Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed R and Gray D (1996) Immunological memory and protective immunity: understanding their relation. Science 272(5258): 54–60

    PubMed  CAS  Google Scholar 

  • Altman JD, et al. (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274(5284): 94–96

    PubMed  CAS  Google Scholar 

  • Angelakopoulos H, et al. (2002) Safety and shedding of an attenuated strain of Listeria monocytogenes with a deletion of actA/plcB in adult volunteers: a dose escalation study of oral inoculation. Infect Immun 70(7): 3592–3601

    PubMed  CAS  Google Scholar 

  • Ashkenazi A and Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381): 1305–1308

    PubMed  CAS  Google Scholar 

  • Badovinac VP and Harty JT (2000) Adaptive immunity and enhanced CD8+ T cell response to Listeria monocytogenes in the absence of perforin and IFN-gamma. J Immunol 164(12): 6444–6452

    PubMed  CAS  Google Scholar 

  • Badovinac VP and Harty JT (2000a) Intracellular staining for TNF and IFN-gamma detects different frequencies of antigen-specific CD8(+) T cells. J Immunol Methods 238(1–2): 107–117

    CAS  Google Scholar 

  • Badovinac VP, et al. (2000) Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma. Science 290(5495): 1354–1358

    PubMed  CAS  Google Scholar 

  • Badovinac VP and Harty JT (2002) CD8(+) T-cell homeostasis after infection: setting the ‘curve’. Microbes Infect 4(4): 441–447

    PubMed  CAS  Google Scholar 

  • Badovinac VP, et al. (2002) Programmed contraction of CD8(+) T cells after infection. Nat Immunol 3(7): 619–626

    PubMed  CAS  Google Scholar 

  • Badovinac VP, et al. (2003) Regulation of CD8+ T cells undergoing primary and secondary responses to infection in the same host. J Immunol 170(10): 4933–4942

    PubMed  CAS  Google Scholar 

  • Badovinac VP, et al. (2004) CD8+ T cell contraction is controlled by early inflammation. Nat Immunol 5(8): 809–817

    PubMed  CAS  Google Scholar 

  • Badovinac VP, et al. (2005) Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat Med 11(7): 748–756

    PubMed  CAS  Google Scholar 

  • Bancroft GJ, et al. (1989) Tumor necrosis factor is involved in the T cell-independent pathway of macrophage activation in scid mice. J Immunol 143(1): 127–130

    PubMed  CAS  Google Scholar 

  • Bancroft GJ, et al. (1991) Natural immunity: a T-cell-independent pathway of macrophage activation, defined in the scid mouse. Immunol Rev 124: 5–24

    PubMed  CAS  Google Scholar 

  • Bishop DK and Hinrichs DJ (1987) Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J Immunol 139(6): 2005–2009

    PubMed  CAS  Google Scholar 

  • Blattman JN, et al. (2002) Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 195(5): 657–664

    PubMed  CAS  Google Scholar 

  • Bourgeois C, et al. (2002) A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 297(5589): 2060–2063

    PubMed  CAS  Google Scholar 

  • Bourgeois C, et al. (2002) CD8 lethargy in the absence of CD4 help. Eur J Immunol 32(8): 2199–2207

    PubMed  CAS  Google Scholar 

  • Bousso P, et al. (1998) Individual variations in the murine T cell response to a specific peptide reflect variability in naive repertoires. Immunity 9(2): 169–178

    PubMed  CAS  Google Scholar 

  • Bouwer HG, et al. (1997) MHC class Ib-restricted cells contribute to antilisterial immunity: evidence for Qa-1b as a key restricting element for Listeria-specific CTLs. J Immunol 159(6): 2795–2801

    PubMed  CAS  Google Scholar 

  • Bouwer HG, et al. (1999) Existing antilisterial immunity does not inhibit the development of a Listeria monocytogenes-specific primary cytotoxic T-lymphocyte response. Infect Immun 67(1): 253–258

    PubMed  CAS  Google Scholar 

  • Bubert A, et al. (1992) Structural and functional properties of the p60 proteins from different Listeria species. J Bacteriol 174(24): 8166–8171

    PubMed  CAS  Google Scholar 

  • Buchmeier NA and Schreiber RD (1985) Requirement of endogenous interferon-gamma production for resolution of Listeria monocytogenes infection. Proc Natl Acad Sci USA 82(21): 7404–7408

    PubMed  CAS  Google Scholar 

  • Busch DH, et al. (1997) A nonamer peptide derived from Listeria monocytogenes metalloprotease is presented to cytolytic T lymphocytes. Infect Immun 65(12): 5326–5329

    PubMed  CAS  Google Scholar 

  • Busch DH and Pamer EG (1998) MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J Immunol 160(9): 4441–4448

    PubMed  CAS  Google Scholar 

  • Busch DH, et al. (1998a) Evolution of a complex T cell receptor repertoire during primary and recall bacterial infection. J Exp Med 188(1): 61–70

    CAS  Google Scholar 

  • Busch DH, et al. (1998b) Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8(3): 353–362

    CAS  Google Scholar 

  • Busch DH and Pamer EG (1999) T lymphocyte dynamics during Listeria monocytogenes infection. Immunol Lett 65(1–2): 93–98

    PubMed  CAS  Google Scholar 

  • Busch DH and Pamer EG (1999) T cell affinity maturation by selective expansion during infection. J Exp Med 189(4): 701–710

    PubMed  CAS  Google Scholar 

  • Campbell DJ and Shastri N (1998) Bacterial surface proteins recognized by CD4+ T cells during murine infection with Listeria monocytogenes. J Immunol 161(5): 2339–2347

    PubMed  CAS  Google Scholar 

  • Casrouge A, et al. (2000) Size estimate of the alpha beta TCR repertoire of naive mouse splenocytes. J Immunol 164(11): 5782–5787

    PubMed  CAS  Google Scholar 

  • Conlan JW and North RJ (1994) Neutrophils are essential for early anti-Listeria defense in the liver, but not in the spleen or peritoneal cavity, as revealed by a granulocyte-depleting monoclonal antibody. J Exp Med 179(1): 259–268

    PubMed  CAS  Google Scholar 

  • Corbin GA and Harty JT (2004) Duration of infection and antigen display have minimal influence on the kinetics of the CD4+ T cell response to Listeria monocytogenes infection. J Immunol 173(9): 5679–5687

    PubMed  CAS  Google Scholar 

  • Corbin GA and Harty JT (2005) T cells undergo rapid ON/OFF but not ON/OFF/ON cycling of cytokine production in response to antigen. J Immunol 174(2): 718–726

    PubMed  CAS  Google Scholar 

  • Czuprynski CJ and Brown JF (1987) Dual regulation of anti-bacterial resistance and inflammatory neutrophil and macrophage accumulation by L3T4+ and Lyt 2+ Listeria-immune T cells. Immunology 60(2): 287–293

    PubMed  CAS  Google Scholar 

  • D’Orazio SE, et al. (2003) Class Ia MHC-deficient BALB/c mice generate CD8+ T cell-mediated protective immunity against Listeria monocytogenes infection. J Immunol 171(1): 291–298

    PubMed  CAS  Google Scholar 

  • Edelson BT and Unanue ER (2000) Immunity to Listeria infection. Curr Opin Immunol 12(4): 425–431

    PubMed  CAS  Google Scholar 

  • Endres R, et al. (1997) Listeriosis in p47(phox-/-) and TRp55-/- mice: protection despite absence of ROI and susceptibility despite presence of RNI. Immunity 7(3): 419–432

    PubMed  CAS  Google Scholar 

  • Finelli A, et al. (1999) MHC class I restricted T cell responses to Listeria monocytogenes, an intracellular bacterial pathogen. Immunol Res 19(2/3): 211–223

    PubMed  CAS  Google Scholar 

  • Fruh K and Yang Y (1999) Antigen presentation by MHC class I and its regulation by interferon gamma. Curr Opin Immunol 11(1): 76–81

    PubMed  CAS  Google Scholar 

  • Gaillard JL, et al. (1991) Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65: 1127–1141

    CAS  Google Scholar 

  • Geginat G, et al. (1998) Th1 cells specific for a secreted protein of Listeria monocytogenes are protective in vivo. J Immunol 160(12): 6046–6055

    PubMed  CAS  Google Scholar 

  • Geginat G, et al. (1999) Enhancement of the Listeria monocytogenes p60-specific CD4 and CD8 T cell memory by nonpathogenic Listeria innocua. J Immunol 162(8): 4781–4789

    PubMed  CAS  Google Scholar 

  • Geginat G, et al. (2001) A novel approach of direct ex vivo epitope mapping identifies dominant and subdominant CD4 and CD8 T cell epitopes from Listeria monocytogenes. J Immunol 166(3): 1877–1884

    PubMed  CAS  Google Scholar 

  • Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76(2): 287–299

    PubMed  CAS  Google Scholar 

  • Gulden PH, et al. (1996) A Listeria monocytogenes pentapeptide is presented to cytolytic T lymphocytes by the H2-M3 MHC class Ib molecule. Immunity 5(1): 73–79

    PubMed  CAS  Google Scholar 

  • Hamilton SE, et al. (2004) MHC class Ia-restricted memory T cells inhibit expansion of a nonprotective MHC class Ib (H2-M3)-restricted memory response. Nat Immunol 5(2): 159–168

    PubMed  CAS  Google Scholar 

  • Haring JS and Harty JT (2006) Aberrant Contraction of Ag-Specific CD4 T Cells in the Absence of IFN-g or its Receptor. Infect Immun 74(11): 6252–6263

    PubMed  CAS  Google Scholar 

  • Harty JT, et al. (1992) CD8 T cells can protect against an intracellular bacterium in an interferon gamma-independent fashion. Proc Natl Acad Sci U S A 89(23): 11612–11616

    PubMed  CAS  Google Scholar 

  • Harty JT and Bevan MJ (1995) Specific immunity to Listeria monocytogenes in the absence of IFN gamma. Immunity 3(1): 109–117

    PubMed  CAS  Google Scholar 

  • Harty JT and Bevan MJ (1996) CD8 T-cell recognition of macrophages and hepatocytes results in immunity to Listeria monocytogenes. Infect Immun 64(9): 3632–3640

    PubMed  CAS  Google Scholar 

  • Harty JT and Bevan MJ (1999) Responses of CD8(+) T cells to intracellular bacteria. Curr Opin Immunol 11(1): 89–93

    PubMed  CAS  Google Scholar 

  • Harty JT and White D (1999) A knockout approach to understanding CD8+ cell effector mechanisms in adaptive immunity to Listeria monocytogenes. Immunobiology 201(2): 196–204

    PubMed  CAS  Google Scholar 

  • Harty JT, et al. (2000) CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol 18: 275–308

    PubMed  CAS  Google Scholar 

  • Harty JT and Badovinac VP (2002) Influence of effector molecules on the CD8(+) T cell response to infection. Curr Opin Immunol 14(3): 360–365

    PubMed  CAS  Google Scholar 

  • Havell EA (1987) Production of tumor necrosis factor during murine listeriosis. J Immunol 139(12): 4225–4231

    PubMed  CAS  Google Scholar 

  • Heath WR and Carbone FR (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19: 47–64

    PubMed  CAS  Google Scholar 

  • Henninger DD, et al. (1997) Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol 158(4): 1825–1832

    PubMed  CAS  Google Scholar 

  • Hsieh CS, et al. (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260(5107): 547–549

    PubMed  CAS  Google Scholar 

  • Huang S, et al. (1993) Immune response in mice that lack the interferon-gamma receptor. Science 259(5102): 1742–1745

    PubMed  CAS  Google Scholar 

  • Iezzi G, et al. (1998) The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8(1): 89–95

    PubMed  CAS  Google Scholar 

  • Jabbari A and Harty JT (2005) Cutting edge: differential self-peptide/MHC requirement for maintaining CD8 T cell function versus homeostatic proliferation. J Immunol 175(8): 4829–4833

    PubMed  CAS  Google Scholar 

  • Jabbari A and Harty JT (2006) Delayed acquisition of central memory phenotype by secondary memory CD8 T cells while maintaining heightened immunity. J Exp Med 203(4): 919–993

    PubMed  CAS  Google Scholar 

  • Jung S, et al. (2002) In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 17(2): 211–220

    PubMed  CAS  Google Scholar 

  • Kaech SM and Ahmed R (2001) Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol 2(5): 415–422

    PubMed  CAS  Google Scholar 

  • Kaech SM, et al. (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4(12): 1191–1198

    PubMed  CAS  Google Scholar 

  • Kagi D, et al. (1994) CD8+ T cell-mediated protection against an intracellular bacterium by perforin-dependent cytotoxicity. Eur J Immunol 24(12): 3068–3072

    PubMed  CAS  Google Scholar 

  • Kathariou S, et al. (1987) Tn916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes. J Bacteriol 169(3): 1291–1297

    PubMed  CAS  Google Scholar 

  • Kaufmann SH (1988) Which T cells are relevant to resistance against Listeria monocytogenes infection? Adv Exp Med Biol 239: 135–150

    PubMed  CAS  Google Scholar 

  • Kaufmann SH, et al. (1988) Cloned Listeria monocytogenes specific non-MHC-restricted Lyt-2+ T cells with cytolytic and protective activity. J Immunol 140(9): 3173–3179

    PubMed  CAS  Google Scholar 

  • Kaufmann SH and Ladel CH (1994a) Application of knockout mice to the experimental analysis of infections with bacteria and protozoa. Trends Microbiol 2(7): 235–242

    CAS  Google Scholar 

  • Kaufmann SH and Ladel CH (1994b) Role of T cell subsets in immunity against intracellular bacteria: experimental infections of knock-out mice with Listeria monocytogenes and Mycobacterium bovis BCG. Immunobiology 191(4–5): 509–519

    CAS  Google Scholar 

  • Kerksiek KM, et al. (1999) H2-M3-restricted T cells in bacterial infection: rapid primary but diminished memory responses. J Exp Med 190(2): 195–204

    PubMed  CAS  Google Scholar 

  • Kerksiek KM, et al. (2001) Variable immunodominance hierarchies for H2-M3-restricted N-formyl peptides following bacterial infection. J Immunol 166(2): 1132–1140

    PubMed  CAS  Google Scholar 

  • Kerksiek KM, et al. (2003) H2-M3-restricted memory T cells: persistence and activation without expansion. J Immunol 170(4): 1862–1869

    PubMed  CAS  Google Scholar 

  • Kocks C, et al. (1992) L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68(3): 521–531

    PubMed  CAS  Google Scholar 

  • Kondo S and Sauder DN (1997) Tumor necrosis factor (TNF) receptor type 1 (p55) is a main mediator for TNF-alpha-induced skin inflammation. Eur J Immunol 27(7): 1713–1718

    PubMed  CAS  Google Scholar 

  • Ku CC, et al. (2000) Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288(5466): 675–678

    PubMed  CAS  Google Scholar 

  • Lacombe MH, et al. (2005) IL-7 receptor expression levels do not identify CD8+ memory T lymphocyte precursors following peptide immunization. J Immunol 175(7): 4400–4407

    PubMed  CAS  Google Scholar 

  • Ladel CH, et al. (1994) Studies with MHC-deficient knock-out mice reveal impact of both MHC I- and MHC II-dependent T cell responses on Listeria monocytogenes infection. J Immunol 153(7): 3116–3122

    PubMed  CAS  Google Scholar 

  • Lalvani A, et al. (1997) Rapid effector function in CD8+ memory T cells. J Exp Med 186(6): 859–865

    PubMed  CAS  Google Scholar 

  • Lau LL, et al. (1994) Cytotoxic T-cell memory without antigen. Nature 369(6482): 648–652

    PubMed  CAS  Google Scholar 

  • Lecuit M, et al. (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292(5522): 1722–1725

    PubMed  CAS  Google Scholar 

  • Lee BO, et al. (2003) CD40-deficient, influenza-specific CD8 memory T cells develop and function normally in a CD40-sufficient environment. J Exp Med 198(11): 1759–1764

    PubMed  CAS  Google Scholar 

  • Lenz LL, et al. (1996) Identification of an H2-M3-restricted Listeria epitope: implications for antigen presentation by M3. Immunity 5(1): 63–72

    PubMed  CAS  Google Scholar 

  • Lety MA, et al. (2001) Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence in Listeria monocytogenes. Mol Microbiol 39(5): 1124–1139

    PubMed  CAS  Google Scholar 

  • Lieberman J (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3(5): 361–370

    PubMed  CAS  Google Scholar 

  • Ludewig B, et al. (2001) Perforin-independent regulation of dendritic cell homeostasis by CD8(+) T cells in vivo: implications for adaptive immunotherapy. Eur J Immunol 31(6): 1772–1779

    PubMed  CAS  Google Scholar 

  • Lukacs K and Kurlander RJ (1989) MHC-unrestricted transfer of antilisterial immunity by freshly isolated immune CD8 spleen cells. J Immunol 143(11): 3731–3736

    PubMed  CAS  Google Scholar 

  • Lukacs NW, et al. (1994) Intercellular adhesion molecule-1 mediates the expression of monocyte-derived MIP-1 alpha during monocyte-endothelial cell interactions. Blood 83(5): 1174–1178

    PubMed  CAS  Google Scholar 

  • Mackaness GB (1962) Cellular resistance to infection. J Exp Med 116: 381–406

    PubMed  CAS  Google Scholar 

  • Malherbe L, et al. (2004) Clonal selection of helper T cells is determined by an affinity threshold with no further skewing of TCR binding properties. Immunity 21(5): 669–679

    PubMed  CAS  Google Scholar 

  • Marzo AL, et al. (2004) Fully functional memory CD8 T cells in the absence of CD4 T cells. J Immunol 173(2): 969–975

    PubMed  CAS  Google Scholar 

  • McGregor DD, et al. (1970) The short lived small lymphocyte as a mediator of cellular immunity. Nature 228(5274): 855–856

    PubMed  CAS  Google Scholar 

  • Mercado R, et al. (2000) Early programming of T cell populations responding to bacterial infection. J Immunol 165(12): 6833–6839

    PubMed  CAS  Google Scholar 

  • Messingham KA, et al. (2003) Deficient anti-listerial immunity in the absence of perforin can be restored by increasing memory CD8+ T cell numbers. J Immunol 171(8): 4254–4262

    PubMed  CAS  Google Scholar 

  • Miki K and Mackaness GB (1964) The Passive Transfer Of Acquired Resistance To Listeria monocytogenes. J Exp Med 120: 93–103

    PubMed  CAS  Google Scholar 

  • Muraille E, et al. (2005) Distinct in vivo dendritic cell activation by live versus killed Listeria monocytogenes. Eur J Immunol 35(5): 1463–1471

    PubMed  CAS  Google Scholar 

  • Murali-Krishna K, et al. (1999) Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286(5443): 1377–1381

    PubMed  CAS  Google Scholar 

  • Nakane A, et al. (1988) Endogenous tumor necrosis factor (cachectin) is essential to host resistance against Listeria monocytogenes infection. Infect Immun 56(10): 2563–2569

    PubMed  CAS  Google Scholar 

  • Nickol AD and Bonventre PF (1977) Anomalous high native resistance to athymic mice to bacterial pathogens. Infect Immun 18(3): 636–645

    PubMed  CAS  Google Scholar 

  • North RJ (1970) The relative importance of blood monocytes and fixed macrophages to the expression of cell-mediated immunity to infection. J Exp Med 132(3): 521–534

    PubMed  CAS  Google Scholar 

  • North RJ, et al. (1997) Murine listeriosis as a model of antimicrobial defense. Immunol Rev 158: 27–36

    PubMed  CAS  Google Scholar 

  • Obst R, et al. (2005) Antigen persistence is required throughout the expansion phase of a CD4(+) T cell response. J Exp Med 201(10): 1555–1565

    PubMed  CAS  Google Scholar 

  • Opferman JT, et al. (1999) Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283(5408): 1745–1748

    PubMed  CAS  Google Scholar 

  • Pamer E and Cresswell P (1998) Mechanisms of MHC class I-restricted antigen processing. Annu Rev Immunol 16: 323–358

    PubMed  CAS  Google Scholar 

  • Pamer EG, et al. (1991) Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature 353(6347): 852–855

    PubMed  CAS  Google Scholar 

  • Pamer EG, et al. (1992) H-2M3 presents a Listeria monocytogenes peptide to cytotoxic T lymphocytes. Cell 70(2): 215–223

    PubMed  CAS  Google Scholar 

  • Pamer EG (1994) Direct sequence identification and kinetic analysis of an MHC class I-restricted Listeria monocytogenes CTL epitope. J Immunol 152(2): 686–694

    PubMed  CAS  Google Scholar 

  • Pamer EG, et al. (1997) MHC class I antigen processing of Listeria monocytogenes proteins: implications for dominant and subdominant CTL responses. Immunol Rev 158: 129–136

    PubMed  CAS  Google Scholar 

  • Pamer EG (2004) Immune responses to Listeria monocytogenes. Nat Rev Immunol 4(10): 812–823

    PubMed  CAS  Google Scholar 

  • Ploss A, et al. (2003) Promiscuity of MHC class Ib-restricted T cell responses. J Immunol 171(11): 5948–5955

    PubMed  CAS  Google Scholar 

  • Ploss A, et al. (2005) Distinct regulation of H2-M3-restricted memory T cell responses in lymph node and spleen. J Immunol 175(9): 5998–6005

    PubMed  CAS  Google Scholar 

  • Pope C, et al. (2001) Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J Immunol 166(5): 3402–3409

    PubMed  CAS  Google Scholar 

  • Porter BB and Harty JT (2006) The onset of CD8+ T-cell contraction is influenced by the peak of Listeria monocytogenes infection and antigen display. Infect Immun 74(3): 1528–1536

    PubMed  CAS  Google Scholar 

  • Portnoy DA, et al. (1988) Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167(4): 1459–1471

    PubMed  CAS  Google Scholar 

  • Princiotta MF, et al. (1998) H2-M3 restricted presentation of a Listeria-derived leader peptide. J Exp Med 187(10): 1711–1719

    PubMed  CAS  Google Scholar 

  • Rock KL, et al. (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78(5): 761–771

    PubMed  CAS  Google Scholar 

  • Rogers HW and Unanue ER (1993) Neutrophils are involved in acute, nonspecific resistance to Listeria monocytogenes in mice. Infect Immun 61(12): 5090–5096

    PubMed  CAS  Google Scholar 

  • Rothe J, et al. (1993) Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364(6440): 798–802

    PubMed  CAS  Google Scholar 

  • Safley SA, et al. (1991) Role of listeriolysin-O (LLO) in the T lymphocyte response to infection with Listeria monocytogenes. Identification of T cell epitopes of LLO. J Immunol 146(10): 3604–3616

    PubMed  CAS  Google Scholar 

  • Sallusto F, et al. (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754): 708–712

    PubMed  CAS  Google Scholar 

  • Sanderson S, et al. (1995) Identification of a CD4+ T cell-stimulating antigen of pathogenic bacteria by expression cloning. J Exp Med 182(6): 1751–1757

    PubMed  CAS  Google Scholar 

  • Savage PA, et al. (1999) A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10(4): 485–492

    PubMed  CAS  Google Scholar 

  • Schiemann M, et al. (2003) Differences in maintenance of CD8+ and CD4+ bacteria-specific effector-memory T cell populations. Eur J Immunol 33(10): 2875–2885

    PubMed  CAS  Google Scholar 

  • Schlech WF, 3rd (2000) Foodborne listeriosis. Clin Infect Dis 31(3): 770–775

    PubMed  Google Scholar 

  • Seaman MS, et al. (2000) MHC Class Ib-restricted CTL provide protection against primary and secondary Listeria monocytogenes infection. J Immunol 165(9): 5192–5201

    PubMed  CAS  Google Scholar 

  • Serbina NV, et al. (2003) Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19(6): 891–901

    PubMed  CAS  Google Scholar 

  • Sercarz EE, et al. (1993) Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol 11: 729–766

    PubMed  CAS  Google Scholar 

  • Shedlock DJ, et al. (2003) Role of CD4 T cell help and costimulation in CD8 T cell responses during Listeria monocytogenes infection. J Immunol 170(4): 2053–2063

    PubMed  CAS  Google Scholar 

  • Shen H, et al. (1998) Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity. Cell 92(4): 535–545

    PubMed  CAS  Google Scholar 

  • Shen H, et al. (1998) Listeria monocytogenes as a probe to study cell-mediated immunity. Curr Opin Immunol 10(4): 450–458

    PubMed  CAS  Google Scholar 

  • Shiloh MU, et al. (1999) Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10(1): 29–38

    PubMed  CAS  Google Scholar 

  • Sijts AJ, et al. (1996) Two Listeria monocytogenes CTL epitopes are processed from the same antigen with different efficiencies. J Immunol 156(2): 683–692

    PubMed  CAS  Google Scholar 

  • Sixl W, et al. (1978) Epidemiologic and serologic study of listeriosis in man and domestic and wild animals in Austria. J Hyg Epidemiol Microbiol Immunol 22(4): 460–469

    PubMed  CAS  Google Scholar 

  • Skoberne M, et al. (2001) Dynamic antigen presentation patterns of Listeria monocytogenes-derived CD8 T cell epitopes in vivo. J Immunol 167(4): 2209–2218

    PubMed  CAS  Google Scholar 

  • Skoberne M and Geginat G (2002) Efficient in vivo presentation of Listeria monocytogenes-derived CD4 and CD8 T cell epitopes in the absence of IFN-gamma. J Immunol 168(4): 1854–1860

    PubMed  CAS  Google Scholar 

  • Spaner D, et al. (1999) A role for perforin in activation-induced T cell death in vivo: increased expansion of allogeneic perforin-deficient T cells in SCID mice. J Immunol 162(2): 1192–1199

    PubMed  CAS  Google Scholar 

  • Sun JC and Bevan MJ (2003) Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300(5617): 339–342

    PubMed  CAS  Google Scholar 

  • Sun JC, et al. (2004) CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5(9): 927–933

    PubMed  CAS  Google Scholar 

  • Tawab A, et al. (2002) Recombinant lemA without adjuvant induces extensive expansion of H2-M3-restricted CD8 effectors, which can suppress primary listeriosis in mice. Int Immunol 14(2): 225–232

    PubMed  CAS  Google Scholar 

  • Tvinnereim AR, et al. (2004) Neutrophil involvement in cross-priming CD8+ T cell responses to bacterial antigens. J Immunol 173(3): 1994–2002

    PubMed  CAS  Google Scholar 

  • Unanue ER (1997a) Studies in listeriosis show the strong symbiosis between the innate cellular system and the T-cell response. Immunol Rev 158: 11–25

    CAS  Google Scholar 

  • Unanue ER (1997b) Inter-relationship among macrophages, natural killer cells and neutrophils in early stages of Listeria resistance. Curr Opin Immunol 9(1): 35–43

    CAS  Google Scholar 

  • Unanue ER (1997c) Why listeriosis? A perspective on cellular immunity to infection. Immunol Rev 158: 5–9

    CAS  Google Scholar 

  • Urdahl KB, et al. (2002) Positive selection of MHC Class Ib-restricted CD8(+) T cells on hematopoietic cells. Nat Immunol 3(8): 772–779

    PubMed  CAS  Google Scholar 

  • Van Parijs L, et al. (1998) The Fas/Fas ligand pathway and Bcl-2 regulate T cell responses to model self and foreign antigens. Immunity 8(2): 265–274

    PubMed  Google Scholar 

  • Vijh S and Pamer EG (1997) Immunodominant and subdominant CTL responses to Listeria monocytogenes infection. J Immunol 158(7): 3366–3371

    PubMed  CAS  Google Scholar 

  • Wherry EJ, et al. (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4(3): 225–234

    PubMed  CAS  Google Scholar 

  • White DW and Harty JT (1998) Perforin-deficient CD8+ T cells provide immunity to Listeria monocytogenes by a mechanism that is independent of CD95 and IFN-gamma but requires TNF-alpha. J Immunol 160(2): 898–905

    PubMed  CAS  Google Scholar 

  • White DW, et al. (1999) Perforin-deficient CD8+ T cells: in vivo priming and antigen-specific immunity against Listeria monocytogenes. J Immunol 162(2): 980–988

    PubMed  CAS  Google Scholar 

  • White DW, et al. (2000) Adaptive immunity against Listeria monocytogenes in the absence of type I tumor necrosis factor receptor p55. Infect Immun 68(8): 4470–4476

    PubMed  CAS  Google Scholar 

  • Williams MA and Bevan MJ (2004) Shortening the infectious period does not alter expansion of CD8 T cells but diminishes their capacity to differentiate into memory cells. J Immunol 173(11): 6694–6702

    PubMed  CAS  Google Scholar 

  • Wong P and Pamer EG (2001) Cutting edge: antigen-independent CD8 T cell proliferation. J Immunol 166(10): 5864–5868

    PubMed  CAS  Google Scholar 

  • Wong P and Pamer EG (2003) Feedback regulation of pathogen-specific T cell priming. Immunity 18(4): 499–511

    PubMed  CAS  Google Scholar 

  • Wuenscher MD, et al. (1993) The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol 175(11): 3491–3501

    PubMed  CAS  Google Scholar 

  • Yang J, et al. (2006) Perforin-dependent elimination of dendritic cells regulates the expansion of antigen-specific CD8+ T cells in vivo. Proc Natl Acad Sci USA 103(1): 147–152

    PubMed  CAS  Google Scholar 

  • Zammit DJ, et al. (2005) Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22(5): 561–570

    PubMed  CAS  Google Scholar 

  • Zenewicz LA, et al. (2002) Nonsecreted bacterial proteins induce recall CD8 T cell responses but do not serve as protective antigens. J Immunol 169(10): 5805–5812

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Messingham, K.A., Harty, J.T. (2007). Adaptive Immunity to Listeria monocytogenes. In: Goldfine, H., Shen, H. (eds) Listeria monocytogenes: Pathogenesis and Host Response. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49376-3_11

Download citation

Publish with us

Policies and ethics