Skip to main content

Colorectal Cancer

  • Chapter
  • First Online:
Nuclear Oncology

Abstract

Colorectal cancer is the third most common neoplastic disease (50–60% overall survival at 5 years); 90–95% of colorectal cancers are adenocarcinoma. In addition to whether the tumor is well differentiated or poorly differentiated histologically, the extent of the primary tumor at diagnosis, expressed by local and lymph node invasion, is the most important prognostic factor. Two staging classifications for colorectal cancer are available [Dukes’ classification and the TNM stage system by the American Joint Committee on Cancer/International Union Against Cancer (AJCC/UICC)].

Contrast-enhanced computed tomography (CECT) of the chest, abdomen, and pelvis is used in pretreatment staging. Because of the high incidence of disease recurrence (30–40%), morphological imaging (CT, abdominal ultrasound) and serial measurements of serum markers [carcinoembryonic antigen (CEA)] are used in the follow-up. The use of [18F]FDG-PET for early detection of primary colorectal cancer is limited due to the low sensitivity for small tumors and the low sensitivity for mucinous lesions. False-positive PET findings are also reported in patients with inflammatory bowel disease (IBD) or previous diagnostic polipectomy. Although [18F]FDG PET is more sensitive than CT in detecting regional lymph node involvement, CT is better at detecting liver metastases. As a result, the role of [18F]FDG PET-CT for presurgical staging is unclear. [18F]FDG-PET is useful as a complementary exam in selected patients with a high metastatic potential.

During restaging and follow-up whole body [18F]FDG-PET is recommended to localize recurrent disease in cases of elevated serum CEA and negative morphological imaging findings or indeterminate lesions at conventional morphological imaging. Combined PET/CT tomography improved the accuracy of the evaluation of colorectal cancer, especially in the visualization of abdomino-pelvic extrahepatic disease.

[18F]FDG-PET may be useful to evaluate response to chemotherapy, although the optimum timing of the assessment of metabolic response remains unsettled. Moreover, new drugs targeted to angiogenesis or tyrosine kinase have opened new frontiers to the use of [18F]FDG-PET in evaluating response because of their cytostatic rather than cytoreductive effect. Evaluation of response to radiotherapy in rectal cancer, that may be very difficult by anatomic imaging alone because residual tissue persists after irradiation, can be done by [18F]FDG-PET which can detect residual active disease and assess complete/incomplete metabolic response. Finally, [18F]FDG-PET has been proposed in the evaluation of response to local treatment of liver and lung metastases by radiofrequency ablation (RFA). In unresectable liver metastases and advanced liver burden, radioembolization treatment with microspheres labeled with 90Y is becoming a valid alternative to chemoembolization and RFA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shike M, Winawer SJ, Greenwald PH, et al. Primary prevention of colorectal cancer. The WHO collaborating centre for the prevention of colorectal cancer. Bull World Health Organ. 1990;68:377–85.

    PubMed  CAS  Google Scholar 

  2. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56:106–30.

    PubMed  Google Scholar 

  3. American Cancer Society. Cancer facts and figures 2009. Atlanta: American Cancer Society; 2009.

    Google Scholar 

  4. Phillips RKS, Hittinger R, Blesovsky L, et al. Large bowel cancer: surgical pathology and its relationship to survival. Br J Surg. 1984;71:604.

    PubMed  CAS  Google Scholar 

  5. Fretwell V, Ang C, Tweedle E, et al. The impact of lymph node yield on Duke’s B and C colorectal cancer survival. Colorectal Dis. 2010;12:995–1000.

    PubMed  CAS  Google Scholar 

  6. International Union against Cancer. TNM classification of malignant tumors. 4th ed. Berlin: Springer; 1987.

    Google Scholar 

  7. American Joint Committee on Cancer. Manual for staging cancer. 3rd ed. Philadelphia: JB Lippincott; 1988. p. 75.

    Google Scholar 

  8. Compton C, Fenoglio-Preiser CM, Pettigrew N, et al. American joint committee on cancer prognostic factors consensus conference: colorectal working group. Cancer. 2000;88:1739–57.

    PubMed  CAS  Google Scholar 

  9. Le Voyer TE, Sigurdson ER, Hanlon AL, et al. Colon cancer ­survival is associated with increasing number of lymph nodes ­analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol. 2003;21:2912–9.

    PubMed  Google Scholar 

  10. Chang GJ, Rodriguez-Bigas MA, Skibber JM, et al. Lymph node evaluation and survival after curative resection of colon cancer: ­systematic review. J Natl Cancer Inst. 2007;99:433–41.

    PubMed  Google Scholar 

  11. Coverlizza S, Risio M, Ferrari A, et al. Colorectal adenomas ­containing invasive carcinoma. Pathologic assessment of lymph node metastatic potential. Cancer. 1989;64:1937–47.

    PubMed  CAS  Google Scholar 

  12. Shepherd NA, Baxter KJ, Love SB. The prognostic importance of peritoneal involvement in colonic cancer: a prospective evaluation. Gastroenterology. 1997;112:1096–102.

    PubMed  CAS  Google Scholar 

  13. Moerkerk P, Arends JW, van Driel M, et al. Type and number of Ki-ras point mutations relate to stage of human colorectal cancer. Cancer Res. 1994;54:3376–8.

    PubMed  CAS  Google Scholar 

  14. Johnston PG, Lenz HJ, Leichman CG, et al. Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res. 1995;55:1407–12.

    PubMed  CAS  Google Scholar 

  15. Nemunaitis J, Cox J, Meyer W, et al. Irinotecan hydrochloride (CPT-11) resistance identified by K-ras mutation in patients with progressive colon cancer after treatment with 5-fluorouracil (5-FU). Am J Clin Oncol. 1997;20:527–9.

    PubMed  CAS  Google Scholar 

  16. Yamachika T, Nakanishi H, Inada K, et al. A new prognostic factor for colorectal carcinoma, thymidylate synthase, and its therapeutic significance. Cancer. 1998;82:70–7.

    PubMed  CAS  Google Scholar 

  17. Ahnen DJ, Feigl P, Quan G, et al. Ki-ras mutation and p53 overexpression predict the clinical behavior of colorectal cancer: a Southwest Oncology Group study. Cancer Res. 1998;58:1149–58.

    PubMed  CAS  Google Scholar 

  18. Chau I, Cunningham D. Treatment in advanced colorectal cancer: what, when and how? Br J Cancer. 2009;100:1704–19.

    PubMed  CAS  Google Scholar 

  19. Arnoletti JP, Bland KI. Neoadjuvant and adjuvant therapy for rectal cancer. Surg Oncol Clin N Am. 2006;15:147–57.

    PubMed  Google Scholar 

  20. Glynne-Jones R, Grainger J, Harrison M, Ostler P, Makris A. Neoadjuvant chemotherapy prior to preoperative chemoradiation or radiation in rectal cancer: should we be more cautious? Br J Cancer. 2006;94:363–71.

    PubMed  CAS  Google Scholar 

  21. Huguier M, Houry S, Barrier A. Local recurrence of cancer of the rectum. Am J Surg. 2001;182:437–9.

    PubMed  CAS  Google Scholar 

  22. Reske SN, Kotzerke J. [18F]FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, “Onko-PET III”, 21 July and 19 September 2000. Eur J Nucl Med. 2001;28:1707–23.

    PubMed  CAS  Google Scholar 

  23. Jerusalem G, Hustinx R, Beguin Y, et al. PET scan imaging in oncology. Eur J Cancer. 2003;39:1525–34.

    PubMed  CAS  Google Scholar 

  24. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231:305–32.

    PubMed  Google Scholar 

  25. ASR Regione Emilia Romagna. Indicazioni all’utilizzo della [18F]FDG-PET in oncologia. Analisi critica della letteratura scientifica. Dossier N. 124/2006. 5 Giugno 2006.

    Google Scholar 

  26. Abdel-Nabi H, Doerr RJ, Lamonica DM, et al. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology. 1998;206:755–60.

    PubMed  CAS  Google Scholar 

  27. Kantorova I, Lipska L, Belohlavek O, et al. Routine 18F-FDG PET in preoperative staging of colorectal cancer: comparison with conventional staging and its impact on treatment decision making. J Nucl Med. 2003;44:1784–8.

    PubMed  Google Scholar 

  28. Furukawa H, Ikuma H, Seki A, et al. Positron emission tomography scanning is not superior to whole body multidetector helical computed tomography in the preoperative staging of colorectal cancer. Gut. 2006;55:1007–11.

    PubMed  CAS  Google Scholar 

  29. Whiteford MH, Whiteford HM, Yee LF, et al. Usefulness of [18F]FDG-PET scan in the assessment of suspected metastatic or recurrent adenocarcinoma of the colon and rectum. Dis Colon Rectum. 2000;43:759–67.

    PubMed  CAS  Google Scholar 

  30. Mukai M, Sadahiro S, Yasuda S, et al. Preoperative evaluation by whole-body 18F-fluorodeoxyglucose positron emission tomography in patients with primary colorectal cancer. Oncol Rep. 2000;7:86–7.

    Google Scholar 

  31. Heriot AG, Hicks RJ, Drummond EG, et al. Does positron emission tomography change management in primary rectal cancer? A prospective assessment. Dis Colon Rectum. 2004;47:451–8.

    PubMed  Google Scholar 

  32. Gearhart SL, Frassica D, Rosen R, et al. Improved staging with pretreatment positron emission tomography/computed tomography in low rectal cancer. Ann Surg Oncol. 2006;13:397–404.

    PubMed  Google Scholar 

  33. Bassi MC, Turri L, Sacchetti G, et al. [18F]FDG-PET/CT imaging for staging and target volume delineation in preoperative conformal radiotherapy of rectal cancer. Int J Radiat Oncol Biol Phys. 2008;70:1423–6.

    PubMed  Google Scholar 

  34. Davey K, Heriot AG, Mackay J, et al. The impact of 18-fluorodeoxyglucose positron emission tomography-computed tomography on the staging and management of primary rectal ­cancer. Dis Colon Rectum. 2008;51:997–1003.

    PubMed  CAS  Google Scholar 

  35. Vriens D, de Geus-Oei LF, van der Graaf WT, et al. Tailoring therapy in colorectal cancer by PET-CT. Q J Nucl Med Mol Imaging. 2009;53:224–44.

    PubMed  CAS  Google Scholar 

  36. Flanagan FL, Dehdashti F, Ogunbiyi OA, et al. Utility of [18F]FDG-PET for investigating unexplained plasma CEA elevation in patients with colorectal cancer. Ann Surg. 1998;227:319–23.

    PubMed  CAS  Google Scholar 

  37. Flamen P, Hoekstra OS, Homans F, et al. Unexplained rising carcinoembryonic antigen (CEA) in the postoperative surveillance of colorectal cancer: the utility of positron emission tomography (PET). Eur J Cancer. 2001;37:862–9.

    PubMed  CAS  Google Scholar 

  38. Valk PE, Abella-Columna E, Haseman MK, et al. Whole-body PET imaging with [18F]fluorodeoxyglucose in management of recurrent colorectal cancer. Arch Surg. 1999;134:503–11.

    PubMed  CAS  Google Scholar 

  39. Simó M, Lomeña F, Setoain J, et al. [18F]FDG-PET improves the management of patients with suspected recurrence of colorectal cancer. Nucl Med Commun. 2002;23:975–82.

    PubMed  Google Scholar 

  40. Shen YY, Liang JA, Chen YK, et al. Clinical impact of 18F-FDG-PET in the suspicion of recurrent colorectal cancer based on asymptomatically elevated serum level of carcinoembryonic antigen (CEA) in Taiwan. Hepatogastroenterology. 2006;53:348–50.

    PubMed  Google Scholar 

  41. Beets G, Penninckx F, Schiepers C, et al. Clinical value of whole-body positron emission tomography with [18F]fluorodeoxyglucose in recurrent colorectal cancer. Br J Surg. 1994;81:1666–70.

    PubMed  CAS  Google Scholar 

  42. Schiepers C, Penninckx F, De Vadder N, et al. Contribution of PET in the diagnosis of recurrent colorectal cancer: comparison with conventional imaging. Eur J Surg Oncol. 1995;21:517–22.

    PubMed  CAS  Google Scholar 

  43. Ogunbiyi OA, Flanagan FL, Dehdashti F, et al. Detection of recurrent and metastatic colorectal cancer: comparison of positron emission tomography and computed tomography. Ann Surg Oncol. 1997;4:613–20.

    PubMed  CAS  Google Scholar 

  44. Kalff V, Hicks RJ, Ware RE, et al. The clinical impact of 18F-FDG PET in patients with suspected or confirmed recurrence of ­colorectal cancer: a prospective study. J Nucl Med. 2002;43:492–9.

    PubMed  Google Scholar 

  45. Flamen P, Stroobants S, Van Cutsem E, et al. Additional value of whole-body positron emission tomography with fluorine-18-2-fluoro-2-deoxy-d-glucose in recurrent colorectal cancer. J Clin Oncol. 1999;17:894–901.

    PubMed  CAS  Google Scholar 

  46. Even-Sapir E, Parag Y, Lerman H, et al. Detection of recurrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection. Radiology. 2004;232:815–22.

    PubMed  Google Scholar 

  47. Huebner RH, Park KC, Shepherd JE, et al. A meta-analysis of the literature for whole-body [18F]FDG PET detection of recurrent colorectal cancer. J Nucl Med. 2000;41:1177–89.

    PubMed  CAS  Google Scholar 

  48. Truant S, Huglo D, Hebbar M, et al. Prospective evaluation of the impact of [18F]fluoro-2-deoxy-d-glucose positron emission tomography of resectable colorectal liver metastases. Br J Surg. 2005;92:362–9.

    PubMed  CAS  Google Scholar 

  49. Kinkel K, Lu Y, Both M, et al. Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology. 2002;224:748–56.

    PubMed  Google Scholar 

  50. Sobhani I, Tiret E, Lebtahi R, et al. Early detection of recurrence by 18FDG-PET in the follow-up of patients with colorectal cancer. Br J Cancer. 2008;98:875–80.

    PubMed  CAS  Google Scholar 

  51. Lai DT, Fulham M, Stephen MS, et al. The role of whole-body positron emission tomography with [18F]fluorodeoxyglucose in identifying operable colorectal cancer metastases to the liver. Arch Surg. 1996;131:703–7.

    PubMed  CAS  Google Scholar 

  52. Topal B, Flamen P, Aerts R, et al. Clinical value of whole-body emission tomography in potentially curable colorectal liver metastases. Eur J Surg Oncol. 2001;27:175–9.

    PubMed  CAS  Google Scholar 

  53. Ruers TJ, Langenhoff BS, Neeleman N, et al. Value of positron emission tomography with [F-18]fluorodeoxyglucose in patients with colorectal liver metastases: a prospective study. J Clin Oncol. 2002;20:388–95.

    PubMed  CAS  Google Scholar 

  54. Selzner M, Hany TF, Wildbrett P, et al. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg. 2004;240:1027–34.

    PubMed  Google Scholar 

  55. Wiering B, Krabbe PF, Jager GJ, et al. The impact of fluor-18-deoxyglucose-positron emission tomography in the management of colorectal liver metastases. Cancer. 2005;104:2658–70.

    PubMed  Google Scholar 

  56. von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: ­current applications and future directions. Radiology. 2006;238:405–22.

    Google Scholar 

  57. Kim JH, Czernin J, Allen-Auerbach MS, et al. Comparison between 18F-FDG PET, in-line PET/CT, and software fusion for restaging of recurrent colorectal cancer. J Nucl Med. 2005;46:587–95.

    PubMed  Google Scholar 

  58. Pelosi E, Messa C, Sironi S, et al. Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging. 2004;31:932–9.

    PubMed  Google Scholar 

  59. Cohade C, Osman M, Leal J, et al. Direct comparison of 18F-FDG PET and PET/CT in patients with colorectal carcinoma. J Nucl Med. 2003;44:1797–803.

    PubMed  Google Scholar 

  60. Vogel WV, Wiering B, Corstens FH, et al. Colorectal cancer: the role of PET/CT in recurrence. Cancer Imaging. 2005;23(5 Suppl):S143–9.

    Google Scholar 

  61. Messa C, Bettinardi V, Picchio M, et al. PET/CT in diagnostic oncology. Q J Nucl Med Mol Imaging. 2004;48:66–75.

    PubMed  CAS  Google Scholar 

  62. Crippa F, Gavazzi C, Bozzetti F, et al. The influence of blood glucose levels on [18F]fluorodeoxyglucose (FDG) uptake in cancer: a PET study in liver metastases from colorectal carcinomas. Tumori. 1997;83:748–52.

    PubMed  CAS  Google Scholar 

  63. Akhurst T, Kates TJ, Mazumdar M, et al. Recent chemotherapy reduces the sensitivity of [18F]fluorodeoxyglucose positron emission tomography in the detection of colorectal metastases. J Clin Oncol. 2005;23:8713–6.

    PubMed  Google Scholar 

  64. Wahl R, Jacene H, Kasamon Y, et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50.

    PubMed  CAS  Google Scholar 

  65. Kostakoglu L, Coleman M, Leonard JP, et al. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med. 2002;43:1018–27.

    PubMed  Google Scholar 

  66. Gallamini A, Rigacci L, Merli F, et al. The predictive value of positron emission tomography scanning performed after two courses of standard therapy on treatment outcome in advanced stage Hodgkin’s disease. Haematologica. 2006;91:475–81.

    PubMed  Google Scholar 

  67. Jerusalem G, Hustinx R, Beguin Y, et al. Evaluation of therapy for lymphoma. Semin Nucl Med. 2005;35:186–96.

    PubMed  Google Scholar 

  68. Mac Manus MP, Hicks RJ, Matthews JP, et al. Positron emission tomography is superior to computed tomography scanning for response assessment after radical radiotherapy or chemoradiotherapy in patients with non small cell lung cancer. J Clin Oncol. 2003;21:1285–92.

    PubMed  Google Scholar 

  69. Hicks RJ. The role of PET monitoring therapy. Cancer Imaging. 2005;5:51–7.

    PubMed  Google Scholar 

  70. Duong CP, Hicks RJ, Wheil L, et al. [18F]FDG PET status following chemo-radiotherapy provides high management impact and ­powerful prognostic stratification in oesophageal cancer. Eur J Nucl Med Mol Imaging. 2006;33:770–8.

    PubMed  Google Scholar 

  71. Kalff V, Duong C, Drummond EG, et al. Findings on 18F-FDG PET scans after neoadjuvant chemoradiation provides prognostic stratification in patients with locally advanced rectal carcinoma subsequently treated by radical surgery. J Nucl Med. 2006;47:14–22.

    PubMed  Google Scholar 

  72. Shankar LK, Hoffman JM, Bacharach S, et al. Consensus recommendations for the use of 18F-FDG as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med. 2006;47:1059–66.

    PubMed  CAS  Google Scholar 

  73. Weber WA, Ott K, Becker K, et al. Prediction of response to ­preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol. 2001;19:3058–65.

    PubMed  CAS  Google Scholar 

  74. Prior JO, Montemurro M, Orcurto MV, et al. Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. J Clin Oncol. 2009;27:439–45.

    PubMed  CAS  Google Scholar 

  75. Avril N, Sassen S, Schmalfeldt B, et al. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol. 2005;23:7445–53.

    PubMed  Google Scholar 

  76. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25:571–8.

    PubMed  Google Scholar 

  77. Stokkel MP, Draisma A, Pauwels EK. Positron emission tomography with 2-[18F]-fluoro-2-deoxy-d-glucose in oncology. Part IIIb: therapy response monitoring in colorectal and lung tumours, head and neck cancer, hepatocellular carcinoma and sarcoma. J Cancer Res Clin Oncol. 2001;127:278–85.

    PubMed  CAS  Google Scholar 

  78. Rau B, Hunerbein M, Barth C, et al. Accuracy of endorectal ultrasound after pre operative radiochemotherapy in locally advanced rectal cancer. Surg Endosc. 1999;13:980–4.

    PubMed  CAS  Google Scholar 

  79. Kwok H, Bisset IP, Hill GL. Preoperative staging of rectal cancer. Int J Colorectal Dis. 2000;15:9–20.

    PubMed  CAS  Google Scholar 

  80. Bipat S, Glas AS, Slors FJ, et al. Rectal cancer: local staging and assessment of lymph nodes involvement with endoluminal US, CT and MR imaging-a metanalysis. Radiology. 2004;232:773–83.

    PubMed  Google Scholar 

  81. Melton GB, Lavely WC, Jacene HA, et al. Efficacy of preoperative combined 18-fluorodeoxyglucose positron emission tomography and computed tomography for assessing primary rectal cancer response to neoadjuvant therapy. J Gastrointest Surg. 2007;11:961–9.

    PubMed  Google Scholar 

  82. Amthauer H, Denecke T, Rau B, et al. Response prediction by [18F]FDG-PET after neoadjuvant radiochemotherapy and combined regional hyperthermia of rectal cancer: correlation with endorectal ultrasound and histopathology. Eur J Nucl Med Mol Imaging. 2004;31:811–9.

    PubMed  Google Scholar 

  83. Guillem JG, Moore HG, Akhurst T, et al. Sequential preoperative fluorodeoxyglucose-positron emission tomography assessment of response to preoperative chemoradiation: a means for determining long-term outcome of rectal cancer. J Am Coll Surg. 2004;199:1–7.

    PubMed  Google Scholar 

  84. Kristiansen C, Loft A, Berthelsen AK, et al. PET/CT and histopathologic response to preoperative chemoradiation therapy in locally advanced rectal cancer. Dis Colon Rectum. 2008;51:21–5.

    PubMed  Google Scholar 

  85. Konski A, Li T, Sigurdson E, et al. Use of molecular imaging to predict clinical outcome in patients with rectal cancer after preoperative chemotherapy and radiation. Int J Radiat Oncol Biol Phys. 2009;74:55–9.

    PubMed  CAS  Google Scholar 

  86. Calvo FA, Domper M, Matute R, et al. 18F-FDG positron emission tomography staging and restaging in rectal cancer treated with ­preoperative chemoradiation. Int J Radiat Oncol Biol Phys. 2004;58:528–35.

    PubMed  Google Scholar 

  87. Riedl CC, Akhurst T, Larson S, et al. 18F-FDG PET scanning correlates with tissue markers of poor prognosis and predict mortality for patients after liver resection for colorectal metastases. J Nucl Med. 2007;48:771–5.

    PubMed  Google Scholar 

  88. Findlay M, Young H, Cunningham D, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumour response to fluorouracil. J Clin Oncol. 1996;14:700–8.

    PubMed  CAS  Google Scholar 

  89. Bender H, Bangard N, Metten N, et al. Possible role of [18F]FDG-PET in the early prediction of therapy outcome in liver metastases of colorectal cancer. Hybridoma. 1999;18:87–91.

    PubMed  CAS  Google Scholar 

  90. Dimitrakopoulou-Strauss A, Strauss LG, Rudi J. PET-FDG as a predictor of therapy response in patients with colorectal carcinoma. Q J Nucl Med. 2003;47:8–13.

    PubMed  CAS  Google Scholar 

  91. Dimitrakopoulou-Strauss A, Strauss LG, Burger C, et al. Prognostic aspect of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med. 2004;45:1480–7.

    PubMed  CAS  Google Scholar 

  92. De Gesus Oei LF, van Laarhoven HW, Visser EP, et al. Chemotherapy response evaluation with [18F]FDG PET in patients with colorectal cancer. Ann Oncol. 2007;19:348–52.

    Google Scholar 

  93. De Gesus Oei LF, Vriens D, van Laarhoven WM, van der Graaf WTA, Oyen W. Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med. 2009;50:43S–52.

    Google Scholar 

  94. Funaioli C, Pinto C, Di Fabio F, et al. 18FDG-PET evaluation correlates better than CT with pathological response in a metastatic colon cancer patient treated with bevacizumab-based therapy. Tumori. 2007;93:611–5.

    PubMed  Google Scholar 

  95. Brandi G, Nannini M, Pantaleo MA, et al. Molecular imaging ­suggests efficacy of bevacizumab beyond the second line in advanced colorectal cancer patients. Chemotherapy. 2008;54:421–4.

    PubMed  CAS  Google Scholar 

  96. Langenhoff BS, Oyen WJ, Jager GJ, et al. Efficacy of fluorine-18-deoxyglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J Clin Oncol. 2002;20:4453–8.

    PubMed  CAS  Google Scholar 

  97. Donckier V, Van Laethem JL, Goldman S, et al. F-18 fluorodeoxyglucose positron emission tomography as a tool for early recognition of incomplete tumor destruction after radiofrequency ablation of liver metastases. J Surg Oncol. 2003;84:215–23.

    PubMed  Google Scholar 

  98. Joosten J, Jager G, Oyen W, et al. Cryosurgery and radiofrequency ablation for unresectable colorectal liver metastases. Eur J Surg Oncol. 2005;31:1152–9.

    PubMed  CAS  Google Scholar 

  99. Veit P, Antoch G, Stergar H, et al. Detection of residual tumor after radiofrequency ablation of liver metastasis with dual modality PET/CT: initial results. Eur Radiol. 2006;16:80–7.

    PubMed  Google Scholar 

  100. Denecke T, Steffen I, Hildebrandt B, et al. Assessment of local control after lase-induced thermotherapy of liver metastases from colorectal cancer: contribution of [18F]FDG PET in patients with clinical suspicion of progressive disease. Acta Radiol. 2007;48:821–30.

    PubMed  CAS  Google Scholar 

  101. Nestle U, Kremp S, Grosu AL. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol. 2006;81:209–25.

    PubMed  CAS  Google Scholar 

  102. Grégoire V, Haustermans K, Geets X, et al. PET-based treatment planning in radiotherapy: a new standard? J Nucl Med. 2007;48 Suppl 1:68S–77.

    PubMed  Google Scholar 

  103. MacManus M, Nestle U, Rosenzweig KE, et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol. 2009;91:85–94.

    PubMed  Google Scholar 

  104. Ciernik IF, Huser M, Burger C, et al. Automated functional ­image-guided radiation treatment planning for rectal cancer. Int J Radiat Oncol Biol Phys. 2005;62:893–900.

    PubMed  Google Scholar 

  105. Whitney R, Tatum C, Hahl M, et al. Safety of hepatic resection in metastatic disease to the liver after yttrium-90 therapy. J Surg Res. 2011;166:236–40.

    PubMed  Google Scholar 

  106. Bienert M, McCook B, Carr BI, et al. 90Y microsphere treatment of unresectable liver metastases: changes in 18F-FDG uptake and tumour size on PET/CT. Eur J Nucl Med Mol Imaging. 2005;32:778–87.

    PubMed  CAS  Google Scholar 

  107. Wong CY, Salem R, Raman S, et al. Evaluating 90Y-glass ­microsphere treatment response of unresectable colorectal liver metastases by [18F]FDG PET: a comparison with CT or MRI. Eur J Nucl Med Mol Imaging. 2002;29:815–20.

    PubMed  CAS  Google Scholar 

  108. Murthy R, Xiong H, Nunez R, et al. Yttrium 90 resin microspheres for the treatment of unresectable colorectal hepatic metastases after failure of multiple chemotherapy regimens: preliminary results. J Vasc Interv Radiol. 2005;16:937–45.

    PubMed  Google Scholar 

  109. Sharma RA, Van Hazel GA, Morgan B, et al. Radioembolization of liver metastases from colorectal cancer using yttrium-90 ­microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J Clin Oncol. 2007;25:1099–106.

    PubMed  CAS  Google Scholar 

  110. Van Hazel G, Blackwell A, Anderson J, et al. Randomised phase 2 trial of SIR-Spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol. 2004;88:78–85.

    PubMed  Google Scholar 

  111. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1,000 patients. Eur J Nucl Med. 1993;20:716–31.

    PubMed  CAS  Google Scholar 

  112. Chiti A, Fanti S, Savelli G, Romeo A, et al. Comparison of ­somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastro-entero-pancreatic tumours. Eur J Nucl Med. 1998;25:1396–403.

    PubMed  CAS  Google Scholar 

  113. Lebtahi R, Cadiot G, Sarda L, et al. Clinical impact of somatostatin receptor scintigraphy in the management of patients with neuroendocrine gastroenteropancreatic tumors. J Nucl Med. 1997;38:853–8.

    PubMed  CAS  Google Scholar 

  114. Hoegerle S, Altehoefer C, Ghanem N, et al. Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology. 2001;220:373–80.

    PubMed  CAS  Google Scholar 

  115. Orlefors H, Sundin A, Garske U, et al. Whole-body 11C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab. 2005;90:3392–400.

    PubMed  CAS  Google Scholar 

  116. Montravers F, Grahek D, Kerrou K, et al. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors. J Nucl Med. 2006;47:1455–62.

    PubMed  CAS  Google Scholar 

  117. Ambrosini V, Tomassetti P, Castellucci P, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35:1431–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ettore Pelosi MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pelosi, E., Deandreis, D. (2013). Colorectal Cancer. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics