biol 12: 1670–4.

    Article  Google Scholar 

  • Maddox, P. S., K. S. Bloom, et al. 2000. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nat Cell Biol 2: 36–41.

    Article  CAS  Google Scholar 

  • Maiato, H., J. DeLuca, et al. 2004. The dynamic kinetochore-microtubule interface. J Cell Sci 117: 5461–77.

    Article  CAS  Google Scholar 

  • Maiato, H., E. A. Fairley, et al. 2003. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113: 891–904.

    Article  Google Scholar 

  • Maiato, H., C. L. Rieder, et al. 2004. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167: 831–40.

    Article  CAS  Google Scholar 

  • Maiato, H., P. Sampaio, et al. 2002. MAST/Orbit has a role in microtubule-kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity. J Cell Biol 157: 749–60.

    Article  CAS  Google Scholar 

  • Marston, A. L., W. H. Tham, et al. 2004. A genome-wide screen identifies genes required for centromeric cohesion. Science 303: 1367–70.

    Article  CAS  Google Scholar 

  • Maure, J. F., E. Kitamura, et al. 2007. Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism. Curr Biol 17: 2175–82.

    Article  CAS  Google Scholar 

  • McAinsh, A. D., J. D. Tytell, et al. 2003. Structure, function, and regulation of budding yeast kinetochores. Annu Rev Cell Dev Biol 19: 519–39.

    Article  PubMed  CAS  Google Scholar 

  • McGuinness, B. E., T. Hirota, et al. 2005. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol 3: e86.

    Article  CAS  Google Scholar 

  • Meraldi, P. and P. K. Sorger 2005. A dual role for Bub1 in the spindle checkpoint and chromosome congression. Embo J 24: 1621–33.

    Article  CAS  Google Scholar 

  • Miranda, J. J., D. S. King, et al. 2007. Protein arms in the kinetochore-microtubule interface of the yeast DASH complex. Mol Biol Cell 18: 2503–10.

    Article  CAS  Google Scholar 

  • Mitchison, T. and M. Kirschner 1984. Dynamic instability of microtubule growth. Nature 312: 237–42.

    Article  PubMed  CAS  Google Scholar 

  • Mitchison, T. J. and E. D. Salmon 1992. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J Cell Biol 119: 569–82.

    Article  Google Scholar 

  • Mitchison, T. J. and E. D. Salmon 2001. Mitosis: a history of division. Nat Cell Biol 3: E17–21.

    Article  Google Scholar 

  • Moore, D. P. and T. L. Orr-Weaver 1998. Chromosome segregation during meiosis: building an unambivalent bivalent. Curr Top Dev Biol 37: 263–99.

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth, K. 2005. How might cohesin hold sister chromatids together? Philos Trans R Soc Lond B Biol Sci 360: 483–96.

    Article  PubMed  CAS  Google Scholar 

  • Nicklas, R. B. and C. A. Koch 1969. Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J Cell Biol 43: 40–50.

    Article  Google Scholar 

  • O'Toole, E. T., M. Winey, et al. 1999. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol Biol Cell 10: 2017–31.

    Google Scholar 

  • Ohi, R., T. Sapra, et al. 2004. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell 15: 2895–906.

    Article  Google Scholar 

  • Pearson, C. G., P. S. Maddox, et al. 2001. Budding yeast chromosome structure and dynamics during mitosis. J Cell Biol 152: 1255–66.

    Article  Google Scholar 

  • Pearson, C. G., P. S. Maddox, et al. 2003. Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics. Mol Biol Cell 14: 4181–95.

    Article  CAS  Google Scholar 

  • Pereira, G. and E. Schiebel 2003. Separase regulates INCENP-Aurora B anaphase spindle function through Cdc14. Science 302: 2120–4.

    Article  PubMed  CAS  Google Scholar 

  • Pfarr, C. M., M. Coue, et al. 1990. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345: 263–5.

    Article  PubMed  CAS  Google Scholar 

  • Pickett-Heaps, J. D. 1991. Cell division in diatoms. Int. Rev.Cytol. 128: 63–107.

    Article  Google Scholar 

  • Pinsky, B. A., S. Y. Tatsutani, et al. 2003. An Mtw1 complex promotes kinetochore biorientation that is monitored by the Ipl1/Aurora protein kinase. Dev Cell 5: 735–45.

    Article  Google Scholar 

  • Porter, I. M., S. E. McClelland, et al. 2007. Bod1, a novel kinetochore protein required for chromosome biorientation. J Cell Biol 179: 187–97.

    Article  CAS  Google Scholar 

  • Rabitsch, K. P., J. Gregan, et al. 2004. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr Biol 14: 287–301.

    Google Scholar 

  • Riedel, C. G., V. L. Katis, et al. 2006. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441: 53–61.

    Article  CAS  Google Scholar 

  • Rieder, C. L. and S. P. Alexander 1990. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol 110: 81–95.

    Article  Google Scholar 

  • Rieder, C. L. and E. D. Salmon 1994. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J Cell Biol 124: 223–33.

    Article  Google Scholar 

  • Rogers, G. C., S. L. Rogers, et al. 2005. Spindle microtubules in flux. J Cell Sci 118: 1105–16.

    Article  CAS  Google Scholar 

  • Ruchaud, S., M. Carmena, et al. 2007. Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8: 798–812.

    Article  CAS  Google Scholar 

  • Sanchez-Perez, I., S. J. Renwick, et al. 2005. The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast. Embo J 24: 2931–43.

    Article  CAS  Google Scholar 

  • Sandall, S., F. Severin, et al. 2006. A Bir1-Sli15 complex connects centromeres to microtubules and is required to sense kinetochore tension. Cell 127: 1179–91.

    Article  CAS  Google Scholar 

  • Sassoon, I., F. F. Severin, et al. 1999. Regulation of Saccharomyces cerevisiae kinetochores by the type 1 phosphatase Glc7p. Genes Dev 13: 545–55.

    Article  Google Scholar 

  • Saxton, W. M., D. L. Stemple, et al. 1984. Tubulin dynamics in cultured mammalian cells. J Cell Biol 99: 2175–86.

    Article  Google Scholar 

  • Shang, C., T. R. Hazbun, et al. 2003. Kinetochore protein interactions and their regulation by the Aurora kinase Ipl1p. Mol Biol Cell 14: 3342–55.

    Article  CAS  Google Scholar 

  • Skibbens, R. V., V. P. Skeen, et al. 1993. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J Cell Biol 122: 859–75.

    Article  Google Scholar 

  • Sonoda, E., T. Matsusaka, et al. 2001. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev Cell 1: 759–70.

    Article  Google Scholar 

  • Starr, D. A., B. C. Williams, et al. 1998. ZW10 helps recruit dynactin and dynein to the kinetochore. J Cell Biol 142: 763–74.

    Article  Google Scholar 

  • Tanaka, K., E. Kitamura, et al. 2007. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J Cell Biol. 178: 269–281.

    Google Scholar 

  • Tanaka, K., N. Mukae, et al. 2005. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434: 987–94.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, T., J. Fuchs, et al. 2000. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat Cell Biol 2: 492–9.

    Google Scholar 

  • Tanaka, T. U., N. Rachidi, et al. 2002. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108: 317–29.

    Article  Google Scholar 

  • Tanaka, T. U., M. J. Stark, et al. 2005. Kinetochore capture and bi-orientation on the mitotic spindle. Nat Rev Mol Cell Biol 6: 929–42.

    Article  CAS  Google Scholar 

  • Telzer, B. R., M. J. Moses, et al. 1975. Assembly of microtubules onto kinetochores of isolated mitotic chromosomes of HeLa cells. Proc Natl Acad Sci USA 72: 4023–7.

    Article  Google Scholar 

  • Tippit, D. H., J. D. Pickett-Heaps, et al. 1980. Cell division in two large pennate diatoms Hantzschia and Nitzschia III. A new proposal for kinetochore function during prometaphase. J Cell Biol 86: 402–16.

    Article  Google Scholar 

  • Tytell, J. D. and P. K. Sorger 2006. Analysis of kinesin motor function at budding yeast kinetochores. J Cell Biol 172: 861–74.

    Article  CAS  Google Scholar 

  • Vagnarelli, P., C. Morrison, et al. 2004. Analysis of Scc1-deficient cells defines a key metaphase role of vertebrate cohesin in linking sister kinetochores. EMBO Rep 5: 167–71.

    Article  CAS  Google Scholar 

  • van Breugel, M., D. Drechsel, et al. 2003. Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end-binding microtubule destabilizer. J Cell Biol 161: 359–69.

    Article  CAS  Google Scholar 

  • Wadsworth, P. and A. Khodjakov 2004. E pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol 14: 413–9.

    Article  CAS  Google Scholar 

  • Waterman-Storer, C. M., A. Desai, et al. 1998. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr Biol 8: 1227–30.

    Article  Google Scholar 

  • Wei, R. R., J. Al-Bassam, et al. 2007. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 14: 54–9.

    Article  CAS  Google Scholar 

  • Wei, R. R., P. K. Sorger, et al. 2005. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci USA 102: 5363–7.

    Article  CAS  Google Scholar 

  • Westermann, S., A. Avila-Sakar, et al. 2005. Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex. Mol Cell 17: 277–90.

    Article  CAS  Google Scholar 

  • Westermann, S., H. W. Wang, et al. 2006. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440: 565–9.

    Article  PubMed  CAS  Google Scholar 

  • Winey, M. and B. J. Huneycutt 2002. Centrosomes and checkpoints: the MPS1 family of kinases. Oncogene 21: 6161–9.

    Article  CAS  Google Scholar 

  • Winey, M., C. L. Mamay, et al. 1995. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol 129: 1601–15.

    Article  Google Scholar 

  • Witt, P. L., H. Ris, et al. 1980. Origin of kinetochore microtubules in Chinese hamster ovary cells. Chromosoma 81: 483–505.

    Article  Google Scholar 

  • Wittmann, T., A. Hyman, et al. 2001. The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3: E28–34.

    Article  Google Scholar 

  • Wollman, R., E. N. Cytrynbaum, et al. 2005. Efficient chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle assembly. Curr Biol 15: 828–32.

    Article  CAS  Google Scholar 

  • Yang, Z., U. S. Tulu, et al. 2007. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr Biol 17: 973–80.

    Article  CAS  Google Scholar 

  • Zhang, X., W. Lan, et al. 2007. Aurora B Phosphorylates Multiple Sites on MCAK to Spatially and Temporally Regulate Its Function. Mol Biol Cell. 18: 3264–3276.

    Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory was supported by Cancer Research UK, the Wellcome Trust, the Human Frontier Science Program, the Lister Research Institute Prize and the Association for International Cancer Research. T.U. Tanaka is a Senior Research Fellow of Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley Clayton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clayton, L., Tanaka, T.U. (2009). Kinetochore-Microtubule Interactions. In: De Wulf, P., Earnshaw, W. (eds) The Kinetochore:. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69076-6_9

Download citation

Publish with us

Policies and ethics