Skip to main content

Topics in the Mathematical Modeling of Localized Corrosion

  • Chapter
  • First Online:
  • 1130 Accesses

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 44))

Abstract

Localized corrosion describes dissolution processes concentrated at specific areas on the surfaces of metals. In some types of localized corrosion, enhanced dissolution rates arise from partial or complete destruction of the protection normally afforded by the passive oxide film covering the metal surface. Oxide breakdown can be due to mechanical rupture (stress corrosion cracking), the chemical action of aggressive anions such as chloride (pitting corrosion), the impaction of solid particles on the surface (erosion corrosion), or the concentration of corrosion products within small solution-filled gaps (crevice corrosion). Other localized corrosion processes are initiated at metal compositional inhomogeneities such as grain boundaries in alloys (intergranular corrosion), or interfaces between dissimilar metals (galvanic corrosion). The economic impact of all forms of localized corrosion is severe. For example, pitting and stress corrosion cracking together account for about one fourth of equipment failures in the chemical process industries.

Metal dissolution rates during localized corrosion are high enough so that large concentration or potential gradients are typically found near the dissolving metal surface. Characterization of these gradients is a necessary precursor for understanding the mechanisms controlling the corrosion rate. Thus, experimental research on localized corrosion has always been closely coupled to quantitative analysis of mass transport processes by mathematical modeling. In this chapter, three examples are presented which illustrate the range of models applied to localized corrosion processes, reflecting the particular interests of the authors. Section II, written by Hebert, is a review of recent work on the modeling of pitting corrosion. The remainder of the chapter communicates results of recent work by Tribollet on galvanic corrosion (Sect. III) and on the simulation of the impedance in crevice-type geometries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.A. Collins and M.L. Monack, Mater. Prot. Perform. 12 (1973) 11.

    CAS  Google Scholar 

  2. G. Engelhardt and D.D. Macdonald, Corrosion 54 (1998) 469.

    Article  CAS  Google Scholar 

  3. G. Engelhardt and D.D. Macdonald, Corros. Sci. 46 (2004) 2755.

    Article  CAS  Google Scholar 

  4. D.D. Macdonald, C. Liu, M. Urquidi-Macdonald, G.H. Stickford, B. Hindin, A.K. Agrawal and K. Krist, Corrosion 50 (1994) 761.

    Article  CAS  Google Scholar 

  5. A. Turnbull, L.N. McCartney and S. Zhou, Corros. Sci. 48 (2006) 2084.

    Article  CAS  Google Scholar 

  6. A. Anderko, N. Sridhar and D.S. Dunn, Corros. Sci. 46 (2004) 1583.

    Article  CAS  Google Scholar 

  7. D.S. Dunn, G.A. Cragnolino and N. Sridhar, Corrosion 56 (2000) 90.

    Article  CAS  Google Scholar 

  8. N. Sridhar and G.A. Cragnolino, Corrosion 49 (1993) 885.

    Article  CAS  Google Scholar 

  9. T.T. Lunt, J.R. Scully, V. Brusamarello, A.S. Mikhailov and J.L. Hudson, J. Electrochem. Soc. 149 (2002) B163.

    Article  CAS  Google Scholar 

  10. C. Punckt, M. Bolscher, H.H. Rotermund, A.S. Mikhailov, L. Organ, N. Budiansky, J.R. Scully and J.L. Hudson, Science 305 (2004) 1133.

    Article  CAS  Google Scholar 

  11. J. Newman and K.E. Thomas-Alyea, Electrochemical Systems, Third ed., Wiley, Hoboken, NJ, 2004.

    Google Scholar 

  12. S.M. Sharland, Corros. Sci. 27 (1987) 289.

    Article  CAS  Google Scholar 

  13. A. Turnbull, Br. Corros. J. 28 (1993) 297.

    CAS  Google Scholar 

  14. S.M. Sharland, C.P. Jackson and A.J. Diver, Corros. Sci. 29 (1989) 1149.

    Article  CAS  Google Scholar 

  15. S.M. Sharland and P.W. Tasker, Corros. Sci. 28 (1988) 603.

    Article  CAS  Google Scholar 

  16. A. Turnbull and M.K. Gardner, Corros. Sci. 22 (1982) 661.

    Article  CAS  Google Scholar 

  17. J.N. Harb and R.C. Alkire, J. Electrochem. Soc. 138 (1991) 3568.

    Article  CAS  Google Scholar 

  18. J.N. Harb and R.C. Alkire, Corros. Sci. 29 (1989) 31.

    Article  CAS  Google Scholar 

  19. M.L. Kronenberg, J.C. Banter, E. Yeager and F. Hovorka, J. Electrochem. Soc. 110 (1963) 1007.

    Article  CAS  Google Scholar 

  20. J.N. Harb and R.C. Alkire, J. Electrochem. Soc. 138 (1991) 2594.

    Article  CAS  Google Scholar 

  21. M.W. Verbrugge, D.R. Baker and J. Newman, J. Electrochem. Soc. 140 (1993) 2530.

    Article  CAS  Google Scholar 

  22. G. Engelhardt and H.H. Strehblow, Corros. Sci. 36 (1994) 1711.

    Article  CAS  Google Scholar 

  23. H.K. Kuiken, J.J. Kelly and P.H.L. Notten, J. Electrochem. Soc. 133 (1986) 1217.

    Article  CAS  Google Scholar 

  24. G. Engelhardt, M. Urquidi-Macdonald and D.D. Macdonald, Corros. Sci. 39 (1997) 419.

    Article  CAS  Google Scholar 

  25. G. Engelhardt and D.D. Macdonald, Corros. Sci. 46 (2004) 1159.

    Article  CAS  Google Scholar 

  26. M. Verhoff and R. Alkire, J. Electrochem. Soc. 147 (2000) 1349.

    Article  CAS  Google Scholar 

  27. M. Verhoff and R. Alkire, J. Electrochem. Soc. 147 (2000) 1359.

    Article  CAS  Google Scholar 

  28. E.G. Webb and R.C. Alkire, J. Electrochem. Soc. 149 (2002) B286.

    Article  CAS  Google Scholar 

  29. M. Kamrunnahar, R.D. Braatz and R.C. Alkire, J. Electrochem. Soc. 151 (2004) B90.

    Article  CAS  Google Scholar 

  30. J.R. Gray, C. Homescu, L.R. Petzold and R.C. Alkire, J. Electrochem. Soc. 152 (2005) B277.

    Article  CAS  Google Scholar 

  31. N.J. Laycock and S.P. White, J. Electrochem. Soc. 148 (2001) B264.

    Article  CAS  Google Scholar 

  32. N.J. Laycock, S.P. White, J.S. Noh, P.T. Wilson and R.C. Newman, J. Electrochem. Soc. 145 (1998) 1101.

    Article  CAS  Google Scholar 

  33. T. Hakkarainen, Mater. Sci. Forum 8 (1986) 81.

    Article  CAS  Google Scholar 

  34. G.T. Gaudet, W.T. Mo, T.A. Hatton, J.W. Tester, J. Tilly, H.S. Isaacs and R.C. Newman, AlChE J. 32 (1986) 949.

    Article  CAS  Google Scholar 

  35. T. Hakkarainen, in: A. Turnbull (Ed.), Corrosion Chemistry within Pits, Crevices and Cracks, Her Majesty’s Stationery Office, London, 1987, p. 17.

    Google Scholar 

  36. P.C. Pistorius and G.T. Burstein, Philos. Trans. R. Soc. Lond., Ser. A 341 (1992) 531.

    Google Scholar 

  37. U. Steinsmo and H.S. Isaacs, J. Electrochem. Soc. 140 (1993) 643.

    Article  Google Scholar 

  38. R.S. Alwitt, H. Uchi, T.R. Beck and R.C. Alkire, J. Electrochem. Soc. 131 (1984) 13.

    Article  CAS  Google Scholar 

  39. D. Goad, J. Electrochem. Soc. 144 (1997) 1965.

    Article  CAS  Google Scholar 

  40. K.R. Hebert, J. Electrochem. Soc. 148 (2001) B236.

    Article  CAS  Google Scholar 

  41. Y.S. Tak and K.R. Hebert, J. Electrochem. Soc. 141 (1994) 1453.

    Article  CAS  Google Scholar 

  42. Y.S. Tak, E.R. Henderson and K.R. Hebert, J. Electrochem. Soc. 141 (1994) 1446.

    Article  CAS  Google Scholar 

  43. N. Sinha and K.R. Hebert, J. Electrochem. Soc. 147 (2000) 4111.

    Article  CAS  Google Scholar 

  44. Y. Tak, N. Sinha and K.R. Hebert, J. Electrochem. Soc. 147 (2000) 4103.

    Article  CAS  Google Scholar 

  45. K. Hebert and R. Alkire, J. Electrochem. Soc. 135 (1988) 2146.

    Article  CAS  Google Scholar 

  46. Y. Zhou and K.R. Hebert, J. Electrochem. Soc. 145 (1998) 3100.

    Article  CAS  Google Scholar 

  47. J.R. Galvele, J. Electrochem. Soc. 123 (1976) 464.

    Article  CAS  Google Scholar 

  48. K. Hebert and R. Alkire, J. Electrochem. Soc. 135 (1988) 2447.

    Article  CAS  Google Scholar 

  49. J.O.M. Bockris and A.K.N. Reddy, Modern Electrochemistry, Plenum, New York, 1977.

    Google Scholar 

  50. K.R. Hebert, Proc. – Electrochem. Soc. 99–14 (1999) 54.

    Google Scholar 

  51. R.A. Robinson and R.H. Stokes, Electrolyte Solutions; The Measurement and Interpretation of Conductance, Chemical Potential, and Diffusion in Solutions of Simple Electrolytes, 2nd ed., Butterworths, London, 1959.

    Google Scholar 

  52. R.H. Perry and C.H. Chilton (Eds.), Perry’s Chemical Engineers’ Handbook, 5th ed., McGraw-Hill, New York, 1973.

    Google Scholar 

  53. J. Newman, J. Electrochem. Soc. 113 (1966) 1235.

    Article  CAS  Google Scholar 

  54. J. Newman, J. Electrochem. Soc. 113 (1966) 501.

    Article  CAS  Google Scholar 

  55. J.B. Jorcin, C. Blanc, N. Pebere, B. Tribollet and V. Vivier, J. Electrochem. Soc. 155 (2008) C46.

    Article  CAS  Google Scholar 

  56. N. Dimitrov, J.A. Mann and K. Sieradzki, J. Electrochem. Soc. 146 (1999) 98.

    Article  CAS  Google Scholar 

  57. M.B. Vukmirovic, N. Dimitrov and K. Sieradzki, J. Electrochem. Soc. 149 (2002) B428.

    Article  CAS  Google Scholar 

  58. C.R. Christensen and F.C. Anson, Anal. Chem. 35 (1963) 205.

    Article  CAS  Google Scholar 

  59. A.T. Hubbard and F.C. Anson, Anal. Chem. 36 (1964) 723.

    Article  CAS  Google Scholar 

  60. A.T. Hubbard and F.C. Anson, Anal. Chem. 38 (1966) 58.

    Article  CAS  Google Scholar 

  61. A.T. Hubbard and F.C. Anson, in: A.J. Bard (Ed.), Electroanalytical Chemistry, Marcel Dekker, New York, 1970, pp. 129.

    Google Scholar 

  62. C. Fiaud, M. Keddam, A. Kadri and H. Takenouti, Electrochim. Acta 32 (1987) 445.

    Article  CAS  Google Scholar 

  63. E. Remita, E. Sutter, B. Tribollet, F. Ropital, X. Longaygue, C. Taravel-Condat and N. Desamais, Electrochim. Acta 52 (2007) 7715.

    Article  CAS  Google Scholar 

  64. K. Micka, K. Kratochvilova and J. Klima, Electrochim. Acta 42 (1997) 1005.

    Article  CAS  Google Scholar 

  65. T. Jacobsen and K. West, Electrochim. Acta 40 (1995) 255.

    Article  CAS  Google Scholar 

  66. R. de Levie, in: P. Delahay (Ed.), Advances in Electrochemistry and Electrochemical Engineering, New York, Interscience, 1967, pp. 329.

    Google Scholar 

  67. C. Gabrielli, M. Keddam, N. Portail, P. Rousseau, H. Takenouti and V. Vivier, J. Phys. Chem. B 110 (2006) 20478.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hebert, K.R., Tribollet, B. (2009). Topics in the Mathematical Modeling of Localized Corrosion. In: Schlesinger, M. (eds) Modern Aspects of Electrochemistry No. 44. Modern Aspects of Electrochemistry, vol 44. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49586-6_7

Download citation

Publish with us

Policies and ethics