Skip to main content

Kidney and Bladder Cancer

  • Chapter
  • First Online:
Book cover Nuclear Oncology

Abstract

Urothelial cancer consists of tumors of the bladder, ureters, and renal pelvis. Bladder cancer accounts for ∼ 4% of all cancers in the USA (∼ 70,000 cases), while cancers of the renal pelvis and ureters occur in 5,400 patients. Renal cell carcinoma occurs in about 53,000 adults. The most common histological subtype of bladder cancer is transitional cell while the common cell types for renal cell cancer are clear cell, papillary, and chromophobe. Twenty-five to thirty percent of patients are asymptomatic, and the primary lesion is found on incidental imaging studies. The most common presentations are hematuria, flank pain, and palpable mass in the flank or abdomen. However, symptoms usually appear when the tumor is large and metastatic.

Preoperative imaging in renal cell carcinoma is used to differentiate benign from malignant lesions, to assess tumor size, location, and organ confinement, to identify lymph node and/or visceral metastases, and to determine the presence and extent of any thrombus of the vena cava. CT is widely used to differentiate benign lesions, such as renal oncocytoma and angiomyolipoma, from malignant lesions but also for tumor staging (local invasiveness, lymph node involvement, or other metastases).

MRI may be used when contrast allergy, functional renal impairment, and pregnancy are present. However, CT and MRI perform relatively poorly in N-staging.

[18F]FDG PET is not used in the detection of primary RCC mainly because of the high rate of false-negative results, but it is effective in both staging and restaging of renal cell carcinoma and especially for the identification of visceral and bone metastases. [18F]-FDG PET/CT appears to be an effective surveillance tool in high-risk renal cell carcinomas to develop recurrences or metastases. [18F]FDG PET/CT is useful for the early evaluation of response to antiangiogenesis therapy in metastatic renal cell carcinoma.

Larger studies are needed to evaluate the role of [11C]acetate, 18F-MISO, 18F-fluorothymidine, and 124I-cG250 in renal cell carcinoma. A promising alternative to conventional therapy is targeted tumor therapy with chimeric antibodies such as 131I-cG250 or 177Lu-DOTA-cG250.

Bladder cancer is the most common cancer of the urinary system. Transitional cell carcinoma (TCC) is by far the most common epithelial tumor of the bladder. Painless microscopic or gross hematuria is usually the initial symptom. The standard method of diagnosing bladder cancer continues to be based on direct visualization of the bladder with cystoscopy and subsequent biopsy/resection. Cystoscopy and biopsy reveal the tumor’s cell type, grade, and depth of invasion. As regards imaging, MRI is superior to CT for assessing depth of bladder wall infiltration while CT and MRI yield similar results in demonstrating invasion of perivesical structures. MR imaging is considered to be the modality of choice for primary staging. CT and MRI reliably detect lymph node enlargement within the pelvis and abdomen in patients with bladder cancer, although microscopic metastatic disease can be missed. MRI with lymphatic contrast agents may improve nodal staging. Both conventional abdominal/pelvic CT and computed tomography urography (CTU), which may be combined with chest CT, can be performed to detect distant metastases. Because of urinary excretion of [18F]FDG, detection of primary tumor in the urinary bladder is difficult. The pooled activity in the urinary bladder makes the evaluation of bladder wall lesions impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouchelouche K, Oehr P. Positron emission tomography and ­positron emission tomography/computerized tomography of ­urological malignancies: an update review. J Urol. 2008;179:34–45.

    Article  PubMed  CAS  Google Scholar 

  2. Larson SM, Schoder H. Advances in positron emission tomography applications for urologic cancers. Curr Opin Urol. 2008;18:65–70.

    Article  PubMed  Google Scholar 

  3. Bouchelouche K, Oehr P. Recent developments in urologic oncology: positron emission tomography molecular imaging. Curr Opin Oncol. 2008;20:321–6.

    Article  PubMed  CAS  Google Scholar 

  4. Jana S, Blaufox MD. Nuclear medicine studies of the prostate, testes, and bladder. Semin Nucl Med. 2006;36:51–72.

    Article  PubMed  Google Scholar 

  5. Powles T, Murray I, Brock C, Oliver T, Avril N. Molecular positron emission tomography and PET/CT imaging in urological malignancies. Eur Urol. 2007;51:1511–20.

    Article  PubMed  Google Scholar 

  6. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.

    Article  PubMed  Google Scholar 

  7. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373(9669):1119–32.

    Article  PubMed  CAS  Google Scholar 

  8. Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev. 2008;34:193–205.

    Article  PubMed  Google Scholar 

  9. Rini BI, Campbell SC, Rathmell WK. Renal cell carcinoma. Curr Opin Oncol. 2006;18:289–96.

    Article  PubMed  Google Scholar 

  10. Rathmell WK, Martz CA, Rini BI. Renal cell carcinoma. Curr Opin Oncol. 2007;19:234–40.

    Article  PubMed  Google Scholar 

  11. Chow WH, Devesa SS, Warren JL, Fraumeni Jr JF. Rising ­incidence of renal cell cancer in the United States. JAMA. 1999;281:1628–31.

    Article  PubMed  CAS  Google Scholar 

  12. Rini BI, Rathmell WK, Godley P. Renal cell carcinoma. Curr Opin Oncol. 2008;20:300–6.

    Article  PubMed  Google Scholar 

  13. Lipworth L, Tarone RE, McLaughlin JK. The epidemiology of renal cell carcinoma. J Urol. 2006;176(6 Pt 1):2353–8.

    Article  PubMed  Google Scholar 

  14. Hollingsworth JM, Miller DC, Daignault S, Hollenbeck BK. Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst. 2006;98:1331–4.

    Article  PubMed  Google Scholar 

  15. Lane BR, Samplaski MK, Herts BR, Zhou M, Novick AC, Campbell SC. Renal mass biopsy—a renaissance? J Urol. 2008;179:20–7.

    Article  PubMed  Google Scholar 

  16. Bolton DM, Wong P, Lawrentschuk N. Renal cell carcinoma: imaging and therapy. Curr Opin Urol. 2007;17:337–40.

    Article  PubMed  Google Scholar 

  17. Lerner SE, Hawkins CA, Blute ML, et al. Disease outcome in patients with low stage renal cell carcinoma treated with nephron sparing or radical surgery. J Urol. 1996;155:1868–73.

    Article  PubMed  CAS  Google Scholar 

  18. Mouraviev V, Joniau S, Van PH, Polascik TJ. Current status of minimally invasive ablative techniques in the treatment of small renal tumours. Eur Urol. 2007;51:328–36.

    Article  PubMed  Google Scholar 

  19. Margulis V, Sanchez-Ortiz RF, Tamboli P, Cohen DD, Swanson DA, Wood CG. Renal cell carcinoma clinically involving adjacent organs: experience with aggressive surgical management. Cancer. 2007;109:2025–30.

    Article  PubMed  Google Scholar 

  20. Motzer RJ, Russo P. Systemic therapy for renal cell carcinoma. J Urol. 2000;163:408–17.

    Article  PubMed  CAS  Google Scholar 

  21. Coppin C, Porzsolt F, Awa A, Kumpf J, Coldman A, Wilt T. Immunotherapy for advanced renal cell cancer. Cochrane Database Syst Rev. 2005;CD001425.

    Google Scholar 

  22. Fisher RI, Rosenberg SA, Fyfe G. Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am. 2000;6 Suppl 1:S55–7.

    PubMed  Google Scholar 

  23. Garcia JA, Cowey CL, Godley PA. Renal cell carcinoma. Curr Opin Oncol. 2009;21:266–71.

    Article  PubMed  CAS  Google Scholar 

  24. Nikken JJ, Krestin GP. MRI of the kidney-state of the art. Eur Radiol. 2007;17:2780–93.

    Article  PubMed  CAS  Google Scholar 

  25. Greene FL, Compton CC, Fritz AG, Shah JP, Winchester DP. AJCC cancer staging atlas. Berlin: Springer; 2006.

    Book  Google Scholar 

  26. Mueller-Lisse UG, Mueller-Lisse UL, Meindl T, et al. Staging of renal cell carcinoma. Eur Radiol. 2007;17:2268–77.

    Article  PubMed  Google Scholar 

  27. Chawla SN, Crispen PL, Hanlon AL, Greenberg RE, Chen DY, Uzzo RG. The natural history of observed enhancing renal masses: meta-analysis and review of the world literature. J Urol. 2006;175:425–31.

    Article  PubMed  Google Scholar 

  28. Heidenreich A, Ravery V. Preoperative imaging in renal cell cancer. World J Urol. 2004;22:307–15.

    Article  PubMed  Google Scholar 

  29. Kim JK, Kim TK, Ahn HJ, Kim CS, Kim KR, Cho KS. Differentiation of subtypes of renal cell carcinoma on helical CT scans. AJR Am J Roentgenol. 2002;178:1499–506.

    PubMed  Google Scholar 

  30. Aslam Sohaib SA, Teh J, Nargund VH, Lumley JS, Hendry WF, Reznek RH. Assessment of tumor invasion of the vena caval wall in renal cell carcinoma cases by magnetic resonance imaging. J Urol. 2002;167:1271–5.

    Article  PubMed  CAS  Google Scholar 

  31. Ramdave S, Thomas GW, Berlangieri SU, et al. Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Urol. 2001;166:825–30.

    Article  PubMed  CAS  Google Scholar 

  32. Aide N, Cappele O, Bottet P, et al. Efficiency of [18F]FDG PET in characterising renal cancer and detecting distant metastases: a comparison with CT. Eur J Nucl Med Mol Imaging. 2003;30:1236–45.

    Article  PubMed  Google Scholar 

  33. Ak I, Can C. F-18 [18F]FDG PET in detecting renal cell carcinoma. Acta Radiol. 2005;46:895–9.

    Article  PubMed  CAS  Google Scholar 

  34. Bachor R, Kotzerke J, Gottfried HW, Brandle E, Reske SN, Hautmann R. Positron emission tomography in diagnosis of renal cell carcinoma. Urologe A. 1996;35:146–50.

    PubMed  CAS  Google Scholar 

  35. Montravers F, Grahek D, Kerrou K, et al. Evaluation of [18F]FDG uptake by renal malignancies (primary tumor or metastases) using a coincidence detection gamma camera. J Nucl Med. 2000;41:78–84.

    PubMed  CAS  Google Scholar 

  36. Kang DE, White Jr RL, Zuger JH, Sasser HC, Teigland CM. Clinical use of fluorodeoxyglucose F18 positron emission ­tomography for detection of renal cell carcinoma. J Urol. 2004;171:1806–9.

    Article  PubMed  Google Scholar 

  37. Fanti S, Nanni C, Ambrosini V, Gross MD, Rubello D, Farsad M. PET in genitourinary tract cancers. Q J Nucl Med Mol Imaging. 2007;51:260–71.

    PubMed  CAS  Google Scholar 

  38. de Llano Martinez SR, Delgado-Bolton RC, Jimenez-Vicioso A, et al. Meta-analysis of the diagnostic performance of [18F]FDG PET in renal cell carcinoma. Rev Esp Med Nucl. 2007;26:19-–29.

    Article  Google Scholar 

  39. Safaei A, Figlin R, Hoh CK, et al. The usefulness of F-18 deoxyglucose whole-body positron emission tomography (PET) for re-staging of renal cell cancer. Clin Nephrol. 2002;57:56–62.

    PubMed  CAS  Google Scholar 

  40. Jadvar H, Kherbache HM, Pinski JK, Conti PS. Diagnostic role of [F-18]-FDG positron emission tomography in restaging renal cell carcinoma. Clin Nephrol. 2003;60:395–400.

    PubMed  CAS  Google Scholar 

  41. Dilhuydy MS, Durieux A, Pariente A, et al. PET scans for decision-making in metastatic renal cell carcinoma: a single-institution evaluation. Oncology. 2006;70:339–44.

    Article  PubMed  CAS  Google Scholar 

  42. Park JW, Jo MK, Lee HM. Significance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for the postoperative surveillance of advanced renal cell carcinoma. BJU Int. 2009;103:615–9.

    Article  PubMed  Google Scholar 

  43. Vercellino L, Bousquet G, Baillet G, et al. [18F]FDG PET/CT imaging for an early assessment of response to sunitinib in metastatic renal carcinoma: preliminary study. Cancer Biother Radiopharm. 2009;24:137–44.

    Article  PubMed  CAS  Google Scholar 

  44. Oyama N, Okazawa H, Kusukawa N, et al. 11C acetate PET imaging for renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2009;36:422–7.

    Article  PubMed  Google Scholar 

  45. Shreve P, Chiao PC, Humes HD, Schwaiger M, Gross MD. Carbon-11-acetate PET imaging in renal disease. J Nucl Med. 1995;36:1595–601.

    PubMed  CAS  Google Scholar 

  46. Kotzerke J, Linne C, Meinhardt M, et al. [1-11C]acetate uptake is not increased in renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2007;34:884–8.

    Article  PubMed  CAS  Google Scholar 

  47. Lawrentschuk N, Poon AM, Foo SS, et al. Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int. 2005;96:540–6.

    Article  PubMed  Google Scholar 

  48. Lawrentschuk N, Poon AM, Scott AM. Fluorine-18 fluorothymidine: a new positron emission radioisotope for renal tumors. Clin Nucl Med. 2006;31:788–9.

    Article  PubMed  Google Scholar 

  49. Wong P, Bolton DM, Lee STLN, Davis ID, Scott AM. In-vivo imaging of cellular proliferation in renal cell carcinoma using 18F-FLT PET. J Urol. 2009;181 Suppl 4:155.

    Article  Google Scholar 

  50. Oosterwijk E, Ruiter DJ, Hoedemaeker PJ, et al. Monoclonal ­antibody G 250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer. 1986;38:489–94.

    Article  PubMed  CAS  Google Scholar 

  51. Stillebroer AB, Oosterwijk E, Oyen WJ, Mulders PF, Boerman OC. Radiolabeled antibodies in renal cell carcinoma. Cancer Imaging. 2007;7:179–88.

    Article  PubMed  Google Scholar 

  52. Oosterwijk E. Carbonic anhydrase IX: historical and future perspectives. BJU Int. 2008;101 Suppl 4:2–7.

    Article  PubMed  CAS  Google Scholar 

  53. Jensen HK, Nordsmark M, Donskov F, Marcussen N, von der MH. Immunohistochemical expression of carbonic anhydrase IX assessed over time and during treatment in renal cell carcinoma. BJU Int. 2008;101 Suppl 4:41–4.

    Article  PubMed  CAS  Google Scholar 

  54. Pastorekova S, Ratcliffe PJ, Pastorek J. Molecular mechanisms of carbonic anhydrase IX-mediated pH regulation under hypoxia. BJU Int. 2008;101 Suppl 4:8–15.

    Article  PubMed  CAS  Google Scholar 

  55. Belldegrun AS, Bevan P. Carbonic anhydrase IX: role in diagnosis prognosis and cancer therapy. Introduction. BJU Int. 2008;101 Suppl 4:1.

    Article  PubMed  Google Scholar 

  56. Shuch B, Li Z, Belldegrun AS. Carbonic anhydrase IX and renal cell carcinoma: prognosis, response to systemic therapy, and future vaccine strategies. BJU Int. 2008;101 Suppl 4:25–30.

    Article  PubMed  CAS  Google Scholar 

  57. Brouwers A, Verel I, Van EJ, et al. PET radioimmunoscintigraphy of renal cell cancer using 89Zr-labeled cG250 monoclonal ­antibody in nude rats. Cancer Biother Radiopharm. 2004;19:155–63.

    Article  PubMed  CAS  Google Scholar 

  58. Divgi CR, Pandit-Taskar N, Jungbluth AA, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 2007;8:304–10.

    Article  PubMed  CAS  Google Scholar 

  59. Brissette R, Prendergast JK, Goldstein NI. Identification of cancer targets and therapeutics using phage display. Curr Opin Drug Discov Devel. 2006;9:363–9.

    PubMed  CAS  Google Scholar 

  60. Boerman OC, Koppe MJ, Postema EJ, Corstens FH, Oyen WJ. Radionuclide therapy of cancer with radiolabeled antibodies. Anticancer Agents Med Chem. 2007;7:335–43.

    Article  PubMed  CAS  Google Scholar 

  61. Wangler C, Buchmann I, Eisenhut M, Haberkorn U, Mier W. Radiolabeled peptides and proteins in cancer therapy. Protein Pept Lett. 2007;14:273–9.

    Article  PubMed  Google Scholar 

  62. Tolmachev V. Choice of radionuclides and radiolabelling techniques. In: Stigbrand T, Carlsson J, Adams GP, editors. Targeted radionuclide tumor therapy. New York: Springer; 2008. p. 145–74.

    Chapter  Google Scholar 

  63. Divgi CR, Bander NH, Scott AM, et al. Phase I/II radioimmunotherapy trial with iodine-131-labeled monoclonal antibody G250 in metastatic renal cell carcinoma. Clin Cancer Res. 1998;4:2729–39.

    PubMed  CAS  Google Scholar 

  64. Steffens MG, Boerman OC, Oosterwijk-Wakka JC, et al. Targeting of renal cell carcinoma with iodine-131-labeled chimeric monoclonal antibody G250. J Clin Oncol. 1997;15:1529–37.

    PubMed  CAS  Google Scholar 

  65. Brouwers AH, Mulders PF, de Mulder PH, et al. Lack of efficacy of two consecutive treatments of radioimmunotherapy with 131I-cG250 in patients with metastasized clear cell renal cell carcinoma. J Clin Oncol. 2005;23:6540–8.

    Article  PubMed  CAS  Google Scholar 

  66. Divgi CR, O’Donoghue JA, Welt S, et al. Phase I clinical trial with fractionated radioimmunotherapy using 131I-labeled chimeric G250 in metastatic renal cancer. J Nucl Med. 2004;45:1412–21.

    PubMed  CAS  Google Scholar 

  67. Steffens MG, Boerman OC, de Mulder PH, et al. Phase I radioimmunotherapy of metastatic renal cell carcinoma with 131I-labeled chimeric monoclonal antibody G250. Clin Cancer Res. 1999;5 Suppl 10:3268s–74.

    PubMed  CAS  Google Scholar 

  68. Brouwers AH, van Eerd JE, Frielink C, et al. Optimization of radioimmunotherapy of renal cell carcinoma: labeling of monoclonal antibody cG250 with 131I, 90Y, 177Lu, or 186Re. J Nucl Med. 2004;45:327–37.

    PubMed  CAS  Google Scholar 

  69. Stillebroer AB, Oosterwijk E, Mulders PF, Oyen WJ, Boerman O. Radioimmunotherapy with luthetium-177 labeled monoclonal antibody cG250 in patients with advanced renal cell carcinoma. Cancer Biother Radiopharm. 2008;23:523–4.

    Google Scholar 

  70. Kaufman DS, Shipley WU, Feldman AS. Bladder cancer. Lancet. 2009;374(9685):239–49.

    Article  PubMed  CAS  Google Scholar 

  71. Botteman MF, Pashos CL, Redaelli A, Laskin B, Hauser R. The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoeconomics. 2003;21:1315–30.

    Article  PubMed  Google Scholar 

  72. Parkin DM. The global burden of urinary bladder cancer. Scand J Urol Nephrol Suppl. 2008;218:12–20.

    Article  PubMed  Google Scholar 

  73. Beyersdorff D, Zhang J, Schoder H, Bochner B, Hricak H. Bladder cancer: can imaging change patient management? Curr Opin Urol. 2008;18:98–104.

    Article  PubMed  Google Scholar 

  74. Kirkali Z, Chan T, Manoharan M, et al. Bladder cancer: epidemiology, staging and grading, and diagnosis. In: Soloway M, Carmack A, Khoury S, editors. Bladder tumors. Paris: Health Publications Ltd; 2006. p. 15–64.

    Google Scholar 

  75. Barocas DA, Clark PE. Bladder cancer. Curr Opin Oncol. 2008;20:307–14.

    Article  PubMed  Google Scholar 

  76. Bischoff CJ, Clark PE. Bladder cancer. Curr Opin Oncol. 2009;21:272–7.

    Article  PubMed  CAS  Google Scholar 

  77. Grossman HB, Gomella L, Fradet Y, et al. A phase III, multicenter comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of superficial papillary lesions in patients with bladder cancer. J Urol. 2007;178:62–7.

    Article  PubMed  Google Scholar 

  78. Fradet Y, Grossman HB, Gomella L, et al. A comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of carcinoma in situ in patients with bladder cancer: a phase III, multicenter study. J Urol. 2007;178:68–73.

    Article  PubMed  Google Scholar 

  79. Vikram R, Sandler CM, Ng CS. Imaging and staging of transitional cell carcinoma: part 1, lower urinary tract. AJR Am J Roentgenol. 2009;192:1481–7.

    Article  PubMed  Google Scholar 

  80. van Rhijn BW, van der Poel HG, van der Kwast TH. Urine markers for bladder cancer surveillance: a systematic review. Eur Urol. 2005;47:736–48.

    Article  PubMed  CAS  Google Scholar 

  81. Hall MC, Chang SS, Dalbagni G, et al. Guideline for the management of nonmuscle invasive bladder cancer (stages Ta, T1, and Tis): 2007 update. J Urol. 2007;178:2314–30.

    Article  PubMed  Google Scholar 

  82. Babjuk M, Oosterlinck W, Sylvester R, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder. Eur Urol. 2008;54:303–14.

    Google Scholar 

  83. Han RF, Pan JG. Can intravesical bacillus Calmette-Guerin reduce recurrence in patients with superficial bladder cancer? A meta-analysis of randomized trials. Urology. 2006;67:1216–23.

    Article  PubMed  Google Scholar 

  84. Stein JP, Lieskovsky G, Cote R, et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol. 2001;19:666–75.

    PubMed  CAS  Google Scholar 

  85. Winquist E, Kirchner TS, Segal R, Chin J, Lukka H. Neoadjuvant chemotherapy for transitional cell carcinoma of the bladder: a systematic review and meta-analysis. J Urol. 2004;171(2 Pt 1):561–9.

    Article  PubMed  CAS  Google Scholar 

  86. Vaughn DJ, Malkowicz SB. Neoadjuvant chemotherapy in patients with invasive bladder cancer. Urol Clin North Am. 2005;32:231–7.

    Article  PubMed  Google Scholar 

  87. MacVicar AD. Bladder cancer staging. BJU Int. 2000;86 Suppl 1:111–22.

    PubMed  Google Scholar 

  88. Tsakiris P, de la Rosette J. Imaging in genitourinary cancer from the urologists’ perspective. Cancer Imaging. 2007;7:84–92.

    Article  PubMed  CAS  Google Scholar 

  89. Knox MK, Cowan NC, Rivers-Bowerman MD, Turney BW. Evaluation of multidetector computed tomography urography and ultrasonography for diagnosing bladder cancer. Clin Radiol. 2008;63:1317–25.

    Article  PubMed  CAS  Google Scholar 

  90. Sadow CA, Silverman SG, O’Leary MP, Signorovitch JE. Bladder cancer detection with CT urography in an Academic Medical Center. Radiology. 2008;249:195–202.

    Article  PubMed  Google Scholar 

  91. Zhang J, Gerst S, Lefkowitz RA, Bach A. Imaging of bladder cancer. Radiol Clin North Am. 2007;45:183–205.

    Article  PubMed  Google Scholar 

  92. Setty BN, Holalkere NS, Sahani DV, Uppot RN, Harisinghani M, Blake MA. State-of-the-art cross-sectional imaging in bladder cancer. Curr Probl Diagn Radiol. 2007;36:83–96.

    Article  PubMed  Google Scholar 

  93. Deserno WM, Harisinghani MG, Taupitz M, et al. Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology. 2004;233:449–56.

    Article  PubMed  Google Scholar 

  94. Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491–9.

    Article  PubMed  Google Scholar 

  95. Knap MM, Lundbeck F, Overgaard J. Prognostic factors, pattern of recurrence and survival in a Danish bladder cancer cohort treated with radical cystectomy. Acta Oncol. 2003;42:160–8.

    Article  PubMed  Google Scholar 

  96. Kim JK, Park SY, Ahn HJ, Kim CS, Cho KS. Bladder cancer: analysis of multi-detector row helical CT enhancement pattern and accuracy in tumor detection and perivesical staging. Radiology. 2004;231:725–31.

    Article  PubMed  Google Scholar 

  97. Tekes A, Kamel I, Imam K, et al. Dynamic MRI of bladder cancer: evaluation of staging accuracy. AJR Am J Roentgenol. 2005;184:121–7.

    PubMed  Google Scholar 

  98. Harney JV, Wahl RL, Liebert M, et al. Uptake of 2-deoxy, 2-18F fluoro-d-glucose in bladder cancer: animal localization and initial patient positron emission tomography. J Urol. 1991;145:279–83.

    PubMed  CAS  Google Scholar 

  99. Drieskens O, Oyen R, Van Poppel H, Vankan Y, Flamen P, Mortelmans L. [18F]FDG-PET for preoperative staging of bladder cancer. Eur J Nucl Med Mol Imaging. 2005;32:1412–7.

    Article  PubMed  CAS  Google Scholar 

  100. Liu IJ, Lai YH, Espiritu JI, et al. Evaluation of fluorodeoxyglucose positron emission tomography imaging in metastatic transitional cell carcinoma with and without prior chemotherapy. Urol Int. 2006;77:69–75.

    Article  PubMed  Google Scholar 

  101. Kosuda S, Kison PV, Greenough R, Grossman HB, Wahl RL. Preliminary assessment of fluorine-18 fluorodeoxyglucose positron emission tomography in patients with bladder cancer. Eur J Nucl Med. 1997;24:615–20.

    PubMed  CAS  Google Scholar 

  102. Bachor R, Kotzerke J, Reske SN, Hautmann R. Lymph node staging of bladder neck carcinoma with positron emission tomography. Urologe A. 1999;38:46–50.

    Article  PubMed  CAS  Google Scholar 

  103. Heicappell R, Muller-Mattheis V, Reinhardt M, et al. Staging of pelvic lymph nodes in neoplasms of the bladder and prostate by positron emission tomography with 2-[18F]-2-deoxy-d-glucose. Eur Urol. 1999;36:582–7.

    Article  PubMed  CAS  Google Scholar 

  104. Jadvar H, Quan V, Henderson RW, Conti PS. [F-18]-Fluorodeoxyglucose PET and PET-CT in diagnostic imaging evaluation of locally recurrent and metastatic bladder transitional cell carcinoma. Int J Clin Oncol. 2008;13:42–7.

    Article  PubMed  Google Scholar 

  105. Swinnen G, Maes A, Pottel H, et al. [18F]FDG-PET/CT for the ­preoperative lymph node staging of invasive bladder cancer. Eur Urol. 2010;57:641–7.

    Google Scholar 

  106. Anjos DA, Etchebehere EC, Ramos CD, Santos AO, Albertotti C, Camargo EE. 18F-FDG PET/CT delayed images after diuretic for restaging invasive bladder cancer. J Nucl Med. 2007;48:764–70.

    Article  PubMed  Google Scholar 

  107. Kamel EM, Jichlinski P, Prior JO, et al. Forced diuresis improves the diagnostic accuracy of [18F]-FDG PET in abdominopelvic malignancies. J Nucl Med. 2006;47:1803–7.

    PubMed  CAS  Google Scholar 

  108. Jensen T, Holt P, Gerke O, et al. Comparison of [18F]FDG PET/CT and MRI for N-staging of urothelial bladder cancer: correlation with histopathologic findings. Urology. 2008;72(Suppl 5A):S111.

    Article  Google Scholar 

  109. Kibel AS, Dehdashti F, Katz MD, et al. Prospective study of [18F]fluorodeoxyglucose positron emission tomography/­computed tomography for staging of muscle-invasive bladder carcinoma. J Clin Oncol. 2009;27:4314–20.

    Article  PubMed  Google Scholar 

  110. Kubota R, Kubota K, Yamada S, et al. Methionine uptake by tumor tissue: a microautoradiographic comparison with [18F]FDG. J Nucl Med. 1995;36:484–92.

    PubMed  CAS  Google Scholar 

  111. Ahlstrom H, Malmstrom PU, Letocha H, Andersson J, Langstrom B, Nilsson S. Positron emission tomography in the diagnosis and staging of urinary bladder cancer. Acta Radiol. 1996;37:180–5.

    PubMed  CAS  Google Scholar 

  112. Letocha H, Ahlstrom H, Malmstrom PU, Westlin JE, Fasth KJ, Nilsson S. Positron emission tomography with L-methyl-11C-methionine in the monitoring of therapy response in muscle-invasive transitional cell carcinoma of the urinary bladder. Br J Urol. 1994;74:767–74.

    Article  PubMed  CAS  Google Scholar 

  113. de Jong IJ, Pruim J, Elsinga PH, Jongen MM, Mensink HJ, Vaalburg W. Visualisation of bladder cancer using 11C-choline PET: first clinical experience. Eur J Nucl Med Mol Imaging. 2002;29:1283–8.

    Article  PubMed  CAS  Google Scholar 

  114. Picchio M, Treiber U, Beer AJ, et al. Value of 11C-choline PET and contrast-enhanced CT for staging of bladder cancer: correlation with histopathologic findings. J Nucl Med. 2006;47:938–44.

    PubMed  CAS  Google Scholar 

  115. Gofrit ON, Mishani E, Orevi M, et al. Contribution of 11C-choline positron emission tomography/computerized tomography to preoperative staging of advanced transitional cell carcinoma. J Urol. 2006;176:940–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Bouchelouche MD, DMSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bouchelouche, K. (2013). Kidney and Bladder Cancer. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics