Skip to main content

Adenovirus Transformation

  • Chapter
  • First Online:
Book cover DNA Tumor Viruses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arany, Z., Newsome, D., Oldread, E., Livingston, D.M. and Eckner, R. (1995) A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374, 81–4.

    Article  PubMed  CAS  Google Scholar 

  • Baker, A., Rohleder, K.J., Hanakahi, L.A. and Ketner, G. (2007) The adenovirus E4 34 k and E1b 55 k oncoproteins target host DNA ligase IV for proteasomal degradation. J Virol. epub ahead of print.

    Google Scholar 

  • Baluchamy, S., Rajabi, H.N., Thimmapaya, R., Navaraj, A. and Thimmapaya, B. (2003) Repression of c-Myc and inhibition of G1 exit in cells conditionally overexpressing p300 that is not dependent on its histone acetyltransferase activity. Proc. Natl. Acad. Sci. USA 100, 9524–9.

    Google Scholar 

  • Baluchamy, S., Sankar, N., Navaraj, A., Moran, E. and Thimmapaya, B. (2007) Relationship between E1A binding to cellular proteins, c-myc activation and S-phase induction. Oncogene 26, 781–787.

    Article  PubMed  CAS  Google Scholar 

  • Berk, A.J. (2005) Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24, 7673–7685.

    Article  PubMed  CAS  Google Scholar 

  • Bondesson, M., Ohman, K., Manervik, M., Fan, S. and Akusjarvi, G. (1996) Adenovirus E4 open reading frame 4 protein autoregulates E4 transcription by inhibiting E1A transactivation of the E4 promoter. J. Virol. 70, 3844–3851.

    PubMed  CAS  Google Scholar 

  • Boyd, J.M., Subramanian, T., Schaeper, U., La Regina, M., Bayley, S. and Chinnadurai, G. (1993) A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J. 12, 469–478.

    PubMed  CAS  Google Scholar 

  • Chinnadurai, G. (1998) Control of apoptosis by human adenovirus genes. Semin. Virol. 8, 399–408.

    Article  CAS  Google Scholar 

  • Chinnadurai, G. (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mo.l Cell 9, 213–224.

    Article  CAS  Google Scholar 

  • Chinnadurai, G. (2006) CtIP, a candidate tumor susceptibility gene is a team player with luminaries. Biochim. Biophys. Acta 1765, 67–73.

    CAS  Google Scholar 

  • D’Amours, D. and Jackson, S.P. (2002) The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat. Rev. Mol. Cell. Biol. 3, 317–327.

    Article  PubMed  Google Scholar 

  • de Stanchina, E., McCurrach, M.E., Zindy, F., Shieh, S.Y., Ferbeyre, G., Samuelson, A. V., Prives, C., Roussel, M. F., Sherr, C. J. and Lowe, S. W. (1998) E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12, 2434–2442.

    Article  PubMed  Google Scholar 

  • Deleu, L., Shellard, S., Alevizopoulos, K., Amati, B. and Land, H. (2001) Recruitment of TRRAP required for oncogenic transformation by E1A. Oncogene 20, 8270–8275.

    Article  PubMed  CAS  Google Scholar 

  • Dimova, D.K. and Dyson, N.J. (2005) The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810–2826.

    Article  PubMed  CAS  Google Scholar 

  • Dobner, T., Horikoshi, N., Rubenwolf, S. and Shenk, T. (1996) Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 272, 1470–1473.

    Article  PubMed  CAS  Google Scholar 

  • Doucas, V., Ishov, A.M., Romo, A., Juguilon, H., Weitzman, M.D., Evans, R.M. and Maul, G.G. (1996) Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev. 10, 196–207.

    Article  PubMed  CAS  Google Scholar 

  • Endter, C. and Dobner, T. (2004) Cell transformation by human adenoviruses. Curr. Top. Microbiol. Immunol. 273, 163–214.

    PubMed  CAS  Google Scholar 

  • Endter, C., Kzhyshkowska, J., Stauber, R. and Dobner, T. (2001) SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc. Natl. Acad. Sci. USA 98, 11312–11317.

