Skip to main content

Docosahexaenoic Acid and Its Metabolites in Brain

  • Chapter
Glycerophospholipids in the Brain

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad A., Moriguchi T., and Salem N. J.-(2002). Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatr. Neurol. 26:210–218.

    PubMed  Google Scholar 

  • Akbar M., Calderon F., Wen Z. M., and Kim H. Y. (2005). Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc. Natl Acad. Sci. USA 102:10858–10863.

    PubMed  CAS  Google Scholar 

  • Akbar M. and Kim H. Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. J.-Neurochem. 82:655–665.

    PubMed  CAS  Google Scholar 

  • Aniksztejn L. and Ben Ari Y. (1991). Novel form of long-term potentiation produced by a K+ channel blocker in the hippocampus. Nature 349:67–69.

    PubMed  CAS  Google Scholar 

  • Ariel A., Li P. L., Wang W., Tang W. X., Hong S., Gotlinger K. H., and Serhan C. N. (2005). The novel docosatriene, Protectin D1, produced by TH2-polarization promotes human T cell apoptosis via lipid-raft clustering. Clin. Immunol. 115:S263.

    Google Scholar 

  • Arita M., Bianchini F., Aliberti J., Sher A., Chiang N., Hong S., Yang R., Petasis N. A., and Serhan C. N. (2005). Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J.-Exp. Med. 201:713–722.

    PubMed  CAS  Google Scholar 

  • Bannenberg G. L., Chiang N., Ariel A., Arita M., Tjonahen E., Gotlinger K. H., Hong S., and Serhan C. N. (2005). Molecular circuits of resolution: formation and actions of resolvins and protectins. J.-Immunol. 174:4345–4355.

    PubMed  CAS  Google Scholar 

  • Barceló-Coblijn G., Kitajka K., Puskás L. G., Hõgyes E., Zvara A., Hackler L., Jr., and Farkas T. (2003). Gene expression and molecular composition of phospholipids in rat brain in relation to dietary n-6 to n-3 fatty acid ratio. Biochim. Biophys. Acta 1632:72–79.

    PubMed  Google Scholar 

  • Bazan N. G. (2005). Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.

    Article  PubMed  CAS  Google Scholar 

  • Berry C. B., Hayes D., Murphy A., Wiessner M., Rauen T., and McBean G. J.-(2005). Differential modulation of the glutamate transporters GLT1, GLAST and EAAC1 by docosahexaenoic acid. Brain Res. 1037:123–133.

    PubMed  CAS  Google Scholar 

  • Bougnoux P. (1999). n-3 Polyunsaturated fatty acids and cancer. Curr. Opin. Clin. Nutr. Metab. Care 2:121–126.

    PubMed  CAS  Google Scholar 

  • Brown J.-E. and Wahle K. W. J.-(1990). Effect of fish-oil and vitamin E supplementation on lipid peroxidation and whole-blood aggregation in man. Clin. Chim. Acta 193:147–156.

    PubMed  CAS  Google Scholar 

  • Calder P. C. (1998). Dietary fatty acids and the immune system. Nutr. Rev. 56:S70–S83.

    Article  PubMed  CAS  Google Scholar 

  • Calder P. C. (2003a). Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients. Braz. J.-Med. Biol. Res. 36:433–446.

    PubMed  CAS  Google Scholar 

  • Calder P. C. (2003b). n-3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids 38:343–352.

    PubMed  CAS  Google Scholar 

  • Calder P. C. (2004). n-3 fatty acids, inflammation, and immunity – relevance to postsurgical and critically ill patients. Lipids 39:1147–1161.

    PubMed  CAS  Google Scholar 

  • Calder P. C. and Grimble R. F. (2002). Polyunsaturated fatty acids, inflammation and immunity. Eur. J.-Clin. Nutr. 56:S14–S19.

    PubMed  CAS  Google Scholar 

  • Calderon F. and Kim H. Y. (2004). Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J.-Neurochem. 90:979–988.

    PubMed  CAS  Google Scholar 

  • Calon F., Lim G. P., Morihara T., Yang F. S., Ubeda O., Salem N. J., Frautschy S. A., and Cole G. M. (2005). Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. Eur. J.-Neurosci. 22:617–626.

    PubMed  Google Scholar 

  • Cao D. H., Xue R. H., Xu J., and Liu Z. L. (2005). Effects of docosahexaenoic acid on the survival and neurite outgrowth of rat cortical neurons in primary cultures. J.-Nutr. Biochem. 16:538–546.

    PubMed  CAS  Google Scholar 

  • Carrie I., Clement M., De Javel D., Frances H., and Bourre J.-M. (2000). Specific phospholipid fatty acid composition of brain regions in mice. Effects of n-3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J.-Lipid Res. 41:465–472.

    PubMed  CAS  Google Scholar 

  • Carroll D. N. and Roth M. T. (2002). Evidence for the cardioprotective effects of omega-3 fatty acids. Ann. Pharmacother. 36:1950–1956.

    PubMed  CAS  Google Scholar 

  • Caughey G. E., Mantzioris E., Gibson R. A., Cleland L. G., and James M. J.-(1996). The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am. J.-Clin. Nutr. 63:116–122.

    PubMed  CAS  Google Scholar 

  • Chalon S., Delion-Vancassel S., Belzung C., Guilloteau D., Leguisquet A. M., Besnard J.-C., and Durand G. (1998). Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J.-Nutr. 128:2512–2519.

    PubMed  CAS  Google Scholar 

  • Chen C. and Bazan N. G. (2005). Lipid signaling: sleep, synaptic plasticity, and neuroprotection. Prostaglandins Other Lipid Mediat. 77:65–76.

    PubMed  CAS  Google Scholar 

  • Clarke S. D. (2000). Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br. J.-Nutr. 83(Suppl. 1):S59–S66.

    PubMed  CAS  Google Scholar 

  • Cline H. T. (2001). Dendritic arbor development and synaptogenesis. Curr. Opin. Neurobiol. 11:118–126.

    PubMed  CAS  Google Scholar 

  • Combs G. F., Jr., Noguchi T., and Scott M. L. (1975). Mechanisms of action of selenium and vitamin E in protection of biological membranes. Fed. Proc. 34:2090–2095.

    PubMed  CAS  Google Scholar 

  • Corey E. J., Shih C., and Cashman J.-R. (1983). Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. Proc. Natl Acad. Sci. USA 80:3581–3584.

    PubMed  CAS  Google Scholar 

  • Das U. N. (2003). Long-chain polyunsaturated fatty acids in memory formation and consolidation: further evidence and discussion. Nutrition 19:988–993.

    PubMed  CAS  Google Scholar 

  • de Urquiza A. M., Liu S., Sjöberg M., Zetterström R. H., Griffiths W., Sjövall J., and Perlmann T. (2000). Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290:2140–2144.

    PubMed  Google Scholar 

  • Delton-Vandenbroucke I., Vericel E., Janueli C., Carreras M., Lecomte M., and Lagarde M. (2001). Dual regulation of glutathione peroxidase by docosahexaenoic acid in endothelial cells depending on concentration and vascular bed origin. Free Radic. Biol. Med. 30:895–904.

    PubMed  CAS  Google Scholar 

  • DeMar J.-C. J., Ma K. Z., Bell J.-M., and Rapoport S. I. (2004). Half-lives of docosahexaenoic acid in rat brain phospholipids are prolonged by 15 weeks of nutritional deprivation of n-3 polyunsaturated fatty acids. J.-Neurochem. 91:1125–1137.

    PubMed  CAS  Google Scholar 

  • Denys A., Hichami A., and Khan N. A. (2005). n-3PUFAs modulate T-cell activation via protein kinase C-α and -ε and the NF-κ B signaling pathway. J.-Lipid Res. 46:752–758.

    PubMed  CAS  Google Scholar 

  • Duncan R. E., El Sohemy A., and Archer M. C. (2005). Regulation of HMG-CoA reductase in MCF-7 cells by genistein, EPA, and DHA, alone and in combination with mevastatin. Cancer Lett. 224:221–228.

    PubMed  CAS  Google Scholar 

  • Farkas T., Kitajka K., Fodor E., Csengeri I., Lahdes E., Yeo Y. K., Krasznai Z., and Halver J.-E. (2000). Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc. Natl Acad. Sci. USA 97:6362–6366.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1985). Metabolic and functional aspects of neural membrane phospholipids. In: Horrocks L. A., Kanfer J.-N., and Porcellati G. (eds.), Phospholipids in the Nervous System, Vol. II: Physiological Role. Raven Press, New York, pp.-341–348.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2001a). Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. J.-Mol. Neurosci. 16:263–272.

    CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2001b). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J.-Mol. Neurosci. 14:123–135.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes. Kluwer Academic/Plenum Publishers, London, pp.-335–354.

    Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacologic effects and therapeutic importance for the treatment of neurologic disorders. Pharm. Rev. (in press).

    Google Scholar 

  • Feller S. E. and Gawrisch K. (2005). Properties of docosahexaenoic-acid-containing lipids and their influence on the function of rhodopsin. Curr. Opin. Struct. Biol. 15:416–422.

    PubMed  CAS  Google Scholar 

  • Fernstrom J.-D. (1999). Effects of dietary polyunsaturated fatty acids on neuronal function. Lipids 34:161–169.

    PubMed  CAS  Google Scholar 

  • Ferrier G. R., Redondo I., Zhu J.-Q., and Murphy M. G. (2002). Differential effects of docosahexaenoic acid on contractions and L-type Ca2+ current in adult cardiac myocytes. Cardiovasc. Res. 54:601–610.

    PubMed  CAS  Google Scholar 

  • Flower R. J.-and Perretti M. (2005). Controlling inflammation: a fat chance? J.-Exp. Med. 201:671–674.

    PubMed  CAS  Google Scholar 

  • Fujimoto K., Yao K., Miyazaki T., Hirano H., Nishikawa M., Kimura S., Murayama K., and Nonaka M. (1989). The effect of dietary docosahexaenoate on the learning ability of rats. In: Chandra R. K. (ed.), Health Effects of Fish and Fish Oils. ARTS Biomedical, The Netherlands, pp.-275–284.

    Google Scholar 

  • Fujita S., Ikegaya Y., Nishikawa M., Nishiyama N., and Matsuki N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Br. J.-Pharmacol. 132:1417–1422.

    PubMed  CAS  Google Scholar 

  • Garcia M. C. and Kim H. Y. (1997). Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res. 768:43–48.

    PubMed  CAS  Google Scholar 

  • Gerbi A., Zérouga M., Debray M., Durand G., Chanez C., and Bourre J.-M. (1994). Effect of fish oil diet on fatty acid composition of phospholipids of brain membranes and on kinetic properties of Na+, K+-ATPase isoenzymes of weaned and adult rats. J.-Neurochem. 62:1560–1569.

    Article  PubMed  CAS  Google Scholar 

  • Green P., Glozman S., Weiner L., and Yavin E. (2001a). Enhanced free radical scavenging and decreased lipid peroxidation in the rat fetal brain after treatment with ethyl docosahexaenoate. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1532:203–212.

    Article  CAS  Google Scholar 

  • Green P., Glozman S., and Yavin E. (2001b). Ethyl docosahexaenoate-associated decrease in fetal brain lipid peroxide production is mediated by activation of prostanoid and nitric oxide pathways. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1531:156–164.

    Article  CAS  Google Scholar 

  • Grimm H., Mayer K., Mayser P., and Eigenbrodt E. (2002). Regulatory potential of n-3 fatty acids in immunological and inflammatory processes. Br. J.-Nutr. 87:S59–S67.

    PubMed  CAS  Google Scholar 

  • Gronert K., Maheshwari N., Khan N., Hassan I. R., Dunn M., and Schwartzman M. L. (2005). A role for the mouse 12/15-lipoxygenase pathway in promoting epithelial wound healing and host defense. J.-Biol. Chem. 280:15267–15278.

    PubMed  CAS  Google Scholar 

  • Grundt H., Nilsen D. W., Mansoor M. A., and Nordøy A. (2003). Increased lipid peroxidation during long-term intervention with high doses of n-3 fatty acids (PUFAs) following an acute myocardial infarction. Eur. J.-Clin. Nutr. 57:793–800.

    PubMed  CAS  Google Scholar 

  • Hamano H., Nabekura J., Nishikawa M., and Ogawa T. (1996). Docosahexaenoic acid reduces GABA response in substantia nigra neuron of rat. J.-Neurophysiol. 75:1264–1270.

    PubMed  CAS  Google Scholar 

  • Hamilton J., Greiner R., Salem N., Jr., and Kim H. Y. (2000). n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids 35:863–869.

    PubMed  CAS  Google Scholar 

  • Harbige L. S. (2003). Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids 38:323–341.

    PubMed  CAS  Google Scholar 

  • Hashimoto M., Hossain M. S., Yamasaki H., Yazawa K., and Masumura S. (1999). Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids 34:1297–1304.

    PubMed  CAS  Google Scholar 

  • Hashimoto M., Hossain S., Shimada T., Sugioka K., Yamasaki H., Fujii Y., Ishibashi Y., Oka J.-I., and Shido O. (2002). Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J.-Neurochem. 81:1084–1091.

    PubMed  CAS  Google Scholar 

  • Hashimoto M., Tanabe Y., Fujii Y., Kikuta T., Shibata H., and Shido O. (2005). Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid β-infused rats. J.-Nutr. 135:549–555.

    PubMed  CAS  Google Scholar 

  • Hirafuji M., Machida T., Hamaue N., and Minami M. (2003). Cardiovascular protective effects of n-3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid. J.-Pharmacol. Sci. 92:308–316.

    PubMed  CAS  Google Scholar 

  • Hogyes E., Nyakas C., Kiliaan A., Farkas T., Penke B., and Luiten P. G. (2003). Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 119:999–1012.

    PubMed  CAS  Google Scholar 

  • Hong S., Gronert K., Devchand P. R., Moussignac R. L., and Serhan C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells – autacoids in anti-inflammation. J.-Biol. Chem. 278:14677–14687.

    PubMed  CAS  Google Scholar 

  • Honore E., Barhanin J., Attali B., Lesage F., and Lazdunski M. (1994). External blockade of the major cardiac delayed-rectifier K+ channel (Kv1.5) by polyunsaturated fatty acids. Proc. Natl Acad. Sci. USA 91:1937–1941.

    PubMed  CAS  Google Scholar 

  • Horrocks L. A. and Farooqui A. A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.

    PubMed  CAS  Google Scholar 

  • Horrocks L. A. and Yeo Y. K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 40:211–225.

    PubMed  CAS  Google Scholar 

  • Hossain M. S., Hashimoto M., Gamoh S., and Masumura S. (1999). Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats. J.-Neurochem. 72:1133–1138.

    PubMed  CAS  Google Scholar 

  • Hossain M. S., Hashimoto M., and Masumura S. (1998). Influence of docosahexaenoic acid on cerebral lipid peroxide level in aged rats with and without hypercholesterolemia. Neurosci. Lett. 244:157–160.

    PubMed  CAS  Google Scholar 

  • Huster D., Arnold K., and Gawrisch K. (1998). Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Biochemistry 37:17299–17308.

    PubMed  CAS  Google Scholar 

  • Ikemoto A., Kobayashi T., Emoto K., Umeda M., Watanabe S., and Okuyama H. (1999). Effects of docosahexaenoic and arachidonic acids on the synthesis and distribution of aminophospholipids during neuronal differentiation of PC12 cells. Arch. Biochem. Biophys. 364:67–74.

    PubMed  CAS  Google Scholar 

  • Ikemoto A., Kobayashi T., Watanabe S., and Okuyama H. (1997). Membrane fatty acid modifications of PC12 cells by arachidonate or docosahexaenoate affect neurite outgrowth but not norepinephrine release. Neurochem. Res. 22:671–678.

    PubMed  CAS  Google Scholar 

  • Ikemoto A., Ohishi M., Hata N., Misawa Y., Fujii Y., and Okuyama H. (2000). Effect of n-3 fatty acid deficiency on fatty acid composition and metabolism of aminophospholipids in rat brain synaptosomes. Lipids 35:1107–1115.

    PubMed  CAS  Google Scholar 

  • Innis S. M. and Dyer R. A. (2002). Brain astrocyte synthesis of docosahexaenoic acid from n-3 fatty acids is limited at the elongation of docosapentaenoic acid. J.-Lipid Res. 43:1529–1536.

    PubMed  CAS  Google Scholar 

  • Itokazu N., Ikegaya Y., Nishikawa M., and Matsuki N. (2000). Bidirectional actions of docosahexaenoic acid on hippocampal neurotransmissions in-vivo. Brain Res. 862:211–216.

    PubMed  CAS  Google Scholar 

  • Izaki Y., Hashimoto M., and Arita J.-(1999). Enhancement by 1-oleoyl-2-docosahexaenoyl phosphatidylcholine of long-term potentiation in the rat hippocampal CA1 region. Neurosci. Lett. 260:146–148.

    PubMed  CAS  Google Scholar 

  • James M. J., Gibson R. A., and Cleland L. G. (2000). Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J.-Clin. Nutr. 71:343S–348S.

    PubMed  CAS  Google Scholar 

  • Jan Y. N. and Jan L. Y. (2001). Dendrites. Genes Dev. 15:2627–2641.

    PubMed  CAS  Google Scholar 

  • Jan Y. N. and Jan L. Y. (2003). The control of dendrite development. Neuron 40:229–242.

    PubMed  CAS  Google Scholar 

  • Jones C. R., Arai T., and Rapoport S. I. (1997). Evidence for the involvement of docosahexaenoic acid in cholinergic stimulated signal transduction at the synapse. Neurochem. Res. 22:663–670.

    PubMed  CAS  Google Scholar 

  • Jump D. B. (2002a). Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr. Opin. Lipidol. 13:155–164.

    PubMed  CAS  Google Scholar 

  • Jump D. B. (2002b). The biochemistry of n-3 polyunsaturated fatty acids. J.-Biol. Chem. 277:8755–8758.

    PubMed  CAS  Google Scholar 

  • Kim H. Y., Akbar M., Lau A., and Edsall L. (2000). Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J.-Biol. Chem. 275:35215–35223.

    PubMed  CAS  Google Scholar 

  • Kim H. Y., Edsall L., and Ma Y. C. (1996). Specificity of polyunsaturated fatty acid release from rat brain synaptosomes. Lipids 31(Suppl.):S229–S233.

    PubMed  CAS  Google Scholar 

  • Kishida E., Yano M., Kasahara M., and Masuzawa Y. (1998). Distinctive inhibitory activity of docosahexaenoic acid against sphingosine-induced apoptosis. Biochim. Biophys. Acta Lipids Lipid Metab. 1391:401–408.

    CAS  Google Scholar 

  • Kitajka K., Puskás L. G., Zvara A., Hackler L. J., Barceló-Coblijn G., Yeo Y. K., and Farkas T. (2002). The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc. Natl Acad. Sci. USA 99:2619–2624.

    PubMed  CAS  Google Scholar 

  • Langelier B., Alessandri J.-M., Perruchot M. H., Guesnet P., and Lavialle M. (2005). Changes of the transcriptional and fatty acid profiles in response to n-3 fatty acids in SH-SY5Y neuroblastoma cells. Lipids 40:719–728.

    PubMed  CAS  Google Scholar 

  • Lauritzen L., Hansen H. S., Jorgensen M. H., and Michaelsen K. F. (2001). The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 40:1–94.

    PubMed  CAS  Google Scholar 

  • Lengqvist J., Mata de Urquiza A., Bergman A. C., Willson T. M., Sjövall J., Perlmann T., and Griffiths W. J.-(2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor α ligand-binding domain. Mol. Cell. Proteomics 3:692–703.

    PubMed  CAS  Google Scholar 

  • Li Q. R., Wang M., Tan L., Wang C., Ma J., Li N., Li Y. S., Xu G. W., and Li J.-S. (2005). Docosahexaenoic acid changes lipid composition and interleukin-2 receptor signaling in membrane rafts. J.-Lipid Res. 46:1904–1913.

    PubMed  CAS  Google Scholar 

  • Litman B. J.-and Mitchell D. C. (1996). A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids 31(Suppl.):S193–S197.

    PubMed  CAS  Google Scholar 

  • Lonergan P. E., Martin D. S. D., Horrobin D. F., and Lynch M. A. (2004). Neuroprotective actions of eicosapentaenoic acid on lipopolysaccharide-induced dysfunction in rat hippocampus. J.-Neurochem. 91:20–29.

    PubMed  CAS  Google Scholar 

  • Lu X. R., Ong W. Y., Halliwell B., Horrocks L. A., and Farooqui A. A. (2001). Differential effects of calcium-dependent and calcium-independent phospholipase A2 inhibitors on kainate-induced neuronal injury in rat hippocampal slices. Free Radic. Biol. Med. 30:1263–1273.

    PubMed  CAS  Google Scholar 

  • Lukiw W. J., Cui J.-G., Marcheselli V. L., Bodker M., Botkjaer A., Gotlinger K., Serhan C. N., and Bazan N. G. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J.-Clin. Invest. 115:2774–2783.

    PubMed  CAS  Google Scholar 

  • Ma D. W. L., Seo J., Switzer K. C., Fan Y. Y., McMurray D. N., Lupton J.-R., and Chapkin R. S. (2004). n-3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. J.-Nutr. Biochem. 15:700–706.

    PubMed  CAS  Google Scholar 

  • Marcheselli V. L., Hong S., Lukiw W. J., Tian X. H., Gronert K., Musto A., Hardy M., Gimenez J.-M., Chiang N., Serhan C. N., and Bazan N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J.-Biol. Chem. 278:43807–43817.

    PubMed  CAS  Google Scholar 

  • Marszalek J.-R., Kitidis C., DiRusso C. C., and Lodish H. F. (2005). Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J.-Biol. Chem. 280:10817–10826.

    PubMed  CAS  Google Scholar 

  • Martin R. E. (1998). Docosahexaenoic acid decreases phospholipase A2 activity in the neurites/nerve growth cones of PC12 cells. J.-Neurosci. Res. 54:805–813.

    PubMed  CAS  Google Scholar 

  • Martin R. E., Wickham J.-Q., Om A. S., Sanders J., and Ceballos N. (2000). Uptake and incorporation of docosahexaenoic acid (DHA) into neuronal cell body and neurite/nerve growth cone lipids: evidence of compartmental DHA metabolism in nerve growth factor-differentiated PC12 cells. Neurochem. Res. 25:715–723.

    PubMed  CAS  Google Scholar 

  • Mitchell D. C., Gawrisch K., Litman B. J., and Salem N., Jr. (1998). Why is docosahexaenoic acid essential for nervous system function? Biochem. Soc. Trans. 26:365–370.

    PubMed  CAS  Google Scholar 

  • Miura Y., Takahara K., Murata Y., Utsumi K., Tada M., and Takahata K. (2004). Docosahexaenoic acid induces apoptosis via the bax-independent pathway in HL-60 cells. Biosci. Biotechnol. Biochem. 68:2415–2417.

    PubMed  CAS  Google Scholar 

  • Mori T. A. (2004). Effect of fish and fish oil-derived omega-3 fatty acids on lipid oxidation. Redox Rep. 9:193–197.

    PubMed  CAS  Google Scholar 

  • Moriguchi T., Greiner R. S., and Salem N., Jr. (2000). Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J.-Neurochem. 75:2563–2573.

    PubMed  CAS  Google Scholar 

  • Mozzi R., Buratta S., and Goracci G. (2003). Metabolism and functions of phosphatidylserine in mammalian brain. Neurochem. Res. 28:195–214.

    PubMed  CAS  Google Scholar 

  • Mukherjee P. K., Marcheselli V. L., Serhan C. N., and Bazan N. G. (2004). Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl Acad. Sci. USA 101:8491–8496.

    PubMed  CAS  Google Scholar 

  • Nabekura J., Noguchi K., Witt M. R., Nielsen M., and Akaike N. (1998). Functional modulation of human recombinant γ-aminobutyric acid type A receptor by docosahexaenoic acid. J.-Biol. Chem. 273:11056–11061.

    PubMed  CAS  Google Scholar 

  • Nair P. P., Judd J.-T., Berlin E., Taylor P. R., Shami S., Sainz E., and Bhagavan H. N. (1993). Dietary fish oil-induced changes in the distribution of α-tocopherol, retinol, and β-carotene in plasma, red blood cells, and platelets: modulation by vitamin E. Am. J.-Clin. Nutr. 58:98–102.

    PubMed  CAS  Google Scholar 

  • Nakamura M. T., Cheon Y., Li Y., and Nara T. Y. (2004). Mechanisms of regulation of gene expression by fatty acids. Lipids 39:1077–1083.

    PubMed  CAS  Google Scholar 

  • Nakamura M. T. and Nara T. Y. (2003). Essential fatty acid synthesis and its regulation in mammals. Prostaglandins Leukot. Essent. Fatty Acids 68:145–150.

    PubMed  CAS  Google Scholar 

  • Nishikawa M., Kimura S., and Akaike N. (1994). Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspartate response in pyramidal neurones of rat cerebral cortex. J.-Physiol. (London) 475:83–93.

    PubMed  CAS  Google Scholar 

  • Niu S. L., Mitchell D. C., Lim S. Y., Wen Z. M., Kim H. Y., Salem N., Jr., and Litman B. J.-(2004). Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. J.-Biol. Chem. 279:31098–31104.

    PubMed  CAS  Google Scholar 

  • Ong L. W., Jiang B., Tang N., Yeo J.-F., Wei S., Farooqui A. A., and Ong W. Y. (2006). Differential effects of polyunsaturated fatty acids on exocytosis in rat pheochromocytoma-12 cells. Neurochem. Res. 31:41–48.

    PubMed  CAS  Google Scholar 

  • Phillis J.-W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. (in press).

    Google Scholar 

  • Pifferi F., Roux F., Langelier B., Alessandri J.-M., Vancassel S., Jouin M., Lavialle M., and Guesnet P. (2005). (n-3) polyunsaturated fatty acid deficiency reduces the expression of both isoforms of the brain glucose transporter GLUT1 in rats. J.-Nutr. 135:2241–2246.

    PubMed  CAS  Google Scholar 

  • Poling J.-S., Karanian J.-W., Salem N., Jr., and Vicini S. (1995). Time- and voltage-dependent block of delayed rectifier potassium channels by docosahexaenoic acid. Mol. Pharmacol. 47:381–390.

    PubMed  CAS  Google Scholar 

  • Porcellati G. (1983). Phospholipid metabolism in neural membranes. In: Sun G. Y., Bazan N., Wu J.-Y., Porcellati G., and Sun A. Y. (eds.), Neural Membranes. Humana Press, New York, pp.-3–35.

    Google Scholar 

  • Poumès-Ballihaut C., Langelier B., Houlier F., Alessandri J.-M., Durand G., Latge C., and Guesnet P. (2001). Comparative bioavailability of dietary alpha-linolenic and docosahexaenoic acids in the growing rat. Lipids 36:793–800.

    PubMed  Google Scholar 

  • Price P. T., Nelson C. M., and Clarke S. D. (2000). Omega-3 polyunsaturated fatty acid regulation of gene expression. Curr. Opin. Lipidol. 11:3–7.

    PubMed  CAS  Google Scholar 

  • Puskás L. G., Kitajka K., Nyakas C., Barcelo-Coblijn G., and Farkas T. (2003). Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc. Natl Acad. Sci. USA 100:1580–1585.

    Google Scholar 

  • Ramakers G. J., Oestreicher A. B., Wolters P. S., Van Leeuwen F. W., De Graan P. N., and Gispen W. H. (1991). Developmental changes in B-50 (GAP-43) in primary cultures of cerebral cortex: B-50 immunolocalization, axonal elongation rate and growth cone morphology. Int. J.-Dev. Neurosci. 9:215–230.

    PubMed  CAS  Google Scholar 

  • Rapoport S. I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.

    PubMed  CAS  Google Scholar 

  • Rapoport S. I. (2003). In vivo approaches to quantifying and imaging brain arachidonic and docosahexaenoic acid metabolism. J.-Pediatr. 143:S26–S34.

    PubMed  CAS  Google Scholar 

  • Rapoport S. I., Chang M. C. J., and Spector A. A. (2001). Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J.-Lipid Res. 42:678–685.

    PubMed  CAS  Google Scholar 

  • Reddy T. S. and Bazan N. G. (1984). Long-chain acyl coenzyme A synthetase activity during the postnatal development of the mouse brain. Int. J.-Dev. Neurosci. 2:447–450.

    CAS  Google Scholar 

  • Reddy T. S., Sprecher H., and Bazan N. G. (1984). Long-chain acyl-coenzyme A synthetase from rat brain microsomes. Kinetic studies using [1-14C]docosahexaenoic acid substrate. Eur. J.-Biochem. 145:21–29.

    PubMed  CAS  Google Scholar 

  • Rotstein N. P., Aveldaño M. I., Barrantes F. J., Roccamo A. M., and Politi L. E. (1997). Apoptosis of retinal photoreceptors during development in-vitro: protective effect of docosahexaenoic acid. J.-Neurochem. 69:504–513.

    Article  PubMed  CAS  Google Scholar 

  • Rotstein N. P., Politi L. E., and Aveldaño M. I. (1998). Docosahexaenoic acid promotes differentiation of developing photoreceptors in culture. Invest. Ophthalmol. Vis. Sci. 39:2750–2758.

    PubMed  CAS  Google Scholar 

  • Rotstein N. P., Politi L. E., German O. L., and Girotti R. (2003). Protective effect of docosahexaenoic acid on oxidative stress-induced apoptosis of retina photoreceptors. Invest. Ophthalmol. Vis. Sci. 44:2252–2259.

    PubMed  Google Scholar 

  • Salem N., Shingu T., Kim H.-Y., Hullin F., Bougnoux P., and Karanian J.-W. (1988). Aberrations in membrane structures and function. In: Karnovsky M. L., Bolis L., and Leaf A. (eds.), Biological Membranes. Alan R. Liss, New York, pp.-319–333.

    Google Scholar 

  • Sampath H. and Ntambi J.-M. (2005). Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu. Rev. Nutr. 25:317–340.

    PubMed  CAS  Google Scholar 

  • Sanderson P. and Calder P. C. (1998). Dietary fish oil appears to prevent the activation of phospholipase C-gamma in lymphocytes. Biochim. Biophys. Acta 1392:300–308.

    PubMed  CAS  Google Scholar 

  • SanGiovanni J.-P. and Chew E. Y. (2005). The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retinal Eye Res. 24:87–138.

    CAS  Google Scholar 

  • Scott B. L. and Bazan N. G. (1989). Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl Acad. Sci. USA 86:2903–2907.

    PubMed  CAS  Google Scholar 

  • Sergeeva M., Strokin M., and Reiser G. (2005). Regulation of intracellular calcium levels by polyunsaturated fatty acids, arachidonic acid and docosahexaenoic acid, in astrocytes: possible involvement of phospholipase A2. Reprod. Nutr. Dev. 45:633–646.

    PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005a). Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr. Opin. Clin. Nutr. Metab. Care 8:115–121.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005b). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.

    PubMed  CAS  Google Scholar 

  • Serhan C. N., Arita M., Hong S., and Gotlinger K. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132.

    PubMed  CAS  Google Scholar 

  • Shaikh S. R., Dumaual A. C., Castillo A., LoCascio D., Siddiqui R. A., Stillwell W., and Wassall S. R. (2004). Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: a comparative NMR, DSC, AFM, and detergent extraction study. Biophys. J.-87:1752–1766.

    PubMed  CAS  Google Scholar 

  • Shaikh S. R., Dumaual A. C., LoCassio D., Siddiqui R. A., and Stillwell W. (2003). Acyl chain unsaturation in PEs modulates phase separation from lipid raft molecules. Biochem. Biophys. Res. Commun. 311:793–796.

    CAS  Google Scholar 

  • Siddiqui R. A., Jenski L. J., Harvey K. A., Wiesehan J.-D., Stillwell W., and Zaloga G. P. (2003). Cell-cycle arrest in Jurkat leukaemic cells: a possible role for docosahexaenoic acid. Biochem. J.-371:621–629.

    PubMed  CAS  Google Scholar 

  • Siddiqui R. A., Shaikh S. R., Sech L. A., Yount H. R., Stillwell W., and Zaloga G. P. (2004). Omega 3-fatty acids: health benefits and cellular mechanisms of action. Mini-Rev. Medicin. Chem. 4:859–871.

    CAS  Google Scholar 

  • Siddiqui R. A., Wiesehan J., Stillwel W., Jenski L., and Kovacs R. (2001). Prevention of cytotoxic effects of docosahexaenoic acid in Jurkat leukemic cells by phosphatidic acid. FASEB J.-15:A282.

    Google Scholar 

  • Songur A., Sarsilmaz M., Sogut S., Ozyurt B., Ozyurt H., Zararsiz I., and Turkoglu A. O. (2004). Hypothalamic superoxide dismutase, xanthine oxidase, nitric oxide, and malondialdehyde in rats fed with fish ω-3 fatty acids. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 28:693–698.

    CAS  Google Scholar 

  • Stillwell W., Shaikh S. R., Zerouga M., Siddiqui R., and Wassall S. R. (2005). Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod. Nutr. Develop. 45:559–579.

    CAS  Google Scholar 

  • Stillwell W. and Wassall S. R. (2003). Docosahexaenoic acid: membrane properties of a-unique fatty acid. Chem. Phys. Lipids 126:1–27.

    PubMed  CAS  Google Scholar 

  • Stinson A. M., Wiegand R. D., and Anderson R. E. (1991). Fatty acid and molecular species compositions of phospholipids and diacylglycerols from rat retinal membranes. Exp. Eye Res. 52:213–218.

    PubMed  CAS  Google Scholar 

  • Strokin M., Sergeeva M., and Reiser G. (2003). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br. J.-Pharmacol. 139:1014–1022.

    PubMed  CAS  Google Scholar 

  • Takahata, K. (1995). Effect of DHA on cultured neuronal cells: studies in PC12 cells. Jpn.-J.-Pharmacol. 67:13S.

    Google Scholar 

  • Valentine R. C. and Valentine D. L. (2004). Omega-3 fatty acids in cellular membranes: a-unified concept. Prog. Lipid Res. 43:383–402.

    PubMed  CAS  Google Scholar 

  • Verlengia R., Gorjao R., Kanunfre C. C., Bordin S., de Lima T. M., Martins E. F., and Curi R. (2004a). Comparative effects of eicosapentaenoic acid and docosahexaenoic acid on proliferation, cytokine production, and pleiotropic gene expression in Jurkat cells. J.-Nutr. Biochem. 15:657–665.

    PubMed  CAS  Google Scholar 

  • Verlengia R., Gorjão R., Kanunfre C. C., Bordin S., Martins de Lima T., Fernandes Martins E., Newsholme P., and Curi R. (2004b). Effects of EPA and DHA on proliferation, cytokine production, and gene expression in Raji cells. Lipids 39:857–864.

    PubMed  CAS  Google Scholar 

  • Wassall S. R., Brzustowicz M. R., Shaikh S. R., Cherezov V., Caffrey M., and Stillwell W. (2004). Order from disorder, corralling cholesterol with chaotic lipids – the role of polyunsaturated lipids in membrane raft formation. Chem. Phys. Lipids 132:79–88.

    PubMed  CAS  Google Scholar 

  • Wu D. and Meydani S. N. (1998). n-3 polyunsaturated fatty acids and immune function. Proc. Nutr. Soc. 57:503–509.

    PubMed  CAS  Google Scholar 

  • Wu M., Harvey K. A., Ruzmetov N., Welch Z. R., Sech L., Jackson K., Stillwell W., Zaloga G. P., and Siddiqui R. A. (2005). Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int. J.-Cancer 117:340–348.

    PubMed  CAS  Google Scholar 

  • Xiao Y. F. and Li X. Y. (1999). Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res. 846:112–121.

    PubMed  CAS  Google Scholar 

  • Yehuda S., Rabinovitz S., Carasso R. L., and Mostofsky D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.

    PubMed  CAS  Google Scholar 

  • Young C., Gean P. W., Chiou L. C., and Shen Y. Z. (2000). Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 37:90–94.

    PubMed  CAS  Google Scholar 

  • Young C., Gean P. W., Wu S. P., Lin C. H., and Shen Y. Z. (1998). Cancellation of low-frequency stimulation-induced long-term depression by docosahexaenoic acid in the rat hippocampus. Neurosci. Lett. 247:198–200.

    PubMed  CAS  Google Scholar 

  • Zhao Y., Joshi-Barve S., Barve S., and Chen L. H. (2004). Eicosapentaenoic acid prevents LPS-induced TNF-α expression by preventing NF-κB activation. J.-Am. Coll. Nutr. 23:71–78.

    PubMed  CAS  Google Scholar 

  • Zimmer L., Delion-Vancassel S., Durand G., Guilloteau D., Bodard S., Besnard J.-C., and Chalon S. (2000). Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J.-Lipid Res. 41:32–40.

    PubMed  CAS  Google Scholar 

  • Zucker R. S. (1989). Short-term synaptic plasticity. Annu. Rev. Neurosci. 12:13–31.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Docosahexaenoic Acid and Its Metabolites in Brain. In: Glycerophospholipids in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49931-4_6

Download citation

Publish with us

Policies and ethics