Skip to main content
  • 1435 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anger C, Dujovny M, Gaviria M (2002) Neurocognitive assessment before and after cranioplasty. Acta Neurochir 144:1033–1040

    Google Scholar 

  • Arriaga MA, Chen DA (2002) Hydroxyapatite cement cranioplasty in translabyrinthine acoustic neuroma surgery. Otolaryngol Head Neck Surg 126(5):512–517

    Article  Google Scholar 

  • Artico M, Ferrante L, Pastore FS, Ramundo EO, Cantarelli D, Scopoletti D Iannetti G (2003) Bone autografting of the calvaria and craniofacial skeleton: historical background, surgical results in a series of 15 patients and review of the literature. Surg Neuro 60:71–79

    Article  Google Scholar 

  • Barker TM, Earwaker WJ, Frost N, Wakeley G (1994) Accuracy of stereolithographic models of human anatomy. Australas Radiol 38(2):106–111

    Google Scholar 

  • Beber B, Philips JH, Forrest CR (2003) Hydroxyapatite cement cranioplasty in the pediatric population. Craniofacial Surgery 10:227–230

    Google Scholar 

  • Blum KS, Schneider SJ, Rosenthal AD (1997) Methyl methacrylate cranioplasty in children: Long-term results. Pediatr Neurosurg 26(1):33–35

    Article  Google Scholar 

  • Brandt MT, Haug RH (2002) The use of a polyurethane skull replica as a template for contouring titanium mesh. J Oral and Maxillofac Surg 60:337–338

    Article  Google Scholar 

  • Chiarini L, Figurelli S, Pollastri G, Torcia E, Ferarri F, Albanese M, Nocine PF (2004) Cranioplasty using acrylic material: a new technical procedure. J Cranio-Maxillofacial Surgery 32:5–9

    Article  Google Scholar 

  • Choi JY, Choi JH, Kim NK, Kim Y, Lee JK, Kim MK, Lee JH, Kim MJ (2002) Analysis of errors in medical rapid prototyping models. Int J Oral Maxillofac Surg 31(1):23–32

    Article  Google Scholar 

  • Chong CS, Lee H, Kumar AS (2006) Automatic hole repairing for cranioplasty using Bezier surface approximation. J Craniofac Surg 17(2):344–352

    Article  Google Scholar 

  • Cutting C, Bookstein FL, Grayson B (1982) Three dimensional computer assisted design of craniofacial surgical procedures: Optimisation and interaction with cephalometric and computer tomographic based models. Plastic Reconstructive Surg 77:877

    Article  Google Scholar 

  • Dean D, Min KJ, Bond A (2003) Computer aided design of large-format prefabricated cranial plates. J Craniofacial Surg 14(6):819–832

    Article  Google Scholar 

  • Ducic Y (2002) Titanium mesh and hydroxyapatite cement cranioplasty: a report of 20 cases. J Oral Maxillofac Surg 60(3):272–6.

    Article  Google Scholar 

  • Durham SR, McComb JG, Levy ML (2003) Correction of large (>25 cm2) cranial defects with “reinforced” hydroxyapatite cement: technique and complications. Neurosurgery 52 (4):842–845.

    Article  Google Scholar 

  • Eufinger H, Wittkampf AR, Wehmoller M, Zonneveld FW (1998) Single-step fronto-orbital resection and reconstruction with individual resection template and corresponding titanium implant: a new method of computer aided surgery. J Craniomaxillofac Surg 26(6):373–378

    Google Scholar 

  • Eufinger H, Rasche C, Wehmoller M, Schmieder K, Scholz M, Weihe S, Scherer P (2005) CAD/CAM titanium implants for cranioplasty—An evaluation of success and quality of life of 169 consecutive implants with regard to size and location International. Cong Ser 1281:827–831

    Article  Google Scholar 

  • Flanders AE, Carrino JA (2003) Understanding DICOM and IHE. Semin Roentgenol 38(3):270–81

    Article  Google Scholar 

  • Flannery T, McConnell R (2001) Cranioplasty: Why throw the bone flap out? Br J Neurosurg 15(6):518–20

    Article  Google Scholar 

  • Galantucci LM, Percoco G, Angelelli G, Lopez C, Introna F, Liuzzi C, De Donno A (2006) Reverse engineering techniques applied to a human skull, for CAD 3D reconstruction and physical replication by rapid prototyping. J Med Eng Techn 30(2):102–111

    Article  Google Scholar 

  • Gordon DS, Blair GAS (1974) Titanium cranioplasty. Br Med J 2:478–481

    Google Scholar 

  • Gousain AK (2004) Biomaterials for reconstruction of the cranial vault. Plast Reconstr Surg 116(2):663–666

    Article  Google Scholar 

  • Gronet PM, Waskewicz GA, Richardson C (2003) Preformed acrylic cranial implants using fused deposition modeling: a clinical report. J Prosthet Dent 90(5):429–33.

    Article  Google Scholar 

  • Hayward RD (1999) Cranioplasty: Don’t forget the patient’s own bone is cheaper than titanium. Br J Neurosurg 13(5):490–491

    Article  MathSciNet  Google Scholar 

  • Hieu LC, Bohez E, Vander Sloten J, Oris P, Phien HN, Vatcharaporn E, Binh PH (2002) Design and manufacture of cranioplasty implants by 3-axis CNC milling. Technol and Health Care 10:412–423

    Google Scholar 

  • Hieu LC, Vander SJ, Bohez E, Phien HN, Vatcharaporn E, An PV, To NC, Binh PH (2004) A cheap technical solution for cranioplasty treatments. Technol and Health Care 12:281–292

    Google Scholar 

  • Hoque ME, Hutmacher D, Feng W, Li S, Huang MH, Vert M, Wong YS (2005) Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering. J Biomater Sci Polymer Ed 16(12):1595–1610

    Article  Google Scholar 

  • Jacobs P (1996) Stereolithography and other rapid prototyping and manufacturing technologies. American Association of Engineers Press, Dearborn, MI

    Google Scholar 

  • Jiranek W (2005) Thermal manipulation of bone cement. Orthopaedics 28(8):863–866

    Google Scholar 

  • Joffe J, McDermott P, Linney A, Mosse C, Harris M (1992) Computer-generated titanium cranioplasty: Report of a new technique for repairing skull defects. Br J Neurosurg 6: 343–350

    Article  Google Scholar 

  • Joffe J, Harris M, Kahugu F, Nicoll S, Linney A, Richards R (1999a) A prospective study of computer-aided design and manufacture of titanium plate for cranioplasty and its clinical outcome. Br J Neurosurg 13(6):576–80

    Article  Google Scholar 

  • Joffe J, Nicoll S, Richards R, Linney, A, Harris M (1999b) Validation of computer assisted manufacture of titanium plates for cranioplasty. Int J Oral Maxillofac Surg 28:309–13

    Article  Google Scholar 

  • Kai CC, Fai LK (1997) Rapid prototyping: principles & applications in manufacturing. John Wiley & Sons Ltd, Singapore

    Google Scholar 

  • Kalender WA, (2000) Computed Tomography, Publicis MCD Verlag, Munich

    Google Scholar 

  • Karron D (1992) The “spider web” algorithm for surface construction in noisy volume data. In: SPIE Visualisation in Biomed Computing 1808:462–476

    Google Scholar 

  • Lambrecht JT, Brix F (1990) Individual skull model fabrication for craniofacial surgery. Cleft Palate 27:382

    Article  Google Scholar 

  • Lara WC, Schweitzer J, Lewis RP, Odum BC, Edlich RF Gampper TJ (1998) Technical considerations in the use of polymethylmethacrylate in cranioplasty. J Long Term Effects of Med Implants 8(1):43–53

    Google Scholar 

  • Lung CYK, Darvell BW (2005) Minimisation of the inevitable residual monomer in denture based acrylic. Den Mater 21:1119–1128

    Article  Google Scholar 

  • Meel BL (2004) Fatal systemic allergic reaction following acrylic cranioplasty: A case report. J Clinic Foren Med 11:205–207

    Article  Google Scholar 

  • Moreira-Gonzalez A, Jackson IT, Miyawaki T, Barakat K, DiNick V (2003) Clinical outcome in cranioplasty: Critical review in long term follow up. J Craniofacial Surg 14(2): 144–153

    Article  Google Scholar 

  • Park HK, Dujivny M, Agner C, Diaz FG (2001) Biomechanical properties of calvarium prosthesis. Neurol Res 23:267–276

    Article  Google Scholar 

  • Petzold R, Zeilhofer H, Kalender W (1999) Rapid prototyping technology in medicine-basics and applications. Computerised Med Imaging and Graphics, 23:277–84

    Article  Google Scholar 

  • Raja AI and Linskey ME (2005) In situ cranioplasty with methylmethacrylate and wire lattice. Br J Neurosurg 19(5):416–419

    Article  Google Scholar 

  • Rohner D, Hutmacher DW, Cheng TK, Oberholzer M, Hammer B (2003) In vivo efficacy of bone amrrow coated polycaprolactone scaffolds for the reconstruction of orbital defects in pigs. J Biomed Mater Res Part B: Appl Biomater 66B:574–580

    Article  Google Scholar 

  • Rotaru H, Bacuit M, Stan H, Bran S, Chezan H, Iosif A, Tomescu M, Kim SG, Rotaru A, Baciut G (2006) Silicone rubber mould cast polyethylmethacrylate-hydroxyapatite plate used for repairing a large skull defect. J Craniomaxillofac Surg. 34(4):242–246

    Google Scholar 

  • Sanan A, Haines S (1997) Repairing holes in the head: A history of cranioplasty. Neurosurgery 40(3):588–603

    Article  Google Scholar 

  • Schantz JT, Hutmacher DW, Lam CX, Brinkman M, Wong KM, Lim TC, Chou N, Guldberg RE, Teoh SH (2003) Repair of calvarial defects with customized tissue engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tiss Engg Suppl 1:127–139

    Article  Google Scholar 

  • Schipper J, Ridder GJ, Spetzger U, Teszler CB (2004) Individual prefabricated titanium implants and titanium mesh in skull base reconstructive surgery. A report of cases. Eur Arch Otorhinolaryngol 261:282–290

    Article  Google Scholar 

  • Sheikh BY (2006) Simple and safe method of cranial reconstruction after posterior fossa craniectomy. Surg Neurol 65:63–66

    Article  Google Scholar 

  • Studholme C, Hill DL, Hawkes DJ (1997) Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med Phys 24(1):25–35

    Article  Google Scholar 

  • Webb PA (2000) A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol 24(4):149–153

    Article  Google Scholar 

  • Weihe S, Wehmoller M, Schliephake H, Hassfeld S, Tschakaloff A, Raczkowsky J, Eufinger H (2000) Synthesis of CAD/CAM, robotics and biomaterial implant fabrication: Single step reconstruction in computer aided frontotemporal bone resection. Int J Oral Maxillofac Surg 29(5):284–388

    Article  Google Scholar 

  • Winder J, Bibb R (2005) Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 63(7):1006–15

    Article  Google Scholar 

  • Winder RJ and Fannin T (1999a) Virtual neurosurgery and medical rapid prototyping applied to the treatment of fibrous dysplasia. Proceedings of 13th international congress and exhibition of computer assisted radiology and surgery, pp 1033

    Google Scholar 

  • Winder RJ, Cooke RS, Gray J, Fannin T, Fegan T (1999b) Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Engg Technol 23(1):26–28

    Article  Google Scholar 

  • Winder RJ, McKnight W, Golz T, Giese A, Busch LC, Wulf J (2006) Comparison of custom cranial implant source data: Manual, mirrored and CAD generated skull surfaces. Cranial & Maxillofacial Workshop, MICCAI, Copenhagen, 5th October 2006

    Google Scholar 

  • Woodfield TB, Malda J, de Wijn J, Peters F, Riesle J, van Blitterswijk CA (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25(18):4149–4161

    Article  Google Scholar 

  • Wu T, Engelhardt M, Fieten L, Popovic A, Radermacher K (2006) Anatomically constrained deformation for deign of cranial implant: Methodology and validation. In: MICCAI Proceedings, Copenhagen

    Google Scholar 

  • Wulf J, Vitt KD, Gehl HB, Busch LC (2001) Anatomical accuracy in medical 3D modeling. Phidias Newsletter 7:1–2 (http://www.materialise.com/medical/files/ph7.pdf) accessed 23 October 2006

    Google Scholar 

  • Zein I, Hutmacher DW, Tan KC, Teoh SC (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185

    Article  Google Scholar 

  • Zonnefeld FW (1994) A decade of clinical three dimensional imaging: A review. Part III Image analysis and interaction, display options and physical models. Investigative Radiol 29:716

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Winder, D.J. (2008). Computer Assisted Cranioplasty. In: Bidanda, B., Bártolo, P. (eds) Virtual Prototyping & Bio Manufacturing in Medical Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68831-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68831-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-33429-5

  • Online ISBN: 978-0-387-68831-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics