Skip to main content

Neuroendocrine Tumors

  • Chapter
  • First Online:
Book cover Nuclear Oncology

Abstract

Neuroendocrine tumors (NETs) originate from single or clustered neuroendocrine cells, distributed in the gastrointestinal tract, urogenital tract, endocrine, and bronchopulmonary system. NETs account for approximately 2.2% of all malignancies. These slow growing tumors are difficult to localize and often metastatic at diagnosis. Surgery can be curative in only 20% of cases. A syndrome of flushing, diarrhea, sweating, and bronchospasm due to secretion of multiple hormones (carcinoid syndrome) occurs in 20% of patients. Most NETs are sporadic, but occasionally, they may be part of inherited syndromes, known as multiple endocrine neoplasia type 1 and 2 (MEN1 and MEN2). The European Neuroendocrine Tumor Society diagnostic and prognostic stratification criteria are based on histological typing, differentiation, grading, and TNM staging. Immunostaining for the neuroendocrine markers synaptophysin and chromogranin and for the proliferation marker Ki67/MIB1 is mandatory, while immunostaining for hormones, receptors, and other markers is optional. The grading proposal stratifies tumors in G1 (1 mitotic count/10 HPF, Ki67≤2%), G2 (2–20 mitotic counts/10 HPF, Ki67: 3–20%), and G3 (mitotic count >20/10 HPF, Ki67 > 20%). The tumor grading, together with histopathology type and staging, reflects the potential metastatic spread and, therefore, has an impact on the therapy options (surgery, biotherapy, and chemotherapy). CT, MRI, and radionuclide imaging of somatostatin receptor expression or catecholamine uptake is helpful to localize the lesions. Somatostatin receptor imaging utilizes 111In-pentetreotide (OctreoScan®), or 68Ga-octreotide, while catecholamine uptake is usually imaged with 123I-metaiodobenzylguanidine (131I-MIBG). [18F]FDG PET/CT is less useful than somatostatin/catecholamine receptor imaging. Main indications for radionuclide imaging of NETs are for localization (also as a guide to surgery), for staging, for assessing response to therapy, and for selecting patients for possible therapy with radiolabeled somatostatin analogues or with 131I-MIBG. Peptide receptor radionuclide therapy (PRRT) uses high doses of radiolabeled peptides to treat unresectable or metastasized NETs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langley K. The neuroendocrine concept today. Ann N Y Acad Sci. 1994;733:1–17.

    Article  PubMed  CAS  Google Scholar 

  2. Pearse AG. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem. 1969;17:303–13.

    Article  PubMed  CAS  Google Scholar 

  3. Kloppel G. Oberndorfer and his successors: from carcinoid to neuroendocrine carcinoma. Endocr Pathol. 2007;18:141–4.

    Article  PubMed  Google Scholar 

  4. Polak JM, Bloom SR. The diffuse neuroendocrine system. Studies of this newly discovered controlling system in health and disease. J Histochem Cytochem. 1979;27:1398–400.

    Article  PubMed  CAS  Google Scholar 

  5. Polak JM, Bloom SR. Regulatory peptides of the gastrointestinal and respiratory tracts. Arch Int Pharmacodyn Ther. 1986;280:16–49.

    PubMed  CAS  Google Scholar 

  6. Rehfeld JF. The new biology of gastrointestinal hormones. Physiol Rev. 1998;78:1087–108.

    PubMed  CAS  Google Scholar 

  7. Day R, Salzet M. The neuroendocrine phenotype, cellular plasticity, and the search for genetic switches: redefining the diffuse neuroendocrine system. Neuro Endocrinol Lett. 2002;23:447–51.

    PubMed  Google Scholar 

  8. Barakat MT, Meeran K, Bloom SR. Neuroendocrine tumours. Endocr Relat Cancer. 2004;11:1–18.

    Article  PubMed  CAS  Google Scholar 

  9. Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003;97:934–59.

    Article  PubMed  Google Scholar 

  10. Maggard MA, O’Connell JB, Ko CY. Updated population-based review of carcinoid tumors. Ann Surg. 2004;240:117–22.

    Article  PubMed  Google Scholar 

  11. Beard CM, Sheps SG, Kurland LT, et al. Occurrence of pheochromocytoma in Rochester, Minnesota, 1950 through 1979. Mayo Clin Proc. 1983;58:802–4.

    PubMed  CAS  Google Scholar 

  12. Mittendorf EA, Evans DB, Lee JE, et al. Pheochromocytoma: advances in genetics, diagnosis, localization, and treatment. Hematol Oncol Clin North Am. 2007;21:509–25. ix.

    Article  PubMed  Google Scholar 

  13. DeLellis R, Lloyd R, Heitz P, et al. World Health Organization classification of tumours, pathology and genetics of tumours of endocrine organs. Lyon: IARC Press; 2004.

    Google Scholar 

  14. Solcia E, Capella C, Klöppel G, et al. Endocrine tumours of the gastrointestinal tract. In: Solcia E, Klöppel G, Sobin L, editors. Histologic typing of endocrine tumours, WHO International Histological Classification of Tumours. New York: Springer; 2000. p. 57–77.

    Chapter  Google Scholar 

  15. Rindi G. The ENETs guidelines: the new TNM classification ­system. Tumori. 2010;96:806–9.

    PubMed  Google Scholar 

  16. Kloppel G, Couvelard A, Perren A, et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: towards a standardized approach to the diagnosis of gastroenteropancreatic neuroendocrine tumors and their prognostic stratification. Neuroendocrinology. 2009;90:162–6.

    Article  PubMed  CAS  Google Scholar 

  17. Bajetta E, Catena L, Procopio G, et al. Is the new WHO classification of neuroendocrine tumours useful for selecting an appropriate treatment? Ann Oncol. 2005;16:1374–80.

    Article  PubMed  CAS  Google Scholar 

  18. Beasley MB, Brambilla E, Travis WD. The 2004 World Health Organization classification of lung tumors. Semin Roentgenol. 2005;40:90–7.

    Article  PubMed  Google Scholar 

  19. Travis W, Colby T, Corrin B, et al. Histological typing of lung and pleural tumours, WHO International Histological Classification of Tumours. Berlin: Springer; 1999.

    Book  Google Scholar 

  20. Goldstein RE, O’Neill Jr JA, Holcomb 3rd GW, et al. Clinical experience over 48 years with pheochromocytoma. Ann Surg. 1999;229:755–64. discussion 764–6.

    Article  PubMed  CAS  Google Scholar 

  21. Wu D, Tischler AS, Lloyd RV, et al. Observer variation in the application of the Pheochromocytoma of the Adrenal Gland Scaled Score. Am J Surg Pathol. 2009;33:599–608.

    Article  PubMed  Google Scholar 

  22. Ilias I, Pacak K. A clinical overview of pheochromocytomas/paragangliomas and carcinoid tumors. Nucl Med Biol. 2008;35 Suppl 1:S27–34.

    Article  PubMed  CAS  Google Scholar 

  23. Amar L, Bertherat J, Baudin E, et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol. 2005;23:8812–8.

    Article  PubMed  CAS  Google Scholar 

  24. Brouwers FM, Eisenhofer G, Tao JJ, et al. High frequency of SDHB germline mutations in patients with malignant catecholamine-producing paragangliomas: implications for genetic testing. J Clin Endocrinol Metab. 2006;91:4505–9.

    Article  PubMed  CAS  Google Scholar 

  25. Chrisoulidou A, Kaltsas G, Ilias I, et al. The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr Relat Cancer. 2007;14:569–85.

    Article  PubMed  CAS  Google Scholar 

  26. Elder EE, Elder G, Larsson C. Pheochromocytoma and functional paraganglioma syndrome: no longer the 10% tumor. J Surg Oncol. 2005;89:193–201.

    Article  PubMed  Google Scholar 

  27. Faiss S, Scherubl H, Riecken EO, et al. Drug therapy in metastatic neuroendocrine tumors of the gastroenteropancreatic system. Recent Results Cancer Res (Fortschritte der Krebsforschung). 1996;142:193–207.

    Article  CAS  Google Scholar 

  28. Sundin A, Vullierme MP, Kaltsas G, et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: radiological examinations. Neuroendocrinology. 2009;90:167–83.

    Article  PubMed  CAS  Google Scholar 

  29. Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9:61–72.

    Article  PubMed  CAS  Google Scholar 

  30. Daddi N, Urbani M, Semeraro A, et al. Surgical treatment of well differentiated neuroendocrine tumours of the lung. G Chir. 2008;29:246–9.

    PubMed  CAS  Google Scholar 

  31. Ferolla P, Faggiano A, Avenia N, et al. Epidemiology of non-­gastroenteropancreatic (neuro)endocrine tumours. Clin Endocrinol. 2007;66:1–6.

    CAS  Google Scholar 

  32. Fink G, Krelbaum T, Yellin A, et al. Pulmonary carcinoid: presentation, diagnosis, and outcome in 142 cases in Israel and review of 640 cases from the literature. Chest. 2001;119:1647–51.

    Article  PubMed  CAS  Google Scholar 

  33. Lenders JW, Eisenhofer G, Mannelli M, et al. Phaeochromocytoma. Lancet. 2005;366:665–75.

    Article  PubMed  Google Scholar 

  34. Giovanella L, Ceriani L, Lumastro C, et al. False-positive serum chromogranin A assay due to heterophile antibody interference. Clin Chim Acta. 2007;379:171–2.

    Article  CAS  Google Scholar 

  35. Stridsberg M, Oberg K, Li Q, et al. Measurements of chromogranin A, chromogranin B (secretogranin I), chromogranin C ­(secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. J Endocrinol. 1995;144:49–59.

    Article  PubMed  CAS  Google Scholar 

  36. Turner GB, Johnston BT, McCance DR, et al. Circulating markers of prognosis and response to treatment in patients with midgut carcinoid tumours. Gut. 2006;55:1586–91.

    Article  PubMed  CAS  Google Scholar 

  37. Grossman A, Pacak K, Sawka A, et al. Biochemical diagnosis and localization of pheochromocytoma: can we reach a consensus? Ann N Y Acad Sci. 2006;1073:332–47.

    Article  PubMed  CAS  Google Scholar 

  38. Boomsma F, Bhaggoe UM, Man in ’t Veld AJ, et al. Sensitivity and specificity of a new ELISA method for determination of chromogranin A in the diagnosis of pheochromocytoma and neuroblastoma. Clin Chim Acta (International Journal of Clinical Chemistry). 1995;239:57–63.

    Article  CAS  Google Scholar 

  39. Eisenhofer G, Goldstein DS, Walther MM, et al. Biochemical diagnosis of pheochromocytoma: how to distinguish true- from false-positive test results. J Clin Endocrinol Metab. 2003;88:2656–66.

    Article  PubMed  CAS  Google Scholar 

  40. Mankoff DA, Eary JF, Link JM, et al. Tumor-specific positron emission tomography imaging in patients: [18F] fluorodeoxyglucose and beyond. Clin Cancer Res. 2007;13:3460–9.

    Article  PubMed  CAS  Google Scholar 

  41. Lewington VJ, Clarke SE. Isotopic evaluation and therapy in patients with malignant endocrine disease. Best Pract Res Clin Endocrinol Metab. 2001;15:225–39.

    Article  PubMed  CAS  Google Scholar 

  42. Wong F, Kim E. Peptide receptor imaging. In: Kim E, Yang D, editors. Targeted molecular imaging in oncology. New York: Springer; 2001. p. 102–10.

    Google Scholar 

  43. Buetow PC, Parrino TV, Buck JL, et al. Islet cell tumors of the pancreas: pathologic-imaging correlation among size, necrosis and cysts, calcification, malignant behavior, and functional status. AJR Am J Roentgenol. 1995;165:1175–9.

    PubMed  CAS  Google Scholar 

  44. Kim SH, Lee JM, Lee JY, et al. Contrast-enhanced sonography of intrapancreatic accessory spleen in six patients. AJR Am J Roentgenol. 2007;188:422–8.

    Article  PubMed  Google Scholar 

  45. Buckley JA, Jones B, Fishman EK. Small bowel cancer. Imaging features and staging. Radiol Clin North Am. 1997;35:381–402.

    PubMed  CAS  Google Scholar 

  46. Horton KM, Kamel I, Hofmann L, et al. Carcinoid tumors of the small bowel: a multitechnique imaging approach. AJR Am J Roentgenol. 2004;182:559–67.

    PubMed  Google Scholar 

  47. Seigel RS, Kuhns LR, Borlaza GS, et al. Computed tomography and angiography in ileal carcinoid tumor and retractile mesenteritis. Radiology. 1980;134:437–40.

    PubMed  CAS  Google Scholar 

  48. Morana G, Salviato E, Guarise A. Contrast agents for hepatic MRI. Cancer Imaging. 2007;7(Spec No A):S24–7.

    Article  PubMed  Google Scholar 

  49. Sofuni A, Iijima H, Moriyasu F, et al. Differential diagnosis of pancreatic tumors using ultrasound contrast imaging. J Gastroenterol. 2005;40:518–25.

    Article  PubMed  Google Scholar 

  50. van Tuyl SA, van Noorden JT, Timmer R, et al. Detection of small-bowel neuroendocrine tumors by video capsule endoscopy. Gastrointest Endosc. 2006;64:66–72.

    Article  PubMed  Google Scholar 

  51. Yamaguchi T, Manabe N, Tanaka S, et al. Multiple carcinoid tumors of the ileum preoperatively diagnosed by enteroscopy with the double-balloon technique. Gastrointest Endosc. 2005;62:315–8.

    Article  PubMed  Google Scholar 

  52. Kwekkeboom DJ, Krenning EP, Scheidhauer K, et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: somatostatin receptor imaging with 111In-pentetreotide. Neuroendocrinology. 2009;90:184–9.

    Article  PubMed  CAS  Google Scholar 

  53. Signore A, Procaccini E, Chianelli M, et al. SPECT imaging with 111In-octreotide for the localization of pancreatic insulinoma. Q J Nucl Med. 1995;39:111–2.

    PubMed  CAS  Google Scholar 

  54. Hillel PG, van Beek EJ, Taylor C, et al. The clinical impact of a combined gamma camera/CT imaging system on somatostatin receptor imaging of neuroendocrine tumours. Clin Radiol. 2006;61:579–87.

    Article  PubMed  CAS  Google Scholar 

  55. Schillaci O, Spanu A, Scopinaro F, et al. Somatostatin receptor scintigraphy in liver metastasis detection from gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2003;44:359–68.

    PubMed  CAS  Google Scholar 

  56. Perri M, Erba P, Volterrani D, et al. Octreo-SPECT/CT imaging for accurate detection and localization of suspected neuroendocrine tumors. Q J Nucl Med Mol Imaging. 2008;52:323–33.

    PubMed  CAS  Google Scholar 

  57. Gibril F, Jensen RT. Diagnostic uses of radiolabelled somatostatin receptor analogues in gastroenteropancreatic endocrine tumours. Dig Liver Dis. 2004;36 Suppl 1:S106–20.

    Article  PubMed  CAS  Google Scholar 

  58. Jamar F, Fiasse R, Leners N, et al. Somatostatin receptor imaging with indium-111-pentetreotide in gastroenteropancreatic neuroendocrine tumors: safety, efficacy and impact on patient management. J Nucl Med. 1995;36:542–9.

    PubMed  CAS  Google Scholar 

  59. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20:716–31.

    Article  PubMed  CAS  Google Scholar 

  60. Kaltsas G, Rockall A, Papadogias D, et al. Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Eur J Endocrinol (European Federation of Endocrine Societies). 2004;151:15–27.

    Article  CAS  Google Scholar 

  61. Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging and therapy. J Nucl Med. 2000;41:1704–13.

    PubMed  CAS  Google Scholar 

  62. Kwekkeboom DJ, Kam BL, van Essen M, et al. Somatostatin receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17:R53–73.

    Article  PubMed  CAS  Google Scholar 

  63. Gunn SH, Schwimer JE, Cox M, et al. In vitro modeling of the clinical interactions between octreotide and 111In-pentetreotide: is there evidence of somatostatin receptor downregulation? J Nucl Med. 2006;47:354–9.

    PubMed  CAS  Google Scholar 

  64. Gopinath G, Ahmed A, Buscombe JR, et al. Prediction of clinical outcome in treated neuroendocrine tumours of carcinoid type using functional volumes on 111In-pentetreotide SPECT imaging. Nucl Med Commun. 2004;25:253–7.

    Article  PubMed  Google Scholar 

  65. Orlefors H, Sundin A, Garske U, et al. Whole-body 11C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab. 2005;90:3392–400.

    Article  PubMed  CAS  Google Scholar 

  66. Pettinato C, Sarnelli A, Di Donna M, et al. 68Ga-DOTANOC: biodistribution and dosimetry in patients affected by neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2008;35:72–9.

    Article  PubMed  CAS  Google Scholar 

  67. Viola KV, Sosa JA. Current advances in the diagnosis and treatment of pancreatic endocrine tumors. Curr Opin Oncol. 2005;17:24–7.

    Article  PubMed  CAS  Google Scholar 

  68. Buchmann I, Henze M, Engelbrecht S, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2007;34:1617–26.

    Article  PubMed  CAS  Google Scholar 

  69. Junik R, Drobik P, Malkowski B, et al. The role of positron emission tomography (PET) in diagnostics of gastroenteropancreatic neuroendocrine tumours (GEP NET). Adv Med Sci. 2006;51:66–8.

    PubMed  CAS  Google Scholar 

  70. Antunes P, Ginj M, Zhang H, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34:982–93.

    Article  PubMed  CAS  Google Scholar 

  71. Hofmann M, Maecke H, Borner R, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28:1751–7.

    Article  PubMed  CAS  Google Scholar 

  72. Gabriel M, Decristoforo C, Kendler D, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with ­somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48:508–18.

    Article  PubMed  CAS  Google Scholar 

  73. Putzer D, Gabriel M, Henninger B, et al. Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med. 2009;50:1214–21.

    Article  PubMed  Google Scholar 

  74. Prasad V, Ambrosini V, Hommann M, et al. Detection of unknown primary neuroendocrine tumours (CUP-NET) using 68Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging. 2010;37:67–77.

    Article  PubMed  CAS  Google Scholar 

  75. Mankoff DA, Link JM, Linden HM, et al. Tumor receptor imaging. J Nucl Med. 2008;49 Suppl 2:149S–63.

    Article  PubMed  CAS  Google Scholar 

  76. Ambrosini V, Tomassetti P, Castellucci P, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35:1431–8.

    Article  PubMed  CAS  Google Scholar 

  77. Haug A, Auernhammer CJ, Wangler B, et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;36:765–70.

    Article  PubMed  CAS  Google Scholar 

  78. Mohnike K, Blankenstein O, Minn H, et al. 18F-DOPA positron emission tomography for preoperative localization in congenital hyperinsulinism. Horm Res. 2008;70:65–72.

    Article  PubMed  CAS  Google Scholar 

  79. Garin E, Le Jeune F, Devillers A, et al. Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med. 2009;50:858–64.

    Article  PubMed  CAS  Google Scholar 

  80. Plockinger U, Rindi G, Arnold R, et al. Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumours. A consensus statement on behalf of the European Neuroendocrine Tumour Society (ENETS). Neuroendocrinology. 2004;80:394–424.

    Article  PubMed  CAS  Google Scholar 

  81. Kumar A, Jindal T, Dutta R, et al. Functional imaging in differentiating bronchial masses: an initial experience with a combination of 18F-FDG PET-CT scan and 68Ga DOTA-TOC PET-CT scan. Ann Nucl Med. 2009;23:745–51.

    Article  PubMed  Google Scholar 

  82. Krenning EP, Kwekkeboom DJ, Reubi JC, et al. 111In-octreotide scintigraphy in oncology. Metabolism. 1992;41:83–6.

    Article  PubMed  CAS  Google Scholar 

  83. Tsagarakis S, Christoforaki M, Giannopoulou H, et al. A reappraisal of the utility of somatostatin receptor scintigraphy in patients with ectopic adrenocorticotropin Cushing’s syndrome. J Clin Endocrinol Metab. 2003;88:4754–8.

    Article  PubMed  CAS  Google Scholar 

  84. Rodriguez JA, Meyers MO, Jacome TH, et al. Intraoperative detection of a bronchial carcinoid with a radiolabeled somatostatin analog. Chest. 2002;121:985–8.

    Article  PubMed  Google Scholar 

  85. Ambrosini V, Castellucci P, Rubello D, et al. 68Ga-DOTA-NOC: a new PET tracer for evaluating patients with bronchial carcinoid. Nucl Med Commun. 2009;30:281–6.

    Article  PubMed  Google Scholar 

  86. Erasmus JJ, McAdams HP, Patz Jr EF, et al. Evaluation of ­primary pulmonary carcinoid tumors using FDG PET. AJR Am J Roentgenol. 1998;170:1369–73.

    PubMed  CAS  Google Scholar 

  87. Chong S, Lee KS, Chung MJ, et al. Neuroendocrine tumors of the lung: clinical, pathologic, and imaging findings. Radiographics. 2006;26:41–57. discussion 57–8.

    Article  PubMed  Google Scholar 

  88. Pandit N, Gonen M, Krug L, et al. Prognostic value of [18F]FDG-PET imaging in small cell lung cancer. Eur J Nucl Med Mol Imaging. 2003;30:78–84.

    Article  PubMed  Google Scholar 

  89. Kayani I, Conry BG, Groves AM, et al. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med. 2009;50:1927–32.

    Article  PubMed  Google Scholar 

  90. Ilias I, Pacak K. Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab. 2004;89:479–91.

    Article  PubMed  CAS  Google Scholar 

  91. Ilias I, Sahdev A, Reznek RH, et al. The optimal imaging of adrenal tumours: a comparison of different methods. Endocr Relat Cancer. 2007;14:587–99.

    Article  PubMed  Google Scholar 

  92. Hayes WS, Davidson AJ, Grimley PM, et al. Extraadrenal retroperitoneal paraganglioma: clinical, pathologic, and CT findings. AJR Am J Roentgenol. 1990;155:1247–50.

    PubMed  CAS  Google Scholar 

  93. Cecchin D, Lumachi F, Marzola MC, et al. A meta-iodobenzylguanidine scintigraphic scoring system increases accuracy in the diagnostic management of pheochromocytoma. Endocr Relat Cancer. 2006;13:525–33.

    Article  PubMed  CAS  Google Scholar 

  94. Furuta N, Kiyota H, Yoshigoe F, et al. Diagnosis of pheochromocytoma using 123I-compared with 131I-metaiodoben­zylguanidine scintigraphy. Int J Urol. 1999;6:119–24.

    Article  PubMed  CAS  Google Scholar 

  95. Nakatani T, Hayama T, Uchida J, et al. Diagnostic localization of extra-adrenal pheochromocytoma: comparison of 123I-MIBG imaging and 131I-MIBG imaging. Oncol Rep. 2002;9:1225–7.

    PubMed  Google Scholar 

  96. Lynn MD, Shapiro B, Sisson JC, et al. Pheochromocytoma and the normal adrenal medulla: improved visualization with I-123 MIBG scintigraphy. Radiology. 1985;155:789–92.

    PubMed  CAS  Google Scholar 

  97. Guller U, Turek J, Eubanks S, et al. Detecting pheochromocytoma: defining the most sensitive test. Ann Surg. 2006;243:102–7.

    Article  PubMed  Google Scholar 

  98. Miskulin J, Shulkin BL, Doherty GM, et al. Is preoperative iodine 123 meta-iodobenzylguanidine scintigraphy routinely necessary before initial adrenalectomy for pheochromocytoma? Surgery. 2003;134:918–22. discussion 922–3.

    Article  PubMed  Google Scholar 

  99. Bhatia KS, Ismail MM, Sahdev A, et al. 123I-metaiodobenzylguani-dine (MIBG) scintigraphy for the detection of adrenal and extra-adrenal phaeochromocytomas: CT and MRI correlation. Clin Endocrinol. 2008;69:181–8.

    Article  Google Scholar 

  100. Kaji P, Carrasquillo JA, Linehan WM, et al. The role of 6-[18F]fluorodopamine positron emission tomography in the localization of adrenal pheochromocytoma associated with von Hippel-Lindau syndrome. Eur J Endocrinol (European Federation of Endocrine Societies). 2007;156:483–7.

    Article  CAS  Google Scholar 

  101. Rozovsky K, Koplewitz BZ, Krausz Y, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol. 2008;190:1085–90.

    Article  PubMed  Google Scholar 

  102. Koopmans KP, Jager PL, Kema IP, et al. 111In-octreotide is superior to 123I-metaiodobenzylguanidine for scintigraphic detection of head and neck paragangliomas. J Nucl Med. 2008;49:1232–7.

    Article  PubMed  Google Scholar 

  103. Milardovic R, Corssmit EP, Stokkel M. Value of 123I-MIBG ­scintigraphy in paraganglioma. Neuroendocrinology. 2010;91:94–100.

    Article  PubMed  CAS  Google Scholar 

  104. Ilias I, Chen CC, Carrasquillo JA, et al. Comparison of 6-18F-fluorodopamine PET with 123I-metaiodobenzylguanidine and 111In-pentetreotide scintigraphy in localization of nonmetastatic and metastatic pheochromocytoma. J Nucl Med. 2008;49:1613–9.

    Article  PubMed  Google Scholar 

  105. Pacak K, Eisenhofer G, Ilias I. Diagnosis of pheochromocytoma with special emphasis on MEN2 syndrome. Hormones (Athens). 2009;8:111–6.

    Google Scholar 

  106. Modlin IM, Latich I, Kidd M, et al. Therapeutic options for gastrointestinal carcinoids. Clin Gastroenterol Hepatol. 2006;4:526–47.

    Article  PubMed  CAS  Google Scholar 

  107. Norton JA. Endocrine tumours of the gastrointestinal tract. Surgical treatment of neuroendocrine metastases. Best Pract Res Clin Gastroenterol. 2005;19:577–83.

    Article  PubMed  Google Scholar 

  108. Rea F, Rizzardi G, Zuin A, et al. Outcome and surgical strategy in bronchial carcinoid tumors: single institution experience with 252 patients. Eur J Cardiothorac Surg. 2007;31:186–91.

    Article  PubMed  Google Scholar 

  109. van Vilsteren FG, Baskin-Bey ES, Nagorney DM, et al. Liver transplantation for gastroenteropancreatic neuroendocrine cancers: Defining selection criteria to improve survival. Liver Transpl. 2006;12:448–56.

    Article  PubMed  Google Scholar 

  110. Vargas HI, Kavoussi LR, Bartlett DL, et al. Laparoscopic adrenalectomy: a new standard of care. Urology. 1997;49:673–8.

    Article  PubMed  CAS  Google Scholar 

  111. Niemann U, Hiller W, Behrend M. 25 years experience of the surgical treatment of phaeochromocytoma. Eur J Surg (Acta chirurgica). 2002;168:716–9.

    Article  CAS  Google Scholar 

  112. Pacak K. Preoperative management of the pheochromocytoma patient. J Clin Endocrinol Metab. 2007;92:4069–79.

    Article  PubMed  CAS  Google Scholar 

  113. Kennedy AS, Dezarn WA, McNeillie P, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol. 2008;31:271–9.

    Article  PubMed  Google Scholar 

  114. O’Toole D, Ruszniewski P. Chemoembolization and other ablative therapies for liver metastases of gastrointestinal endocrine tumours. Best practice & research. 2005;19:585–94.

    Article  CAS  Google Scholar 

  115. Dubinsky TJ, Cuevas C, Dighe MK, et al. High-intensity focused ultrasound: current potential and oncologic applications. AJR Am J Roentgenol. 2008;190:191–9.

    Article  PubMed  Google Scholar 

  116. Mazzaglia PJ, Berber E, Siperstein AE. Radiofrequency thermal ablation of metastatic neuroendocrine tumors in the liver. Curr Treat Options Oncol. 2007;8:322–30.

    Article  PubMed  Google Scholar 

  117. O’Toole D, Hentic O, Corcos O, et al. Chemotherapy for gastro-enteropancreatic endocrine tumours. Neuroendocrinology. 2004;80 Suppl 1:79–84.

    Article  PubMed  CAS  Google Scholar 

  118. Lamberts SW, van der Lely AJ, de Herder WW, et al. Octreotide. N Engl J Med. 1996;334:246–54.

    Article  PubMed  CAS  Google Scholar 

  119. Reubi JC, Schar JC, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82.

    Article  PubMed  CAS  Google Scholar 

  120. Hofland LJ, Lamberts SW. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev. 2003;24:28–47.

    Article  PubMed  CAS  Google Scholar 

  121. Saltz L, Trochanowski B, Buckley M, et al. Octreotide as an antineoplastic agent in the treatment of functional and nonfunctional neuroendocrine tumors. Cancer. 1993;72:244–8.

    Article  PubMed  CAS  Google Scholar 

  122. Plockinger U, Wiedenmann B. Neuroendocrine tumors. Biotherapy. Best Pract Res Clin Endocrinol Metab. 2007;21:145–62.

    Article  PubMed  CAS  Google Scholar 

  123. di Bartolomeo M, Bajetta E, Buzzoni R, et al. Clinical efficacy of octreotide in the treatment of metastatic neuroendocrine tumors. A study by the Italian Trials in Medical Oncology Group. Cancer. 1996;77:402–8.

    Article  PubMed  Google Scholar 

  124. Eriksson B, Renstrup J, Imam H, et al. High-dose treatment with lanreotide of patients with advanced neuroendocrine gastrointestinal tumors: clinical and biological effects. Ann Oncol. 1997;8:1041–4.

    Article  PubMed  CAS  Google Scholar 

  125. Marschke Jr RF, Grill JP, Sloan JA, et al. Phase II study of high-dose somatostatin analogue in patients either previously treated or untreated who have extensive-stage small cell lung cancer. Am J Clin Oncol. 1999;22:15–7.

    Article  PubMed  Google Scholar 

  126. Rinke A, Muller HH, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27:4656–63.

    Article  PubMed  CAS  Google Scholar 

  127. Fazio N, de Braud F, Delle Fave G, et al. Interferon-alpha and somatostatin analog in patients with gastroenteropancreatic neuroendocrine carcinoma: single agent or combination? Ann Oncol. 2007;18:13–9.

    Article  PubMed  CAS  Google Scholar 

  128. Yao JC, Hoff PM. Molecular targeted therapy for neuroendocrine tumors. Hematol Oncol Clin North Am. 2007;21:575–81. x.

    Article  PubMed  Google Scholar 

  129. Gray JA, Roth BL. Cell biology. A last GASP for GPCRs? Science. 2002;297:529–31.

    Article  PubMed  CAS  Google Scholar 

  130. Valkema R, De Jong M, Bakker WH, et al. Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med. 2002;32:110–22.

    Article  PubMed  Google Scholar 

  131. De Jong M, Bakker WH, Breeman WA, et al. Pre-clinical ­comparison of DTPA0 octreotide, DTPA0, Tyr3 octreotide and DTPA0, Tyr3 octreotide as carriers for somatostatin receptor-­targeted scintigraphy and radionuclide therapy. Int J Cancer. 1998;75:406–11.

    Article  PubMed  Google Scholar 

  132. Bodei L, Kassis AI, Adelstein SJ, et al. Radionuclide therapy with iodine-125 and other Auger-electron-emitting radionuclides: experimental models and clinical applications. Cancer Biother Radiopharm. 2003;18:861–77.

    Article  PubMed  CAS  Google Scholar 

  133. Cescato R, Schulz S, Waser B, et al. Internalization of sst2, sst3, and sst5 receptors: effects of somatostatin agonists and antagonists. J Nucl Med. 2006;47:502–11.

    PubMed  CAS  Google Scholar 

  134. Virgolini I, Britton K, Buscombe J, et al. In- and Y-DOTA-lanreotide: results and implications of the MAURITIUS trial. Semin Nucl Med. 2002;32:148–55.

    Article  PubMed  Google Scholar 

  135. Wehrmann C, Senftleben S, Zachert C, et al. Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother Radiopharm. 2007;22:406–16.

    Article  PubMed  CAS  Google Scholar 

  136. Esser JP, Krenning EP, Teunissen JJ, et al. Comparison of [177Lu-DOTA0, Tyr3]octreotate and [177Lu-DOTA0, Tyr3]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging. 2006;33:1346–51.

    Article  PubMed  CAS  Google Scholar 

  137. Bernard BF, Krenning EP, Breeman WA, et al. D-lysine reduction of indium-111 octreotide and yttrium-90 octreotide renal uptake. J Nucl Med. 1997;38:1929–33.

    PubMed  CAS  Google Scholar 

  138. Brans B, Bodei L, Giammarile F, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging. 2007;34:772–86.

    Article  PubMed  CAS  Google Scholar 

  139. de Jong M, Krenning E. New advances in peptide receptor radionuclide therapy. J Nucl Med. 2002;43:617–20.

    PubMed  Google Scholar 

  140. Bodei L, Cremonesi M, Grana C, et al. Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31:1038–46.

    Article  PubMed  CAS  Google Scholar 

  141. Jamar F, Barone R, Mathieu I, et al. 86Y-DOTA0-D-Phe1-Tyr3-octreotide (SMT487)—a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur J Nucl Med Mol Imaging. 2003;30:510–8.

    Article  PubMed  CAS  Google Scholar 

  142. Valkema R, Pauwels SA, Kvols LK, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0, Tyr3-octreotide and 177Lu-DOTA0, Tyr3-octreotate. J Nucl Med. 2005;46 Suppl 1:83S–91.

    PubMed  CAS  Google Scholar 

  143. Bodei L, Cremonesi M, Zoboli S, et al. Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study. Eur J Nucl Med Mol Imaging. 2003;30:207–16.

    Article  PubMed  CAS  Google Scholar 

  144. Bodei L, Handkiewicz-Junak D, Grana C, et al. Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm. 2004;19:65–71.

    Article  PubMed  CAS  Google Scholar 

  145. Waldherr C, Pless M, Maecke HR, et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq 90Y-DOTATOC. J Nucl Med. 2002;43:610–6.

    PubMed  CAS  Google Scholar 

  146. Valkema R, Pauwels S, Kvols LK, et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0, Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med. 2006;36:147–56.

    Article  PubMed  Google Scholar 

  147. De Jong M, Valkema R, Jamar F, et al. Somatostatin receptor-­targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med. 2002;32:133–40.

    Article  PubMed  Google Scholar 

  148. Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.

    Article  PubMed  CAS  Google Scholar 

  149. Pauwels S, Barone R, Walrand S, et al. Practical dosimetry of peptide receptor radionuclide therapy with 90Y-labeled somatostatin analogs. J Nucl Med. 2005;46 Suppl 1:92S–8.

    PubMed  CAS  Google Scholar 

  150. Cremonesi M, Ferrari M, Bodei L, et al. Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med. 2006;47:1467–75.

    PubMed  CAS  Google Scholar 

  151. Cremonesi M, Botta F, Di Dia A, et al. Dosimetry for treatment with radiolabelled somatostatin analogues. A review. Q J Nucl Med Mol Imaging. 2010;54:37–51.

    PubMed  CAS  Google Scholar 

  152. Bodei L, Cremonesi M, Ferrari M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging. 2008;35:1847–56.

    Article  PubMed  CAS  Google Scholar 

  153. Anthony LB, Woltering EA, Espenan GD, et al. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin Nucl Med. 2002;32:123–32.

    Article  PubMed  Google Scholar 

  154. Otte A, Herrmann R, Heppeler A, et al. Yttrium-90 DOTATOC: first clinical results. Eur J Nucl Med. 1999;26:1439–47.

    Google Scholar 

  155. Waldherr C, Pless M, Maecke HR, Schumacher T, Crazzolara A, Nitzsche EU, Haldemann A, Mueller-Brand J. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq 90Y-DOTATOC. J Nucl Med. 2002 May;43:610–6.

    Article  PubMed  CAS  Google Scholar 

  156. Sierra ML, Agazzi A, Bodei L, et al. Lymphocytic toxicity in patients after peptide-receptor radionuclide therapy (PRRT) with 177Lu-DOTATATE and 90Y-DOTATOC. Cancer Biother Radiopharm. 2009;24:659–65.

    Article  PubMed  CAS  Google Scholar 

  157. Van Essen M, Krenning EP, De Jong M, et al. Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours. Acta Oncol. 2007;46:723–34.

    Article  PubMed  CAS  Google Scholar 

  158. De Jong M, Bernard BF, De Bruin E, et al. Internalization of radiolabelled [DOTA0]octreotide and [DOTA0, Tyr3]octreotide: peptides for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Nucl Med Commun. 1998;19:283–8.

    Article  PubMed  Google Scholar 

  159. Bushnell, O’Dorisio, Menda Y. et al. Evaluating the clinical effectiveness of 90Y-SMT 487 in patients with ­neuroendocrine tumors. J Nucl Med. 2003;44:1556–1560.

    Article  PubMed  CAS  Google Scholar 

  160. Kwekkeboom DJ, Bakker WH, Kam BL, et al. Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [177Lu-DOTA0, Tyr3]octreotate. Eur J Nucl Med Mol Imaging. 2003;30:417–22.

    Article  PubMed  CAS  Google Scholar 

  161. Cassady JR. Clinical radiation nephropathy. Int J Radiat Oncol Biol Phys. 1995;31:1249–56.

    Article  PubMed  CAS  Google Scholar 

  162. Bushnell Jr DL, O’Dorisio TM, et al. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol. 2010;28:1652–9.

    Article  PubMed  CAS  Google Scholar 

  163. Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine ­cancers. J Clin Oncol. 2011;29:2416–23.

    Article  PubMed  CAS  Google Scholar 

  164. Menda Y, O’Dorisio MS, Kao S, et al. Phase I trial of 90Y-DOTATOC therapy in children and young adults with refractory solid tumors that express somatostatin receptors. J Nucl Med. 2010;51:1524–31.

    Article  PubMed  Google Scholar 

  165. Van Essen M, Krenning EP, De Jong M, et al. Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours. Acta Oncologica (Stockholm, Sweden). 2007;46:723–34.

    Article  CAS  Google Scholar 

  166. De Jong M, Bernard BF, De Bruin E, et al. Internalization of ­radiolabelled DTPA0 octreotide and [DOTA0, Tyr3]octreotide: ­peptides for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Nucl Med Commun. 1998;19:283–8.

    Article  PubMed  Google Scholar 

  167. Lewis JS, Wang M, Laforest R, et al. Toxicity and dosimetry of 177Lu-DOTA-Y3-octreotate in a rat model. Int J Cancer. 2001;94:873–7.

    Article  PubMed  CAS  Google Scholar 

  168. de Jong M, Kwekkeboom D, Valkema R, et al. Radiolabelled ­peptides for tumour therapy: current status and future directions. Plenary lecture at the EANM 2002. Eur J Nucl Med Mol Imaging. 2003;30:463–9.

    Article  PubMed  CAS  Google Scholar 

  169. Teunissen JJ, Kwekkeboom DJ, Krenning EP. Quality of life in patients with gastroenteropancreatic tumors treated with [177Lu-DOTA0, Tyr3]octreotate. J Clin Oncol. 2004;22:2724–9.

    Article  PubMed  CAS  Google Scholar 

  170. van Essen M, Krenning EP, Kam BL, de Herder WW, Feelders RA, Kwekkeboom DJ. Salvage therapy with 177Lu-octreotate in patients with bronchial and gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2010;51:383–90.

    Article  PubMed  CAS  Google Scholar 

  171. Claringbold PG, Brayshaw PA, Price RA, Turner JH. Phase II study of radiopeptide 177Lu-octreotate and capecitabine therapy of progressive disseminated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2011;38:302–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Bodei MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bodei, L., Boni, G., Paganelli, G., Volterrani, D. (2013). Neuroendocrine Tumors. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics