Skip to main content
  • 891 Accesses

Abstract

Weather can change many times a day. Climate.the sum of weather.changes slowly, over decades and centuries, but it can change abruptly with large volcanic eruptions, instabilities in ocean currents, or meteorite crashes. The dramatic 1815 Tambora eruption spewed 100 km3 of ash, causing “a year without a summer” to cool Earth by 4°C. Cooling from volcanic and anthropogenic aerosols must be factored into climate predictions.Without industrialization, Earth’s temperature is raised 33°Cby greenhouse gases [water vapor (21°C),CO2 (7°C), other gases (5°C)]. The Intergovernmental Panel on Climate Change (IPCC) projected in 2002 an additional 2.5°Crise (1.4.5.8°C) for a doubledCO2 (560 ppm). Positive feedback magnifies warming. For example, increased CO2 warms Earth, which increases atmospheric moisture that further raises Earth’s temperature. Positive feedback also comes from reduced snow and ice, which reduce solar reflection. Increased cloudiness has a negative feedback since increased numbers of high-altitude clouds increase solar re- flection. But more low-altitude clouds also produce positive feedback by trapping infrared radiation. The height of the clouds is critical in this comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Bender, M., M. Battle and R. Keeling (1998). The oxygen balance of the atmosphere, Ann. Rev. Energy Environ. 23, 207–223.

    Article  Google Scholar 

  • Brown, M., et al. (1998). Engineering-economic studies of energy technologies to reduce greenhouse gas emissions, Five-Lab DOE Study, Ann. Rev. Energy Environ. 23, 287–386.

    Article  Google Scholar 

  • Ehrlich, P. (1996). Disease and global circulation models, Ann. Rev. Energy Environ. 21, 125–144.

    Article  Google Scholar 

  • Firor, J. (Ed.) (1995). Global Warming: Selected Reprints, American Association of Physics Teachers, College Park, MD.

    Google Scholar 

  • Hansen, J., et al. (2000). Global warming in the twenty-first century: An alternate scenario, Proc. Natl. Acad. Sci. 97, 9875–9880.

    Article  ADS  Google Scholar 

  • Harte, J. (1988). Consider a Spherical Cow, University Science Books, Sausalito, CA.

    Google Scholar 

  • Harte, J. (1997). Carbon dioxide feedbacks, Ann. Rev. Energy Environ. 22, 75–118.

    Article  Google Scholar 

  • Harte, J. (2000). Consider a Cylindrical Cow, University Science Books, Sausalito, CA.

    Google Scholar 

  • Harvey, L. (2000). Global Warming: The Hard Science, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Herzog, H. and E. Drake (1996). Carbon dioxide recovery and disposal from large energy systems, Ann. Rev. Energy Environ. 21, 145–166.

    Article  Google Scholar 

  • Holloway, S. (2001). Storage of fossil fuel-derived carbon dioxide beneath the surface of the Earth, Ann. Rev. Energy Environ. 26, 145–166.

    Article  Google Scholar 

  • Intergovernmental Panel Climate Change (1994). Radiative Forcing of Climate Change, Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  • Intergovernmental Panel Climate Change (1997). An Introduction to Simple Climate Models Used in the IPCC Second Assessment, Report, Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  • Intergovernmental Panel Climate Change (2000). Climate Change 2001: The Scientific Basis, Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  • Intergovernmental Panel Climate Change (2000). Emission Scenarios, Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  • Levi, B., D. Hafemeister and R. Scribner (Eds.) (1991). Global Warming: Physics and Facts, American Institute of Physics Press, New York.

    Google Scholar 

  • Levitus, S., J. I. Antonov, J. Wang, et al. (2001). Anthropogenic warming of the Earth's climate system, Science, 292, 267–270.

    Article  ADS  Google Scholar 

  • Melillo, J., et al. (1996). Tropical deforestation and the global carbon dioxide budge, Ann. Rev. Energy Environ. 21, 293–310.

    Article  Google Scholar 

  • National Research Council (1991). Policy Implications of Greenhouse Warming, National Academy. Press, Washington, DC.

    Google Scholar 

  • National Research Council (1994). Solar Influence on Global Change, National Academy Press, Washington, DC.

    Google Scholar 

  • National Research Council (2001). Climate Change Science: An Analysis of Some Key Questions, National Academy Press, Washington, DC.

    Google Scholar 

  • -Office Technology Assessment (1991). Changing by Degrees: Steps to Reduce Greenhouse Gases, OTA, Washington, DC.

    Google Scholar 

  • Parson, E. and K. Fisher-Vanden (1997). Integrated assessment of global climate change, Ann. Rev. Energy Environ. 22, 589–628.

    Article  Google Scholar 

  • Peixoto, J. and A. Oort (1992). Physics of Climate, American Institute of Physics Press, New York.

    Google Scholar 

  • Rosenfeld, A., et al. (2000). Technologies to reduce carbon dioxide emissions in the next decade, Phys. Today 53(11), 29–34.

    Article  Google Scholar 

  • Schipper, L., et al. (2001). Indicators of energy use and carbon emissions, Ann. Rev. Energy Environ. 26, 49–81.

    Article  ADS  Google Scholar 

  • Trenbeth, K. (1996). IPCC's Climate Change 1995, Cambridge Univ. Press, Cambridge, MA.

    Google Scholar 

  • US Energy Information Administration (1998). Impacts of the Kyoto Protocol on US Energy Markets and Economic Activity, EIA, Washington, DC.

    Google Scholar 

  • US Energy Information Administration (1999). Emissions of Greenhouse Gases in the United States, EIA, Washington, DC.

    Google Scholar 

  • US Global Climate Change Research Program (2000). Our Changing Planet, USGCRP, Washington, DC.

    Google Scholar 

  • US Global Climate Change Research Program (2000). Climate Change Impacts on the United States, Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  • Weart, S. (2003). The discovery of rapid climate change, Phys. Today 55(8), 30–36.

    Article  Google Scholar 

  • Wigley, T., and D. Schimel (Eds.). The Carbon Cycle, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Zebrowski, E. (1997). Perils of a Restless Planet, Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hafemeister, D. (2007). Climate Change. In: Physics of Societal Issues. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68909-8_8

Download citation

Publish with us

Policies and ethics