    Google Scholar 

  • Evans, J.D. and Hearing, P. (2005) Relocalization of the Mre11-Rad50-Nbs1 complex by the adenovirus E4 ORF3 protein is required for viral replication. J. Virol. 79, 6207–6215.

    Article  PubMed  CAS  Google Scholar 

  • Frank, S.R., Parisi, T., Taubert, S., Fernandez, P., Fuchs, M., Chan, H.M., Livingston, D.M. and Amati, B. (2003) MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep. 4, 575–580.

    Article  PubMed  CAS  Google Scholar 

  • Frese, K.K., Latorre, I.J., Chung, S.H., Caruana, G., Bernstein, A., Jones, S.N., Donehower, L.A., Justice, M.J., Garner, C.C. and Javier, R. T. (2006) Oncogenic function for the Dlg1 mammalian homolog of the Drosophila discs-large tumor suppressor. EMBO J. 25, 1406–1417.

    Article  PubMed  CAS  Google Scholar 

  • Frese, K.K., Lee, S.S., Thomas, D.L., Latorre, I J., Weiss, R.S., Glaunsinger, B.A. and Javier, R.T. (2003) Selective PDZ protein-dependent stimulation of phosphatidylinositol 3-kinase by the adenovirus E4-ORF1 oncoprotein. Oncogene 22, 710–721.

    Article  PubMed  CAS  Google Scholar 

  • Frisch, S.M. and Mymryk, J.S. (2002) Adenovirus-5 E1A: paradox and paradigm. Nat. Rev. Mo.l Cell. Biol. 3, 441–452.

    Article  CAS  Google Scholar 

  • Fuchs, M., Gerber, J., Drapkin, R., Sif, S., Ikura, T., Ogryzko, V., Lane, W.S., Nakatani, Y. and Livingston, D.M. (2001) The p400 complex is an essential E1A transformation target. Cell 106, 297–307.

    Article  PubMed  CAS  Google Scholar 

  • Glaunsinger, B.A., Lee, S.S., Thomas, M., Banks, L. and Javier, R. (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19, 5270–5280.

    Article  PubMed  CAS  Google Scholar 

  • Glaunsinger, B.A., Weiss, R.S., Lee, S.S. and Javier, R. (2001) Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2. EMBO J. 20, 5578–5586.

    Article  PubMed  CAS  Google Scholar 

  • Harada, J.N., Shevchenko, A., Shevchenko, A., Pallas, D.C. and Berk, A.J. (2002) Analysis of the adenovirus E1B-55 K-anchored proteome reveals its link to ubiquitination machinery. J. Virol. 76, 9194–9206.

    Article  PubMed  CAS  Google Scholar 

  • Hilleman, M.W.J. and Werner, J.H. (1954) Recovery of new agents from patients with acute respiratory illness. Proc. Soc. Exp. Biol. Med. 85, 183–188.

    Google Scholar 

  • Huang, M.M. and Hearing, P. (1989) The adenovirus early region 4 open reading frame 6/7 protein regulates the DNA binding activity of the cellular transcription factor, E2F, through a direct complex. Genes Dev. 3, 1699–1710.

    Article  PubMed  CAS  Google Scholar 

  • Javier, R.T. (1994) Adenovirus type 9 E4 open reading frame 1 encodes a transforming protein required for the production of mammary tumors in rats. J. Virol. 68, 3917–3924.

    PubMed  CAS  Google Scholar 

  • Jelsma, T.N., Howe, J.A., Mymryk, J.S., Evelegh, C.M., Cunniff, N.F. and Bayley, S.T. (1989) Sequences in E1A proteins of human adenovirus 5 required for cell transformation, repression of a transcriptional enhancer, and induction of proliferating cell nuclear antigen. Virol. 171, 120–130.

    Article  CAS  Google Scholar 

  • Kleinberger, T. and Shenk, T. (1993) Adenovirus E4orf4 protein binds to protein phosphatase 2A, and the complex down regulates E1A-enhanced junB transcription. J. Virol. 67, 7556–7560.

    PubMed  CAS  Google Scholar 

  • Kolli, S., Buchmann, A.M., Williams, J., Weitzman, S. and Thimmapaya, B. (2001) Antisense-mediated depletion of p300 in human cells leads to premature G1 exit and up-regulation of c-MYC. Proc. Natl. Acad. Sci. USA 98, 4646–4651.

    Google Scholar 

  • Konig, C., Roth, J. and Dobbelstein, M. (1999) Adenovirus type 5 E4orf3 protein relieves p53 inhibition by E1B-55-kilodalton protein. J. Virol. 73, 2253–2262.

    PubMed  CAS  Google Scholar 

  • Kovesdi, I., Reichel, R. and Nevins, J.R. (1986) Identification of a cellular transcription factor involved in E1A trans-Activation. Cell 45, 219–228.

    Article  PubMed  CAS  Google Scholar 

  • Kulesza, C.A., Van Buskirk, H.A., Cole, M.D., Reese, J.C., Smith, M.M. and Engel, D.A. (2002) Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1. Oncogene 21, 1411–1422.

    Article  PubMed  CAS  Google Scholar 

  • Lang, S.E. and Hearing, P. (2003) The adenovirus E1A oncoprotein recruits the cellular TRRAP/GCN5 histone acetyltransferase complex. Oncogene 22, 2836–2841.

    Article  PubMed  CAS  Google Scholar 

  • Latorre, I.J., Roh, M.H., Frese, K.K., Weiss, R.S., Margolis, B. and Javier, R.T. (2005) Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J. Cell Sci. 118, 4283–4293.

    Article  PubMed  CAS  Google Scholar 

  • Lavoie, J.N., Champagne, C., Gingras, M.C. and Robert, A. (2000) Adenovirus E4 open reading frame 4-induced apoptosis involves dysregulation of Src family kinases. J. Cell Biol. 150, 1037–1056.

    Article  PubMed  CAS  Google Scholar 

  • Lavoie, J.N., Nguyen, M., Marcellus, R.C., Branton, P. E. and Shore, G. C. (1998) E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J. Cell Biol. 140, 637–645.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C.W., Sorensen, T.S., Shikama, N. and LaThangue, N.B. (1998) Functional interplay between p53 and E2F through coactivator p300. Oncogene 16, 2695–2710.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.S., Glaunsinger, B., Mantovani, F., Banks, L. and Javier, R.T. (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J. Virol. 74, 9680–9693.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.S., Weiss, R.S.,and Javier, R.T. (1997) Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc. Natl. Acad .Sci. USA 94, 6670–6675.

    Google Scholar 

  • Liu, Y., Colosimo, A. L., Yang, X.J. and Liao, D. (2000) Adenovirus E1B 55-kilodalton oncoprotein inhibits p53 acetylation by PCAF. Mol. Cell. Biol. 20, 5540–5553.

    Article  PubMed  CAS  Google Scholar 

  • Livne, A., Shtrichman, R. and Kleinberger, T. (2001) Caspase activation by adenovirus e4orf4 protein is cell line specific and Is mediated by the death receptor pathway. J. Virol. 75, 789–798.

    Article  PubMed  CAS  Google Scholar 

  • Lundblad, J.R., Kwok, R.P., Laurance, M.E., Harter, M.L. and Goodman, R.H. (1995) Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374, 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Macaluso, M., Montanari, M. and Giordano, A. (2006) Rb family proteins as modulators of gene expression and new aspects regarding the interaction with chromatin remodeling enzymes. Oncogene 25, 5263–5267.

    Article  PubMed  CAS  Google Scholar 

  • Marcellus, R.C., Chan, H., Paquette, D., Thirlwell, S., Boivin, D. and Branton, P.E. (2000) Induction of p53-independent apoptosis by the adenovirus E4orf4 protein requires binding to the Balpha subunit of protein phosphatase 2A. J. Virol. 74, 7869–7877.

    Article  PubMed  CAS  Google Scholar 

  • Marcellus, R.C., Lavoie, J.N., Boivin, D., Shore, G.C., Ketner, G. and Branton, P.E. (1998) The early region 4 orf4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis. J. Virol. 72, 7144–7153.

    PubMed  CAS  Google Scholar 

  • Martin, M.E. and Berk, A.J. (1998) Adenovirus E1B 55 K represses p53 activation in vitro. J. Virol. 72, 3146–3154.

    PubMed  CAS  Google Scholar 

  • Martin, M.E. and Berk, A.J. (1999) Corepressor required for adenovirus E1B 55,000-molecular-weight protein repression of basal transcription. Mol. Cell. Biol. 19, 3403–3414.

    PubMed  CAS  Google Scholar 

  • McMahon, S.B., Van Buskirk, H.A., Dugan, K.A., Copeland, T.D. and Cole, M.D. (1998) The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374.

    Article  PubMed  CAS  Google Scholar 

  • McMahon, S.B., Wood, M.A. and Cole, M.D. (2000) The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20, 556–562.

    Article  PubMed  CAS  Google Scholar 

  • Meloni, A.R., Smith, E.J. and Nevins, J.R. (1999) A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc. Natl. Acad. Sci. USA 96, 9574–9579.

    Google Scholar 

  • Nevels, M., Rubenwolf, S., Spruss, T., Wolf, H. and Dobner, T. (2000) Two distinct activities contribute to the oncogenic potential of the adenovirus type 5 E4orf6 protein. J. Virol. 74, 5168–5181.

    Article  PubMed  CAS  Google Scholar 

  • Nevels, M., Spruss, T., Wolf, H. and Dobner, T. (1999a) The adenovirus E4orf6 protein contributes to malignant transformation by antagonizing E1A-induced accumulation of the tumor suppressor protein p53. Oncogene 18, 9–17.

    Google Scholar 

  • Nevels, M., Tauber, B., Kremmer, E., Spruss, T., Wolf, H. and Dobner, T. (1999b) Transforming potential of the adenovirus type 5 E4orf3 protein. J. Virol. 73, 1591–1600.

    Google Scholar 

  • Nevels, M., Tauber, B., Spruss, T., Wolf, H. and Dobner, T. (2001).“Hit-and-run” transformation by adenovirus oncogenes. J. Virol. 75, 3089–3094.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor, R J. and Hearing, P. (2000) The E4-6/7 protein functionally compensates for the loss of E1A expression in adenovirus infection. J. Virol. 74, 5819–5824.

    Article  PubMed  Google Scholar 

  • Perez, D. and White, E. (1998) E1B 19 K inhibits Fas-mediated apoptosis through FADD-dependent sequestration of FLICE. J. Cell Biol. 141, 1255–1266.

    Article  PubMed  CAS  Google Scholar 

  • Querido, E., Blanchette, P., Yan, Q., Kamura, T., Morrison, M., Boivin, D., Kaelin, W.G., Conaway, R.C., Conaway, J.W. and Branton, P.E. (2001) Degradation of p53 by adenovirus E4orf6 and E1B55 K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev. 15, 3104–3117.

    Article  PubMed  CAS  Google Scholar 

  • Querido, E., Marcellus, R. C., Lai, A., Charbonneau, R., Teodoro, J.G., Ketner, G. and Branton, P.E. (1997) Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J. Virol. 71, 3788–3798.

    PubMed  CAS  Google Scholar 

  • Roth, S.Y., Denu, J.M. and Allis, C.D. (2001) Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120.

    Article  CAS  Google Scholar 

  • Rowe, W., Huebner, R.J., Gilmore, L.K., Parrott, R.H., and Ward, T.G. (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc. Soc. Exp. Biol. Med. 84, 570–573.

    Google Scholar 

  • Ruley, H.E. (1983) Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304, 602–606.

    Article  PubMed  CAS  Google Scholar 

  • Samuelson, A.V., Narita, M., Chan, H.M., Jin, J., de Stanchina, E., McCurrach, M.E., Narita, M., Fuchs, M., Livingston, D.M. and Lowe, S.W. (2005) p400 is required for E1A to promote apoptosis. J. Biol. Chem. 280, 21915–21923.

    Article  PubMed  CAS  Google Scholar 

  • Schaeper, U., Subramanian, T., Lim, L., Boyd, J.M. and Chinnadurai, G. (1998) Interaction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif. .J Biol. Chem. 273, 8549–8552.

    Article  PubMed  CAS  Google Scholar 

  • Schaley, J., O’Connor, R.J., Taylor, L J., Bar-Sagi, D. and Hearing, P. (2000) Induction of the cellular E2F-1 promoter by the adenovirus E4-6/7 protein [In Process Citation]. J. Virol. 74, 2084–2093.

    Article  PubMed  CAS  Google Scholar 

  • Schaley, J.E., Polonskaia, M. and Hearing, P. (2005) The adenovirus E4-6/7 protein directs nuclear localization of E2F-4 via an arginine-rich motif. J. Virol. 79, 2301–2308.

    Article  PubMed  CAS  Google Scholar 

  • Seeler, J.S. and Dejean, A. (1999) The PML nuclear bodies: actors or extras? Curr. Opin. Genet. Dev. 9, 362–367.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., Sawada, J., Sui, G., Affarel, B., Whetstine, J. R., Lan, F., Ogawa, H., Luke, M.P., Nakatani, Y. and Shi, Y. (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422, 735–738.

    Article  PubMed  CAS  Google Scholar 

  • Shtrichman, R. and Kleinberger, T. (1998) Adenovirus type 5 E4 open reading frame 4 protein induces apoptosis in transformed cells. J. Virol. 72, 2975–2982.

    PubMed  CAS  Google Scholar 

  • Shtrichman, R., Sharf, R., Barr, H., Dobner, T. and Kleinberger, T. (1999) Induction of apoptosis by adenovirus E4orf4 protein is specific to transformed cells and requires an interaction with protein phosphatase 2A. Proc. Natl. Acad. Sci. USA 96, 10080–10085.

    Google Scholar 

  • Shtrichman, R., Sharf, R. and Kleinberger, T. (2000) Adenovirus E4orf4 protein interacts with both Balpha and B’ subunits of protein phosphatase 2A, but E4orf4-induced apoptosis is mediated only by the interaction with Balpha. Oncogene 19, 3757–3765.

    Article  PubMed  CAS  Google Scholar 

  • Sieber, T. and Dobner, T. (2007) Adenovirus type 5 early region 1B 156R protein promotes cell transformation independently of repression of p53-stimulated transcription. J. Virol. 81, 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Sollerbrant, K., Chinnadurai, G. and Svensson, C. (1996) The CtBP binding domain in the adenovirus E1A protein controls CR1-dependent transactivation. Nucl. Acids Res. 24, 2578–2584.

    Article  PubMed  CAS  Google Scholar 

  • Steegenga, W.T., Riteco, N., Jochemsen, A.G., Fallaux, F.J. and Bos, J L. (1998) The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene 16, 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Stracker, T.H., Carson, C.T. and Weitzman, M.D. (2002) Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418, 348–352.

    Article  PubMed  CAS  Google Scholar 

  • Stracker, T.H., Lee, D.V., Carson, C.T., Araujo, F.D., Ornelles, D.A. and Weitzman, M.D. (2005) Serotype-specific reorganization of the Mre11 complex by adenoviral E4orf3 proteins. J. Virol. 79, 6664–6673.

    Article  PubMed  CAS  Google Scholar 

  • Subramanian, T. and Chinnadurai, G. (2003) Association of class I histone deacetylases with transcriptional corepressor CtBP. FEBS Lett. 540, 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Subramanian, T., La Regina, M. and Chinnadurai, G. (1989) Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1a protein. Oncogene 4, 415–420.

    PubMed  CAS  Google Scholar 

  • Tauber, B. and Dobner, T. (2001) Adenovirus early E4 genes in viral oncogenesis. Oncogene 20, 7847–7854.

    Article  PubMed  CAS  Google Scholar 

  • Trentin, J., Yabe, Y., Taylor, G (1962) The quest for human cancer viruses. Science 137, 835–849.

    Article  PubMed  CAS  Google Scholar 

  • Trouche, D., Cook, A. and Kouzarides, T. (1996) The CBP co-activator stimulates E2F1/DP1 activity. Nucl. Acids Res. 24, 4139–4145.

    Article  PubMed  CAS  Google Scholar 

  • Turnell, A.S. and Mymryk, J.S. (2006) Roles for the coactivators CBP and p300 and the APC/C E3 ubiquitin ligase in E1A-dependent cell transformation. Br. J. Cancer 95, 555–560.

    Article  PubMed  CAS  Google Scholar 

  • Turnell, A.S., Stewart, G.S., Grand, R.J., Rookes, S.M., Martin, A., Yamano, H., Elledge, S.J. and Gallimore, P.H. (2005) The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. Nature 438, 690–695.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H.G., Rikitake, Y., Carter, M.C., Yaciuk, P., Abraham, S.E., Zerler, B. and Moran, E. (1993) Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J. Virol. 67, 476–488.

    PubMed  CAS  Google Scholar 

  • Weiss, R.S., McArthur, M.J. and Javier, R.T. (1996) Human adenovirus type 9 E4 open reading frame 1 encodes a cytoplasmic transforming protein capable of increasing the oncogenicity of CREF cells. J. Virol. 70, 862–872.

    PubMed  CAS  Google Scholar 

  • Whalen, S.G., Marcellus, R.C., Whalen, A., Ahn, N.G., Ricciardi, R.P. and Branton, P.E. (1997) Phosphorylation within the transactivation domain of adenovirus E1A protein by mitogen-activated protein kinase regulates expression of early region 4. J. Virol. 71, 3545–3553.

    PubMed  CAS  Google Scholar 

  • White, E. (1998) Regulation of apoptosis by E1A and E1B. Semin. Virol. 8, 505–513.

    Article  CAS  Google Scholar 

  • White, E. (2006) Mechanisms of apoptosis regulation by viral oncogenes in infection and tumorigenesis. Cell Death Differ. 13, 1371–1377.

    Article  PubMed  CAS  Google Scholar 

  • Yamano, S., Tokino, T., Yasuda, M., Kaneuchi, M., Takahashi, M., Niitsu, Y., Fujinaga, K. and Yamashita, T. (1999) Induction of transformation and p53-dependent apoptosis by adenovirus type 5 E4orf6/7 cDNA. J. Virol. 73, 10095–10103.

    PubMed  CAS  Google Scholar 

  • Zhang, Q., Yao, H., Vo, N. and Goodman, R.H. (2000) Acetylation of adenovirus E1A regulates binding of the transcriptional corepressor CtBP. Proc. Natl. Acad. Sci. USA 97, 14323–14328.

    Google Scholar 

  • Zhao, L.Y., Colosimo, A.L., Liu, Y., Wan, Y. and Liao, D. (2003a). Adenovirus E1B 55-kilodalton oncoprotein binds to Daxx and eliminates enhancement of p53-dependent transcription by Daxx. J. Virol. 77, 11809–1821.

    Google Scholar 

  • Zhao, L.Y. and Liao, D. (2003b) Sequestration of p53 in the cytoplasm by adenovirus type 12 E1B 55-kilodalton oncoprotein is required for inhibition of p53-mediated apoptosis. J. Virol. 77, 13171–13181.

    Google Scholar 

Download references

Acknowledgments

I thank for colleagues for many helpful discussions. This work was supported by NIH grant CA122677.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Hearing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Hearing, P. (2009). Adenovirus Transformation. In: Damania, B., Pipas, J.M. (eds) DNA Tumor Viruses. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68945-6_7

Download citation

Publish with us

Policies and ethics