Skip to main content

Olefin Polymerization Catalysts

  • Chapter
  • First Online:

Part of the book series: Fundamental and Applied Catalysis ((FACA))

Abstract

Catalytic polymerization processes have become increasingly important as the use of plastics has escalated throughout the world. Many common plastics were discovered in the 1930s, and after the 1939–1945 war this created a demand for petrochemical intermediates derived from the refining industry. Ethylene and propylene are now common building blocks for plastics and by the year 2000, polyethylene, polypropylene and their copolymers were the most widely used plastic materials. The gradual development of polyolefin production is shown in Table 8.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. J. Gaylord and H. F. Mark, Linear and Stereoregular Addition Polymers, Wiley-Interscience, NewYork, 1959.

    Google Scholar 

  2. J. Boor, Junior, Shell Development Company, Ziegler-Natta Catalysts and Polymerization, Academic, New York, 1979.

    Google Scholar 

  3. C. Kennedy, ICI The Company That Changed Our Lives, Hutchinson, London, 1986; W. J. Reader, ICI History, Vol. 2, Oxford University Press, 1975.

    Google Scholar 

  4. Imperial Chemical Industries, British Patent 471590 (1936).

    Google Scholar 

  5. P. H. Spitz, Petrochemicals: The Rise of an Industry, Wiley, New York, 1988.

    Google Scholar 

  6. K. Ziegler, E. Holzkamp, B. Breil and H. Martin, Angew Chem 67 (1955) 426; German Patent 973626 (1953); British Patents 799392, 799823 (1953).

    Google Scholar 

  7. J. P. Hogan and R. L. Banks, Belgium Patent 530617 (1955); US Patent 2825721 (1958); 2846425 (1958); 2951816 (1960); Ind. Eng. Chem. 48, (1956) 1152.

    Article  Google Scholar 

  8. Standard Oil Company of Indiana US Patent 2692258 (1951).

    Google Scholar 

  9. G. Natta, Science 147 (1965) 261; G. Natta, P. Pino, G. Mazzanti, and P. Longi, Gazz. Chem. Italia. 87 (1957) 570.

    Google Scholar 

  10. K. Ziegler and H. Martin, Makromol Chem 18/19 (1956) 186.

    Article  Google Scholar 

  11. I. Pasquon and U. Giannini, Catalytic Olefin Polymerization, in Catalysts— Science and Technology, Vol. 6, Ed. by G. Anderson and M. Boudart, Springer-Verlag, Berlin, 1989; G. Natta, Chim. Ind. (Milan) 38 (1956) 751; G. Natta, I. Pasquon, and E. Giachetti, Angew. Chem. 69 (1957) 213.

    Google Scholar 

  12. K. B. Tripplett, Evolution of Ziegler–Natta Catalysts for PropylenePolymerization, in Applied Industrial Catalysts, Vol. 1, Ed. by B. E. Leach, Academic, New York, 1983; US Patents 3032510 (1962), 3128252 (1964).

    Google Scholar 

  13. E. Tornquist, J Catal 8 (1967) 189.

    Article  Google Scholar 

  14. Solvay, US Patents 3769233 (1973), 4210738 (1980).

    Google Scholar 

  15. G. Natta and I. Pasquon, Advances in Catalysis, Vol. 11, Academic, New York, 1959, p. 1; G Natta, J. Polym. Sci. 34 (1959) 21.

    Google Scholar 

  16. P. J. T. Tait, in Comprehensive Polymer Science, Ed. by G. Allen and J. C. Berington, Vol. 4, Pergamon, Oxford, 1989, p.1.

    Google Scholar 

  17. P. J. T. Tait, New Trends in Polyolefin Science and Technology, Ed. by S. Hosada, p. 1; P. J. T. Tait in Research Signposts, Trivandrum, India (1996) p.1.

    Google Scholar 

  18. Stamicarbon, Belgian Patent 751315 (1969); Shell International Research, German Patent 2003075 (1970); British Patent 1299862 (1970); Belgian Patent 776301 (1970); Haward et al., Polymer 14 (1973) 365.

    Google Scholar 

  19. L. L. Bohm, Polymer 19 (1978) 553.

    Article  Google Scholar 

  20. X. Youchang, G. Linlin, L. Wangi, B. Naiyo and T. Yougi, Sci. Sin. 22 (1979) 1045; P. Galli, P. C. Barbe, G. Guidetti, A. Zanbetti, A. Marigo, M. Bergozza and A. Fichera, Eur. Polym. J. 19 (1983) 19;

    Google Scholar 

  21. P. Galli, P. C. Barbe and L. Noristi, Makromol. Chem. 120 (1984) 73.

    Article  CAS  Google Scholar 

  22. Montecatini Edison, British Patent 1286807 (1968); Mitsui Petrochemical Industries, Italian Patent 912345 (1968).

    Google Scholar 

  23. B. L. Goodall, in Transition Metal Catalyzed Polymerizations, Vol. 4 (Part A), Ed. by R. P. Quirk, Harwood, New York, 1981, p.355; Kashiwa, in Transition Metal Catalyzed Polymerizations, Vol. 4 (Part A), Ed. by R. P. Quirk, Harwood, New York, 1981, p. 379.

    Google Scholar 

  24. P. J. T. Tait, G. H. Zohuri, A. M. Kells and I. D. Mckenzie, in Ziegler Catalysts, Ed. by G. Fink, R. Mulhaupt and H. H. Brintzinger, Springer- Verlag, Berlin, 1995, p. 343.

    Google Scholar 

  25. Toho Titanium Co., US Patent 4829037 (1989).

    Google Scholar 

  26. Amoco, US Patent 5081090 (1992).

    Google Scholar 

  27. G. Natta and I. Pasquon, Adv. Catal. 11 (1959) 1.

    Article  CAS  Google Scholar 

  28. P. Galli and J. C. Haylock, Macromol. Chem. Symp. 63 (1992) 19; P. Galli and J. C. Haylock, Prog. Polym. Sci. 16 (1991) 443; P. C. Barbe, G. Cecchin, and L. Noristi, Adv. Polym. Sci. 81 (1987).

    Google Scholar 

  29. J. P. Hogan, The Phillips Petroleum Polyethylene Process in Applied Industrial Catalysis, Vol. 1, Ed. by B. E. Leach, Academic, New York, 1983, p. 149.

    Google Scholar 

  30. C. E. Marsden, Advances in Supported Chromium Catalysts, S4A/3/1 in Plastics & Rubber Institute—Polyethylene: The 1990s and Beyond, London, May 1992.

    Google Scholar 

  31. R. L. Banks, US Patent 3225023 (1965); J. P. Hogan, D. D. Norwood and C. A. Ayres, in Applied Polymer Symposia Series, Vol. 36, Ed. by Mark, Wiley-Interscience, New York, 1981, p. 49.

    Google Scholar 

  32. C. E. Marsden, The Influence of Silica Support on Polymerization Catalyst in Preparation of Catalysts V, Ed. by B. Delmon et al., Elsevier, Amsterdam, 1991.

    Google Scholar 

  33. M. P. McDaniel, Supported chromium catalysts for ethylene polymerization, in Adv. Catal. 33 (1985) 47; M. R. Welch and M. P. McDaniel, J. Catal. 82 (1983) 110; M. P. McDaniel and Welch, US Patent 4182815 (1980).

    Google Scholar 

  34. M. P. McDaniel, J. Polym. Sci. (Polym. Chem. Ed.) 19 (1981) 1967.

    Google Scholar 

  35. K. Wisseroth (BASF), Angew. Makromol. Chem. 8(88) (1969) 41; D. M. Rasmussen (Union Carbide), Chem. Eng. 79(21) (1972) 104.

    Google Scholar 

  36. W. K. Jozwiak, I. G. Dalla Lana,W. Przyastaijko and R. Fiedorow in Proc. 9th Int. Congress on Catalysts, (1988) p. 1340.

    Google Scholar 

  37. S. Wang, P. J. T. Tait and C. E. Marsden, J. Mol. Catal. 65 (1991) 237; P. J. T. Tait, Advances in Ziegler and Related Catalysts, Paper S4A/2/1, Plastics and Rubber Institute—Polyethylene: The 1990s and Beyond (May 1992).

    Google Scholar 

  38. British Petroleum, British Patent 1429174 (1973).

    Google Scholar 

  39. Phillips Petroleum, US Patents 3887494 (1975), 3950316 (1976).

    Google Scholar 

  40. T. J. Pullucat, R. E. Hoff and M. Shida, J. Polym. Sci. (Polym. Chem. Ed.) 18 (1980) 2857; M. P. McDaniel, M. B. Welsh and M. J. Dreiling, J. Catal. 82 (1983) 118.

    Google Scholar 

  41. BASF German Patent 2604548 (1977); US Patents 4110522 (1978); 4128500 (1998).

    Google Scholar 

  42. Union Carbide, US Patent 4011382 (1978).

    Google Scholar 

  43. B. Rebensdorf and S. L. T. Anderson, J. Chem. Soc. (Faraday Trans.) 86 (1990) 3153.

    Google Scholar 

  44. Phillips, US Patent 3130188 (1964).

    Google Scholar 

  45. Phillips, US Patent 4820785 (1989).

    Google Scholar 

  46. Phillips, US Patent 5208309 (1993).

    Google Scholar 

  47. Phillips, US Patent 4818800 (1989).

    Google Scholar 

  48. F. J. Karol, G. L. Karapinka, A. W. Wu Ch Dow, R. N. Johnson and W. L. Carrick, J. Polym. Sci. (Pt A-1) 10 (1972) 2609, 2621.

    Google Scholar 

  49. E. A. Benham, P. D. Smith, E. T. Hsieh and M. P. McDaniel, J. Macromol. Sci. Chem. A 4(25) (1988) 259.

    Google Scholar 

  50. H. N. Friedlander, J. Polym. Sci. 38 (1959) 91; Juveland, Peters, and J. W. Shephard, Polym. Repr. 10 (1969) 263; Tabokoro et al., Kogyo Koga Kuaschi 70 (1967) 144; Juveland and Peters, French Patent 1521017 (1968).

    Google Scholar 

  51. D. D. Norwood, US Patents 3248179, 3257362 (1966); J. P. Hogan, D. D. Norwood and C. A. Ayres, Applied Polymer Symposia Series, Vol. 36, Ed. by Mark, Wiley-Interscience, New York (1981); Phillips Linear Polyethylene (3A/2/1), Plastics and Rubber Institute—Polyethylene: The 1990s and Beyond, London (May 1992).

    Google Scholar 

  52. Solvay, Belgian Patent 570981 (1958).

    Google Scholar 

  53. D. Newton, J. C. Chinh and M. Power, Hydrocarbon Processing, (March 1998) 86.

    Google Scholar 

  54. DuPont Canada Ltd., Sclairtech Solution Process (53A/3/1), Plastics and Rubber Institute—Polyethylene: The 1990s and Beyond, London (May 1992).

    Google Scholar 

  55. D. M. Rasmussen, Chem. Eng. 79 (21) (1972) 104; US Patents 3642749, 3687920; L. P. McMaster, The Gas Phase Process (53A/1/1), Plastics and Rubber Institute—Polyethylene: The 1990s and Beyond, London, May 1992.

    Google Scholar 

  56. K. Wisseroth, Angew Makromol. Chem. 8 (1969) 41; Muller-Tamm, Soc. Plast. Eng. Tech. 15, (1969) Paper 27; US Patents 3300457 (1966), 3634382 (1971), 3639377 (1971), 3652527 (1972), 4212847 (1976).

    Google Scholar 

  57. US Patents 3965083, 3971768 (1976).

    Google Scholar 

  58. P. M. Morse, Chem. & Eng. News, (Dec. 1998) 25; A. I. Tullo, Chem. & Eng. News, (Aug 7, 2000) 35.

    Google Scholar 

  59. A. A. Montagno and J. C. Floyd, Hydrocarbon Processing, (March 1994) 57.

    Google Scholar 

  60. J. L. Hemmer, High Pressure Exxpol Technology (S2A/3/1), Plastics and Rubber Institute—Polyethylene: The 1990s and Beyond, London (May 1992); Exxon Chemical US Patents 5198401 (1991), 5384299 (1993), 5470927 (1994), 5324800 (1994), 5599761 (1997).

    Google Scholar 

  61. J. Krieger, Inventor of the Year Award (Dow) Chem. Eng. News, May 23 (1994) 6; Dow Chemical US Patents 5272236 (1993), 5470993 (1995), 5278272 (1994).

    Google Scholar 

  62. D. G. H. Ballard, W. H. James and J. D. Seddon, British Patent 1099116 (1968); D. G. H. Ballard and T. Medinger, British Patent 1145958 (1969); D. G. H. Ballard, T. Medinger and W. G. Oakes, German Patent 1904878 (1969).

    Google Scholar 

  63. G. Wilke et al., Angew Chem. Intern. Ed. 5(2) (1966) 151.

    Article  CAS  Google Scholar 

  64. G. Natta, G. Pino,G. Mazzanti,U. Giannini, E. Mantica and M. Peraldo, Chim. Ind. (Milan) 39, 19G (1957); G. Natta, G. Pino, G. Mazzanti, U. Giannini, J. Amer. Chem. Soc. 79 (1957) 2975.

    Google Scholar 

  65. D. S. Breslow and N. R. Newbury, J. Amer. Chem. Soc. 79 (1957) 5072; D. S. Breslow and N. R. Newbury, 81 (1959) 81; W. P. Long and D. S. Breslow, J. Amer. Chem. Soc. 82, (1960) 1953.

    Google Scholar 

  66. Dyachkovskii, Shilova, and Shilov, J. Polym. Sci., Part C, (1967) 2333; Eisch et al., J. Amer. Chem. Soc. 107 (1985) 7219.

    Google Scholar 

  67. A. Schindler in Crystalline Olefin Polymers, Ed. by R. A. Ruff and K. W. Doak, Wiley-Interscience, New York, 1965, p. 163; Zavorokhin, Trans. Inst. Khim. Nauk. Akad. Nauk. Kaz., SSR 23 (1969) 3.

    Google Scholar 

  68. K. H. Reichert and K. R. Meyer, Makromol Chem 169 (1973) 163.

    Article  CAS  Google Scholar 

  69. W. R. Long and D. S. Breslow, Liebigs. Ann. Chem. 1975 (1979) 463.

    Google Scholar 

  70. W. Kaminsky, J. Kopf, H. Sinn and H-J. Vollmor, Angew. Chem. 88 (1976) 688; H. Sinn, W. Kaminsky, H. J. Vollmor and R. Woldt, Angew. Chem. 92 (1980) 396; W. Kaminsky in History of Polyolefins, Ed. by R. B. Seymour and T. Cheng, Reidel, Dordrecht, 1986, p. 257; W. Kaminsky, Nachr. Chem. Tech. Lab. 29 (1981) 373.

    Google Scholar 

  71. G. G. Hlatky, R. R. Eckmann and H. W. Turner, Organometallics 11 (1992) 1413; Exxon, US Patent 5599761 (1997).

    Google Scholar 

  72. J. A. Ewen, J. Amer. Chem. Soc. 106 (1984) 6355.

    Article  CAS  Google Scholar 

  73. W. Kaminsky, H. H. Brintzinger, K. Kulper and F. R. W. P. Wild, Angew. Chem. Int. Ed. (English) 24 (1985) 507.

    Article  Google Scholar 

  74. M. Antberg, V. Dolle, R. Klein, J. Rohrmann, W. Spaleck and A. Winter, Studies Surf. Sci. Catal. 56, (1990) 501; W. Spaleck, M. Antberg, V. Dolle, R. Klein, J. Rohrmann and A. Winter, New J. Chem. 14 (1990) 499; W. Spaleck, A. Winter, W. A. Hermann, J. Rohrmann and E. Hertweck, Angew. Chem. 101 (1989) 1536; P. Burger, K. Hortmann and H. H. Brintzinger, Makromol. Chem. Symp. 66 (1993) 127.

    Google Scholar 

  75. R. Mülhaupt, Novel polyolefin materials and processes in ziegler catalysts, Ed. by G. Fink, R. M¨ulhaupt and H. H. Brintzinger, Springer-Verlag, Berlin, 1995, p.42.

    Google Scholar 

  76. Chem. Eng. News (June 28,1999) 23.

    Google Scholar 

  77. Spalec et al., in Ziegler Catalysts, Ed. by Fink, Mulhaupt, and Brintzinger, Springer-Verlag, Berlin, 1995, p. 83.

    Google Scholar 

  78. P. M. Morse, Chem. Eng. News, (Dec 7, 1998) 25.

    Google Scholar 

  79. J. Bleimeister, W. Hagendort, A. Harder, B. Heitmann, I. Schimmel, E. Schmedt, W. Schnuchel, H. Sinn, L. Tikwe, N. von Thienen, K. Urlass, H. Winter and O. Zarnke, The role of MAO-activators, in: Ziegler Catalysts, Ed. by G. Fink, R. Mülhaupt and H. H. Brintzinger, Springer-Verlag, Berlin, 1995, p. 57; US Patents 4544762, 5015749, 5041584–5, 5542199.

    Google Scholar 

  80. Bochman and Wilson, JCS Chem. Comm. (1986) 1610.

    Google Scholar 

  81. Exxon, US Patent 5599761 (1997).

    Google Scholar 

  82. W. J. Kruper, D. R. Wilson and E. Y-X. Chen, J. Amer. Chem. Soc. 123 (2001) 745; M. C. Jacoby, Chem. Eng. News, (Feb 19, 2001) 57.

    Google Scholar 

  83. R. M¨ulhaupt, Novel Polyolefin Materials and Processes: Overview and Prospects, in: Ziegler Catalysts,Ed. by G. Fink, R. Mülhaupt, and H. H. Brintzinger, Springer-Verlag, Berlin, 1995, p.45.

    Google Scholar 

  84. J. Haggin, Chem. Eng. News, (Feb 5, 1996) 6.

    Google Scholar 

  85. M. Freemantle, Chem. Eng. News, (April 13, 1998) 11.

    Google Scholar 

  86. F. Wilson, Chem. Eng. News, (April 10, 2000) 8; (March 6, 2000) 11; (Jan 24, 2000) 15.

    Google Scholar 

  87. T. K. Woo, L. Fan, T. Ziegler, A Combined Density Functional and Molecular Mechanics Study on Olefin Polymerization by Metallocene Catalysts in Ziegler Catalysts, Ed. by G. Fink, R. Mülhaupt and H. H. Brintzinger, Springer-Verlag, Berlin, 1995, p. 291.

    Google Scholar 

  88. P. Cossee, Rec. Trav. Chim. Pays. Bas. 85, No. 9–10 (1966) 1152; P. Cossee, The Mechanism of Ziegler-Natta Polymerization, in: The Stereochemistry of Macromolecules, Vol. 1, A D Ketley editor, Marcel Dekker, New York, 1967, p. 145.

    Google Scholar 

  89. J. Boor, Ziegler–Natta Catalysts and Polymerizations, Academic Press, New York, 1979, p. 389.

    Google Scholar 

  90. E. J. Arlmann, J. Catalysis 3 (1964) 89; E. J. Arlmann and P. Cossee, J. Catalysis 3 (1964) 99.

    Google Scholar 

  91. J. Boor, Ziegler–Natta Catalysts and Polymerizations, Ch. 10, Academic, New York, 1979, p. 244.

    Google Scholar 

  92. Hercules, US Patent 3051690 (1962—applied July 1955).

    Google Scholar 

  93. Montedison, Italian Patents 554013, 557013 (1957); British Patents 584794, 850585; G. Natta, Chim. Ind. (Milan) 41 (6) (1959) 519.

    Google Scholar 

  94. G. Natta and I. Pasquon, Advances in Catalysis 11 (1959) 1.

    Article  CAS  Google Scholar 

  95. K. D. Hungenberg, J. Kerth, F. Langhanser, B. Marczinde and R. Schlund, Gas Phase Polymerization of Olefins with Ziegler-Natta and Metallocene/ Aluminoxane Catalysts. A Comparison in Ziegler-Natta Catalysts, Ed. by G. Fink, R. Mülhaupt and H. H. Brintzinger, Springer-Verlag, Berlin, 1995, p. 363.

    Google Scholar 

  96. Jewkes, Sawers, and Stillerman, The Sources of Invention, Macmillan/St. Martin’s, New York, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lloyd, L. (2011). Olefin Polymerization Catalysts. In: Handbook of Industrial Catalysts. Fundamental and Applied Catalysis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49962-8_8

Download citation

Publish with us

Policies and ethics