Skip to main content

Future Perspectives: Metabolic and Functional Aspects of Neural Membrane Glycerophospholipids

  • Chapter
  • 421 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler D. H., Phillips J.-A. I., Cogan J.-D., Morrow I. D., Boutaud O., and Oates J.-A. (2006). First description: cytosolic phospholipase A2-alpha deficiency. J.-Invest. Med. 54:S257.

    Google Scholar 

  • Andresen T. L. and Jorgensen K. (2005). Synthesis and membrane behavior of a new class of unnatural phospholipid analogs useful as phospholipase A2 degradable liposomal drug carriers. Biochim. Biophys. Acta Biomembr. 1669:1–7.

    Article  CAS  Google Scholar 

  • Balboa M. A., Varela-Nieto I., Lucas K. K., and Dennis E. A. (2002). Expression and function of phospholipase A2 in brain. FEBS Lett. 531:12–17.

    Article  PubMed  CAS  Google Scholar 

  • Banno Y. (2002). Regulation and possible role of mammalian phospholipase D in cellular functions. J.-Biochem. (Tokyo) 131:301–306.

    CAS  Google Scholar 

  • Bazan N. G. (2005a). Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol. 32:89–103.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G. (2005b). Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.

    Article  PubMed  CAS  Google Scholar 

  • Bonventre J.-V. and Sapirstein A. (2002). Group IV cytosolic phospholipase A2 (PLA2) function: Insights from the knockout mouse. In: Honn K. V., Marnett L. J., Nigam S., Dennis E., and Serhan C. (eds.), Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, 5. Kluwer Academic/Plenum Publ., New York, pp.-25–31.

    Google Scholar 

  • Bonventre J.-V., Huang Z. H., Taheri M. R., O’Leary E., Li E., Moskowitz M. A., and Sapirstein A. (1997). Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390:622–625.

    Article  PubMed  CAS  Google Scholar 

  • Bosetti F., Bell J.-M., and Manickam P. (2005). Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res. Bull. 65:331–338.

    Article  PubMed  CAS  Google Scholar 

  • Cafiso D. S. (2005). Structure and interactions of C2 domains at membrane surfaces. In: Tamm L. K. (ed.), Membrane Domains to Cellular Networks. Wiley-VCH Verlag GmbH, Weinheim, pp.-403–422.

    Google Scholar 

  • Colangelo V., Schurr J., Ball M. J., Pelaez R. P., Bazan N. G., and Lukiw W. J.-(2002). Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J.-Neurosci. Res. 70:462–473.

    Article  PubMed  CAS  Google Scholar 

  • Davletov B., Perisic O., and Williams R. L. (1998). Calcium-dependent membrane penetration is a hallmark of the C2 domain of cytosolic phospholipase A2 whereas the C2A domain of synaptotagmin binds membranes electrostatically. J.-Biol. Chem. 273:19093–19096.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2004). Brain phospholipases A2: a perspective on the history. Prostaglandins Leukot. Essent. Fatty Acids 71:161–169.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2005). Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei. Reprod. Nutr. Dev. 45:613–631.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in brain: the good, the bad, and the ugly. Neuroscientist 12:245.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J.-Mol. Neurosci. 14:123–135.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000c). Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.

    Article  CAS  Google Scholar 

  • Farooqui A. A., Farooqui T., and Horrocks L. A. (2002). Molecular species of phospholipids during brain development. Their occurrence, separation and roles. In: Skinner E. R. (ed.), Brain Lipids and Disorders in Biological Psychiatry. Elsevier Science B.V., Amsterdam, pp.-147–158.

    Chapter  Google Scholar 

  • Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacologic effects and therapeutic importance for the treatment of neurologic disorders. Pharm. Rev. (in press).

    Google Scholar 

  • Forrester J.-S., Milne S. B., Ivanova P. T., and Brown H. A. (2004). Computational lipidomics: a multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Mol. Pharmacol. 65:813–821.

    Article  PubMed  CAS  Google Scholar 

  • Fukami K. (2002). Structure, regulation, and function of phospholipase C isozymes. J.-Biochem. (Tokyo) 131:293–299.

    CAS  Google Scholar 

  • Gross R. W., Jenkins C. M., Yang J.-Y., Mancuso D. J., and Han X. L. (2005). Functional lipidomics: the roles of specialized lipids and lipid–protein interactions in modulating neuronal function. Prostaglandins Other Lipid Mediat. 77:52–64.

    Article  PubMed  CAS  Google Scholar 

  • Hampel H., Teipel S. J., Alexander G. E., Pogarell O., Rapoport S. I., and Moller H. J.-(2002). In vivo imaging of region and cell type specific neocortical neurodegeneration in Alzheimer’s disease –– perspectives of MRI derived corpus callosum measurement for mapping disease progression and effects of therapy. Evidence from studies with MRI, EEG and PET. J.-Neural Transm. 109:837–855.

    Article  PubMed  CAS  Google Scholar 

  • Hirashima Y., Farooqui A. A., Mills J.-S., and Horrocks L. A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J.-Neurochem. 59:708–714.

    Article  PubMed  CAS  Google Scholar 

  • Hovland A. R., Nahreini P., Andreatta C. P., Edwards-Prasad J., and Prasad K. N. (2001). Identifying genes involved in regulating differentiation of neuroblastoma cells. J.-Neurosci. Res. 64:302–310.

    Article  CAS  Google Scholar 

  • Ivanova P. T., Milne S. B., Forrester J.-S., and Brown H. A. (2004). Lipid arrays: new tools in the understanding of membrane dynamics and lipid signaling. Mol. Interv. 4:86–96.

    Article  PubMed  CAS  Google Scholar 

  • Jin J.-K., Kim N. H., Min D. S., Kim J.-I., Choi J.-K., Jeong B. H., Choi S. I., Choi E. K., Carp R. I., and Kim Y. S. (2005). Increased expression of phospholipase D1 in the brains of scrapie-infected mice. J.-Neurochem. 92:452–461.

    Article  PubMed  CAS  Google Scholar 

  • Karim M., Jackson P., and Jackowski S. (2003). Gene structure, expression and identification of a new CTP:phosphocholine cytidylyltransferase isoform. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1633:1–12.

    Article  CAS  Google Scholar 

  • Kim M. D., Min D. S., Sim K. B., Cho H. J., and Shin T. (2004). Expression and potential role of phospholipase D1 in cryoinjured cerebral cortex of rats. Histol. Histopathol. 19:1015–1019.

    PubMed  CAS  Google Scholar 

  • Kishimoto K., Matsumura K., Kataoka Y., Morii H., and Watanabe Y. (1999). Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience 92:1061–1077.

    Article  PubMed  CAS  Google Scholar 

  • Klivenyi P., Beal M. F., Ferrante R. J., Andreassen O. A., Wermer M., Chin M. R., and Bonventre J.-V. (1998). Mice deficient in group IV cytosolic phospholipase A2 are resistant to MPTP neurotoxicity. J.-Neurochem. 71:2634–2637.

    Article  PubMed  CAS  Google Scholar 

  • Lee S. H., Williams M. V., and Blair I. A. (2005). Targeted chiral lipidomics analysis. Prostaglandins Other Lipid Mediat. 77:141–157.

    Article  PubMed  CAS  Google Scholar 

  • Malmberg N. J., Van Buskirk D. R., and Falke J.-J. (2003). Membrane-docking loops of the cPLA2 C2 domain: detailed structural analysis of the protein–membrane interface via site-directed spin-labeling. Biochemistry 42:13227–13240.

    Article  PubMed  CAS  Google Scholar 

  • Molloy G. Y., Rattray M., and Williams R. J.-(1998). Genes encoding multiple forms of phospholipase A2 are expressed in rat brain. Neurosci. Lett. 258:139–142.

    Article  PubMed  CAS  Google Scholar 

  • Negre-Aminou P., Nemenoff R. A., Wood M. R., de la Houssaye B. A., and Pfenninger K. H. (1996). Characterization of phospholipase A2 activity enriched in the nerve growth cone. J.-Neurochem. 67:2599–2608.

    Article  PubMed  CAS  Google Scholar 

  • Oram J.-F., Wolfbauer G., Vaughan A. M., Tang C. R., and Albers J.-J. (2003). Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells. J.-Biol. Chem. 278:52379–52385.

    Article  PubMed  CAS  Google Scholar 

  • Perisic O., Paterson H. F., Mosedale G., Lara-González S., and Williams R. L. (1999). Mapping the phospholipid-binding surface and translocation determinants of the C2 domain from cytosolic phospholipase A2. J.-Biol. Chem. 274:14979–14987.

    Article  PubMed  CAS  Google Scholar 

  • Pete M. J.-and Exton J.-H. (1996). Purification of a lysophospholipase from bovine brain that selectively deacylates arachidonoyl-substituted lysophosphatidylcholine. J.-Biol. Chem. 271:18114–18121.

    Article  PubMed  CAS  Google Scholar 

  • Pete M. J., Ross A. H., and Exton J.-H. (1994). Purification and properties of phospholipase A1 from bovine brain. J.-Biol. Chem. 269:19494–19500.

    PubMed  CAS  Google Scholar 

  • Phillis J.-W. and O’Regan M. H. (2004). A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res. Rev. 44:13–47.

    Article  PubMed  CAS  Google Scholar 

  • Phillis J.-W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. (in press).

    Google Scholar 

  • Piomelli D. (2005). The challenge of brain lipidomics. Prostaglandins Other Lipid Mediat. 77:23–34.

    Article  PubMed  CAS  Google Scholar 

  • Purdon A. D., Rosenberger T. A., Shetty H. U., and Rapoport S. I. (2002). Energy consumption by phospholipid metabolism in mammalian brain. Neurochem. Res. 27:1641–1647.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport S. I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport S. I. (2001). In vivo fatty acid incorporation into brain phospholipids in relation to plasma availability, signal transduction and membrane remodeling. J.-Mol. Neurosci. 16:243–261.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport S. I. (2005). In vivo approaches and rationale for quantifying kinetics and imaging brain lipid metabolic pathways. Prostaglandins Other Lipid Mediat. 77:185–196.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberger T. A., Villacreses N. E., Contreras M. A., Bonventre J.-V., and Rapoport S. I. (2003). Brain lipid metabolism in the cPLA2 knockout mouse. J.-Lipid Res. 44:109–117.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005a). Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr. Opin. Clin. Nutr. Metab. Care 8:115–121.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005b). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.

    Article  PubMed  CAS  Google Scholar 

  • Thomas D. M., Francescutti-Verbeem D. M., and Kuhn D. M. (2006). Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. FASEB J.-20:515–517.

    PubMed  CAS  Google Scholar 

  • Uozumi N. and Shimizu T. (2002). Roles for cytosolic phospholipase A2α as revealed by gene-targeted mice. Prostaglandins Other Lipid Mediat. 68–69:59–69.

    Article  PubMed  Google Scholar 

  • Vallée B., Teyssier C., Maget-Dana R., Ramstein J., Bureaud N., and Schoentgen F. (1999). Stability and physicochemical properties of the bovine brain phosphatidylethanolamine-binding protein. Eur. J.-Biochem. 266:40–52.

    Article  PubMed  Google Scholar 

  • Van Meer G. and Sprong H. (2004). Membrane lipids and vesicular traffic. Curr. Opin. Cell Biol. 16:373–378.

    Article  PubMed  CAS  Google Scholar 

  • Vigh L., Escriba P. V., Sonnleitner A., Sonnleitner M., Piotto S., Maresca B., Horvath I., and Harwood J.-L. (2005). The significance of lipid composition for membrane activity: new concepts and ways of assessing function. Prog. Lipid Res. 44:303–344.

    Article  PubMed  CAS  Google Scholar 

  • Voelker D. R. (2003). New perspectives on the regulation of intermembrane glycerophospholipid traffic. J.-Lipid Res. 44:441–449.

    Article  PubMed  CAS  Google Scholar 

  • Voelker D. R. (2004). Genetic analysis of intracellular aminoglycerophospholipid traffic. Biochem. Cell Biol. 82:156–169.

    Article  PubMed  CAS  Google Scholar 

  • Voelker D. R. (2005). Protein and lipid motifs regulate phosphatidylserine traffic in yeast. Biochem. Soc. Trans. 33:1141–1145.

    Article  PubMed  CAS  Google Scholar 

  • Yang H. C., Mosior M., Ni B., and Dennis E. A. (1999). Regional distribution, ontogeny, purification, and characterization of the Ca2+-independent phospholipase A2 from rat brain. J.-Neurochem. 73:1278–1287.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa T., Sakaeda T., Sugawara T., Hirano K., and Stella V. J.-(1999). A novel chemical delivery system for brain targeting. Adv. Drug Deliv. Rev. 36:255–275.

    Article  PubMed  CAS  Google Scholar 

  • Zanassi P., Paolillo M., and Schinelli S. (1998). Coexpression of phospholipase A2 isoforms in rat striatal astrocytes. Neurosci. Lett. 247:83–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Future Perspectives: Metabolic and Functional Aspects of Neural Membrane Glycerophospholipids. In: Glycerophospholipids in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49931-4_14

Download citation

Publish with us

Policies and ethics