Skip to main content

Pancreatic Cancer

  • Chapter
  • First Online:
Nuclear Oncology

Abstract

Epithelial tumors of the pancreas are the third most common malignancy of the gastrointestinal tract (incidence of 11.7 per 100,000). Since most pancreatic cancer cases are diagnosed after the cancer has already metastasized (distant stage), the overall 5-year relative survival rate is 5.5%. Early detection of pancreatic cancer is the only way to improve its prognosis. Physical examination rarely confirms the diagnosis of localized pancreatic cancer. Carbohydrate antigen 19-9 (CA 19.9) is the most commonly employed serum marker in pancreatic cancer. However, the specificity for detecting pancreatic cancer is low (67.5%).

Computed tomography, magnetic resonance imaging (MRI), magnetic resonance cholangiopancreatography (MRCP), endoscopic ultrasound (EUS), and endoscopic retrograde cholangiopancreatography are the most widely applied methods for diagnosis and staging of pancreatic cancer. [18F]FDG-PET/CT may be helpful in the initial approach to a patient suspected of bearing pancreatic carcinoma (sensitivity 85–100% and specificity 67–90%) by aiding to differentiate benign from malignant lesions without the need for biopsy or surgery. However, false-positive findings at [18F]FDG-PET can be related to chronic pancreatitis; therefore, preliminary assay of the C-reactive protein serum level is recommended. Moreover, since mucinous pancreatic cancers usually do not have a high glucidic metabolism, they could be cause of false-negative reports. A further application of [18F]FDG-PET/CT at initial diagnosis can be as a guide for biopsy sampling. The staging for pancreatic exocrine cancer, according to the American Joint Committee on Cancer (AJCC), is necessary to obtain a uniform definition of disease. Surgical resection (stages I and II) remains the primary modality leading to the higher long-term survival (18–24%), whereas the role of postoperative chemotherapy or chemoradiotherapy remains debated. Regarding T staging, at present there are no data to support the usefulness of hybrid-modality PET/CT in local T staging. Moreover, as conventional imaging, [18F]FDG-PET/CT has low sensitivity (30–40%) for detecting LN metastasis. Conversely, [18F]FDG-PET has a higher diagnostic accuracy in the detection of distant metastasis (liver and peritoneum) compared with other modalities. Regarding the assessment of therapy response, the identification of early responders to chemotherapy is important in order to avoid unnecessary toxicity in patients who are not going to respond. [18F]FDG-PET may provide a sensitive parameter for earlier assessment of response to therapy versus conventional imaging. Moreover, besides serum CA 19.9, it is a reference tool for the evaluation of tumor response to neoadjuvant chemotherapy. In patients with raising serum CA 19.9 and conventional imaging is negative for recurrence, [18F]FDG-PET can detect unexpected sites of recurrence On the other hand, [18F]FDG-PET can also exclude the presence of recurrence when other imaging modalities are indeterminate or equivocal. [18F]FDG-PET seems to be a useful tool for prognosis since a negative PET scan at 1 month postchemotherapy is correlated with longer overall survival. Current literature shows that the accuracy of target volume delineation can be improved beyond the mere CT-based delineation by integrating PET and CT information. Radiopharmaceuticals whose uptake is related to proliferative activity (such as radiolabeled thymidine analog fluorothymidine) are, in principle, more suitable for discriminating cancers from inflammation than [18F]FDG. However, no enough data have been reported in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Surveillance, Epidemiology and End Results (SEER) Program. http://seer.cancer.gov/csr/1975_2006/results_single/sect_01_table.11_2pgs.pdf. Accessed 12 May 2009.

  2. Larghi A, Verna EC, Lecca PG, et al. Screening for pancreatic cancer in high-risk individuals: a call for endoscopic ultrasound. Clin Cancer Res. 2009;15:1907.

    Article  PubMed  Google Scholar 

  3. Takhar AS, Palaniappan P, Dhingsa R, et al. Recent developments in diagnosis of pancreatic cancer. BMJ. 2004;329:668–73.

    Article  PubMed  Google Scholar 

  4. Saruc M, Pour PM. Diabetes and its relationship to pancreatic ­carcinoma. Pancreas. 2003;26:381–7.

    Article  PubMed  Google Scholar 

  5. Ozkan H, Kaya M, Cengiz A. Comparison of tumour marker CA 242 with CA 19.9 and carcinoembryonic antigen (CEA) in pancreatic cancer. Hepatogastroenterology. 2003;50:1669–74.

    PubMed  Google Scholar 

  6. Willett CG, Daly WJ, Warshaw AL. CA 19.9 is an index of response to neoadjunctive chemoradiation therapy in pancreatic cancer. Am J Surg. 1996;172:350–2.

    Article  PubMed  CAS  Google Scholar 

  7. Yeo TP, Hruban RH, Leach SD, et al. Pancreatic cancer. Curr Probl Cancer. 2002;26:176–275.

    Article  PubMed  Google Scholar 

  8. Heitz PU, Komminoth P, Perrin A, et al. Pancreatic endocrine tumours: introduction. In: DeLellis DA, Lloyd RV, Heitz PU, et al., editors. Pathology and genetics of tumours of endocrine organs. WHO classification of tumours. Lyon: IARC Press; 2004. p. 177–82.

    Google Scholar 

  9. Schindl M, Kaczirek K, Kaserer K, et al. Is the new classification of neuroendocrine pancreatic tumours of clinical help? World J Surg. 2000;24:1312–8.

    Article  PubMed  CAS  Google Scholar 

  10. Falconi M, Plockinger U, Kwekkeboom DJ, et al. Well-differentiated pancreatic nonfunctioning tumours/carcinoma. Neuroendocrinology. 2006;84:196–211.

    Article  PubMed  CAS  Google Scholar 

  11. Frederick L, Greene et al. Exocrine pancreas. In: American Joint Committee on Cancer: AJCC Cancer Staging Manual. 6th ed. / editors, New York: Springer; 2002, p. 157–64.

    Google Scholar 

  12. Yeo CJ, Cameron JL, Lillemoe KD, et al. Pancreaticoduodenectomy for cancer of the head of the pancreas. 201 patients. Ann Surg. 1995;221:721–31. discussion 731–3.

    Article  PubMed  CAS  Google Scholar 

  13. Conlon KC, Klimstra DS, Brennan MF. Long-term survival after curative resection for pancreatic ductal adenocarcinoma. Clinicopathologic analysis of 5-year survivors. Ann Surg. 1996;223:273–9.

    Article  PubMed  CAS  Google Scholar 

  14. Yeo CJ, Abrams RA, Grochow LB, et al. Pancreaticoduodenectomy for pancreatic adenocarcinoma: postoperative adjuvant chemoradiation improves survival. A prospective, single-institution experience. Ann Surg. 1997;225:621–33. discussion 633–6.

    Article  PubMed  CAS  Google Scholar 

  15. Further evidence of effective adjuvant combined radiation and chemotherapy following curative resection of pancreatic cancer. Gastrointestinal Tumour Study Group. Cancer 1987;59:2006–10.

    Google Scholar 

  16. Kalser MH, Ellenberg SS. Pancreatic cancer. Adjuvant combined radiation and chemotherapy following curative resection. Arch Surg. 1985;120:899–903.

    Article  PubMed  CAS  Google Scholar 

  17. Klinkenbijl JH, Jeekel J, Sahmoud T, et al. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampullary region: phase III trial of the EORTC gastrointestinal tract cancer cooperative group. Ann Surg. 1999;230:776–82. discussion 782–4.

    Article  PubMed  CAS  Google Scholar 

  18. Neoptolemos JP, Dunn JA, Stocken DD, et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet. 2001;358(9293):1576–85.

    Article  PubMed  CAS  Google Scholar 

  19. Neoptolemos JP, Stocken DD, Friess H, et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med. 2004;350:1200–10.

    Article  PubMed  CAS  Google Scholar 

  20. Regine WF, Winter KA, Abrams RA, et al. Fluorouracil vs gemcitabine chemotherapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma: a randomized controlled trial. JAMA. 2008;299:1019–26.

    Article  PubMed  CAS  Google Scholar 

  21. Birkmeyer JD, Finlayson SR, Tosteson AN, et al. Effect of hospital volume on in-hospital mortality with pancreaticoduodenectomy. Surgery. 1999;125:250–6.

    Article  PubMed  CAS  Google Scholar 

  22. Spanknebel K, Conlon KC. Advances in the surgical management of pancreatic cancer. Cancer J. 2001;7:312–23.

    PubMed  CAS  Google Scholar 

  23. Balcom 4th JH, Rattner DW, Warshaw AL, et al. Ten-year experience with 733 pancreatic resections: changing indications, older patients, and decreasing length of hospitalization. Arch Surg. 2001;136:391–8.

    Article  PubMed  Google Scholar 

  24. Sohn TA, Yeo CJ, Cameron JL, et al. Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. J Gastrointest Surg. 2000;4:567–79.

    Article  PubMed  CAS  Google Scholar 

  25. Cameron JL, Crist DW, Sitzmann JV, et al. Factors influencing ­survival after pancreaticoduodenectomy for pancreatic cancer. Am J Surg. 1991;161:120–4. discussion 124–5.

    Article  PubMed  CAS  Google Scholar 

  26. Dalton RR, Sarr MG, van Heerden JA, et al. Carcinoma of the body and tail of the pancreas: is curative resection justified? Surgery. 1992;111:489–94.

    PubMed  CAS  Google Scholar 

  27. Brennan MF, Moccia RD, Klimstra D. Management of adenocarcinoma of the body and tail of the pancreas. Ann Surg. 1996;223:506–11. discussion 511–2.

    Article  PubMed  CAS  Google Scholar 

  28. ESPAC-3(v2) phase III adjuvant trial in pancreatic cancer comparing 5FU and D-L-folinic acid vs. gemcitabine. Leeds: National Cancer Research Network Trials Portfolio; 2004.

    Google Scholar 

  29. van den Bosch RP, van der Schelling GP, Klinkenbijl JH, et al. Guidelines for the application of surgery and endoprostheses in the palliation of obstructive jaundice in advanced cancer of the pancreas. Ann Surg. 1994;219:18–24.

    Article  PubMed  Google Scholar 

  30. Baron TH. Expandable metal stents for the treatment of cancerous obstruction of the gastrointestinal tract. N Engl J Med. 2001;344:1681–7.

    Article  PubMed  CAS  Google Scholar 

  31. Sohn TA, Lillemoe KD, Cameron JL, et al. Surgical palliation of unresectable periampullary adenocarcinoma in the 1990s. J Am Coll Surg. 1999;188:658–66. discussion 666–9.

    Article  PubMed  CAS  Google Scholar 

  32. Tepper JE, Noyes D, Krall JM, et al. Intraoperative radiation therapy of pancreatic carcinoma: a report of RTOG-8505. Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 1991;21:1145–9.

    Article  PubMed  CAS  Google Scholar 

  33. Reni M, Panucci MG, Ferreri AJ, et al. Effect on local control and survival of electron beam intraoperative irradiation for resectable pancreatic adenocarcinoma. Int J Radiat Oncol Biol Phys. 2001;50:651–8.

    Article  PubMed  CAS  Google Scholar 

  34. Rothenberg ML, Moore MJ, Cripps MC, et al. A phase II trial of gemcitabine in patients with 5-FU-refractory pancreas cancer. Ann Oncol. 1996;7:347–53.

    Article  PubMed  CAS  Google Scholar 

  35. Burris 3rd HA, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.

    PubMed  CAS  Google Scholar 

  36. Storniolo AM, Enas NH, Brown CA, et al. An investigational new drug treatment program for patients with gemcitabine: results for over 3000 patients with pancreatic carcinoma. Cancer. 1999;85:1261–8.

    Article  PubMed  CAS  Google Scholar 

  37. Kulke MH, Blaszkowsky LS, Ryan DP, et al. Capecitabine plus erlotinib in gemcitabine-refractory advanced pancreatic cancer. J Clin Oncol. 2007;25:4787–92.

    Article  PubMed  CAS  Google Scholar 

  38. Hessenius C, Bäder M, Meinhold H, et al. Vasoactive intestinal peptide receptor scintigraphy in patients with pancreatic adenocarcinomas or neuroendocrine tumours. Eur J Nucl Med. 2000;27:1684–93.

    Article  PubMed  CAS  Google Scholar 

  39. Low MJ. Clinical endocrinology and metabolism: the somatostatin neuroendocrine system—physiology and clinical relevance in gastrointestinal and pancreatic disorders. Best Pract Res Clin Endocrinol Metab. 2004;18:607–22.

    Article  PubMed  CAS  Google Scholar 

  40. de Herder WW, Kwekkeboom DJ, Feelders RA, et al. Somatostatin receptor imaging for neuroendocrine tumours. Pituitary. 2006;9:243–8.

    Article  PubMed  Google Scholar 

  41. Sundin A, Garske U, Orlefors H. Nuclear imaging of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab. 2007;21:69–85.

    Article  PubMed  CAS  Google Scholar 

  42. Balon HR, Goldsmith SJ, Siegel BA, et al. Procedure guideline for somatostatin receptor scintigraphy with 111In-pentetreotide. J Nucl Med. 2001;42:1134–8.

    PubMed  CAS  Google Scholar 

  43. Hillel PG, van Beek EJ, Taylor C, et al. The clinical impact of a combined gamma camera/CT imaging system on somatostatin receptor imaging of neuroendocrine tumours. Clin Radiol. 2006;61:579–87.

    Article  PubMed  CAS  Google Scholar 

  44. Gopinath G, Ahmed A, Buscombe JR, et al. Prediction of clinical outcome in treated neuroendocrine tumours of carcinoid type using functional volumes on 111In-pentetreotide SPECT imaging. Nucl Med Commun. 2004;25:253–7.

    Article  PubMed  Google Scholar 

  45. Gunn SH, Schwimer JE, Cox M, et al. In vitro modeling of the clinical interactions between octreotide and 111In-pentetreotide: is there evidence of somatostatin receptor downregulation? J Nucl Med. 2006;47:354–9.

    PubMed  CAS  Google Scholar 

  46. Mankoff DA, Link JM, Linden HM, et al. Tumour receptor imaging. J Nucl Med. 2008;49 Suppl 2:149S–63S.

    Article  PubMed  CAS  Google Scholar 

  47. Junik R, Drobik P, Malkowski B, et al. The role of positron emission tomography (PET) in diagnostics of gastroenteropancreatic neuroendocrine tumours (GEP NET). Adv Med Sci. 2006;51:66–8.

    PubMed  CAS  Google Scholar 

  48. Buchmann I, Henze M, Engelbrecht S, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2007;34:1617–26.

    Article  PubMed  CAS  Google Scholar 

  49. Pakzad F, Groves AM, Ell PJ, et al. The role of positron emission tomography in the management of pancreatic cancer. Semin Nucl Med. 2006;36:248–56.

    Article  PubMed  Google Scholar 

  50. Heinrich S, Goerres GW, Schäfer M, et al. Positron emission tomography/computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness. Ann Surg. 2005;242:235–43.

    Article  PubMed  Google Scholar 

  51. Gambhir SS, Czernin J, Schwimmer J, et al. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42:1S–93S.

    PubMed  CAS  Google Scholar 

  52. Shreve PD. Focal fluorine-18 fluorodeoxyglucose accumulation in inflammatory pancreatic disease. Eur J Nucl Med. 1998;25:259–64.

    Article  PubMed  CAS  Google Scholar 

  53. Higashi T, Saga T, Nakamoto Y, et al. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET)—usefulness and limitations in “clinical reality”. Ann Nucl Med. 2003;17:261–79. Review.

    Article  PubMed  Google Scholar 

  54. Kubota R, Kubota K, Yamada S, et al. Microautoradiographic study for the differentiation of intratumoral macrophages, granulation tissues and cancer cells by the dynamics of fluorine-18-fluoro-deoxyglucose uptake. J Nucl Med. 1994;35:104–12.

    PubMed  CAS  Google Scholar 

  55. Zimny M, Bares R, Fab J, et al. Fluorine-18 fluorodeoxyglucose positron tomography in the differential diagnosis of pancreatic ­carcinoma: a report of 106 cases. Eur J Nucl Med. 1997;24:678–82.

    PubMed  CAS  Google Scholar 

  56. Lee TY, Kim MH, Park do H, et al. Utility of 18F-FDG PET/CT for differentiation of autoimmune pancreatitis with atypical pancreatic imaging findings from pancreatic cancer. Am J Roentgenol. 2009;193:343–8.

    Article  Google Scholar 

  57. Hosten N, Lemke AJ, Wiedenmann B, et al. Combined imaging techniques for pancreatic cancer. Lancet. 2000;356:909–10.

    Article  PubMed  CAS  Google Scholar 

  58. Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med. 1996;23:1409–15.

    Article  PubMed  CAS  Google Scholar 

  59. Folpe AL, Lyles RH, Sprouse JT, et al. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognosis variables in bone and soft tissue sarcoma. Clin Cancer Res. 2000;6:1279–87.

    PubMed  CAS  Google Scholar 

  60. Higashi K, Clavo AC, Wahl RL. Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med. 1993;34:414–9.

    PubMed  CAS  Google Scholar 

  61. Orlando LA, Kulasingam SL, Matchar DB. Meta-analysis: the detection of pancreatic malignancy with positron emission tomography. Aliment Pharmacol Ther. 2004;20:1063–70.

    Article  PubMed  CAS  Google Scholar 

  62. Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.

    Article  PubMed  Google Scholar 

  63. Riker A, Libutti SK, Bartlett DL. Advances in the early detection, diagnosis, and staging of pancreatic cancer. Surg Oncol. 1997;6:157–69.

    Article  PubMed  CAS  Google Scholar 

  64. Gebhardt C, Meyer W, Reichel M, et al. Prognostic factors in the operative treatment of ductal pancreatic carcinoma. Langenbecks Arch Surg. 2000;385:14–20.

    Article  PubMed  CAS  Google Scholar 

  65. Diederichs CG, Staib L, Vogel J, et al. Values and limitations of 18F-fluorodeoxyglucose-positron-emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas. 2000;20:109–16.

    Article  PubMed  CAS  Google Scholar 

  66. Rosenbaum SJ, Stergar H, Antoch G, et al. Staging and followup of gastrointestinal tumors with PET/CT. Abdom Imaging. 2006; 31:25–35.

    Google Scholar 

  67. Kauhanen SP, Komar G, Seppänen MP, et al. A prospective diagnostic accuracy study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann Surg. 2009;250:957–63.

    Article  PubMed  Google Scholar 

  68. NCCN Clinical Practice Guidelines in Oncology™—Pancreatic Adenocarcinoma V.1.2009.

    Google Scholar 

  69. Maisey NR, Webb A, Flux GD, et al. FDG-PET in the prediction of survival of patients with cancer of the pancreas: a pilot study. Br J Cancer. 2000;83:287–93.

    Article  PubMed  CAS  Google Scholar 

  70. Springett GM, Hoffe SE. Borderline resectable pancreatic cancer: on the edge of survival. Cancer Control. 2008;15:295–307.

    PubMed  Google Scholar 

  71. Higashi T, Fisher SJ, Brown RS, et al. Evaluation of the early effect of local irradiation on normal rodent bone marrow metabolism using fluorine-18-FDG; preclinical studies for PET. J Nucl Med. 2000;41:2026–35.

    PubMed  CAS  Google Scholar 

  72. Higashi T, Sakahara H, Torizuka T, et al. Evaluation of intraoperative radiation therapy for unresectable pancreatic cancer with FDG PET. J Nucl Med. 1999;40:1424–33.

    PubMed  CAS  Google Scholar 

  73. Bang S, Chung HW, Park SW, et al. The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J Clin Gastroenterol. 2006;40:923–9.

    Article  PubMed  Google Scholar 

  74. Urban D, Catane R. Serum tumor markers in oncology. Isr Med Assoc J. 2009;11:103–4.

    PubMed  Google Scholar 

  75. Klaassen DJ, MacIntyre JM, Catton GE, et al. Treatment of locally unresectable cancer of the stomach and pancreas: a randomized comparison of 5-fluorouracil alone with radiation plus concurrent and maintenance 5-fluorouracil–an Eastern Cooperative Oncology Group Study. J Clin Oncol. 1985;3:373–8.

    PubMed  CAS  Google Scholar 

  76. Topkan E, Yavuz AA, Aydin M, et al. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. J Exp Clin Cancer Res. 2008;27:41.

    Article  PubMed  Google Scholar 

  77. Nakata B, Nishimura S, Ishikawa T, et al. Prognostic predictive value of 18F-fluorodeoxyglucose positron emission tomography for patients with pancreatic cancer. Int J Oncol. 2001;19:53–8.

    PubMed  CAS  Google Scholar 

  78. Sperti C, Pasquali C, Chierichetti F, et al. 18-Fluorodeoxyglucose positron emission tomography in predicting survival of patients with pancreatic carcinoma. J Gastrointest Surg. 2003;7:953–9. ­discussion 959–960.

    Article  PubMed  Google Scholar 

  79. Kaltsas G, Rockall A, Papadogias D, et al. Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Eur J Endocrinol. 2004;151:15–27.

    Article  PubMed  CAS  Google Scholar 

  80. Kumbasar B, Kamel IR, Tekes A, et al. Imaging of neuroendocrine tumors: accuracy of helical CT versus SRS. Abdom Imaging. 2004;29:696–702.

    Article  PubMed  CAS  Google Scholar 

  81. Montravers F, Grahek D, Kerrou K, et al. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J Nucl Med. 2006;47:1455–62.

    PubMed  CAS  Google Scholar 

  82. Gabriel M, Decristoforo C, Kendler D, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48:508–18.

    Article  PubMed  CAS  Google Scholar 

  83. Adams S, Baum R, Rink T, et al. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumors. Eur J Nucl Med. 1998;25:79–83.

    Article  PubMed  CAS  Google Scholar 

  84. Becherer A, Szabo M, Karanikas G, et al. Imaging of advanced neuroendocrine tumours with 18F-DOPA PET. J Nucl Med. 2004;45:1161–7.

    PubMed  CAS  Google Scholar 

  85. Mohnike K, Blankenstein O, Minn H, et al. [18F]-DOPA positron emission tomography for preoperative localization in congenital hyperinsulinism. Horm Res. 2008;70:65–72.

    Article  PubMed  CAS  Google Scholar 

  86. Ambrosini V, Tomassetti P, Castellucci P, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35:1431–8.

    Article  PubMed  CAS  Google Scholar 

  87. Haug A, Auernhammer CJ, Wängler B, et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;36:765–70.

    Article  PubMed  CAS  Google Scholar 

  88. Antunes P, Ginj M, Zhang H, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34:982–93.

    Article  PubMed  CAS  Google Scholar 

  89. Wild D, Maecke HR, Waser B, et al. 68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5. Eur J Nucl Med Mol Imaging. 2004;32:724.

    Article  Google Scholar 

  90. Decristoforo C, von Guggenberg E, Haubner R, et al. Radiolabeling of DOTA-derivatised peptides with 68Ga via a direct approach—optimization and routine clinical application. Nuklearmedizin. 2005;44:A191–A2.

    Google Scholar 

  91. Hofmann M, Oei M, Boerner AR, et al. Comparison of Ga-68-DOTATOC and Ga-68-DOTANOC for radiopeptide PET. Nuklearmedizin. 2005;44:A58.

    Google Scholar 

  92. Putzer D, Gabriel M, Henninger B, et al. Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med. 2009;50:1214–21.

    Article  PubMed  Google Scholar 

  93. Prasad V, Ambrosini V, Hommann M, et al. Detection of unknown primary neuroendocrine tumours (CUP-NET) using 68Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging. 2009;37:67–77.

    Article  Google Scholar 

  94. Buck AC, Schirrmeister HH, Guhlmann CA, et al. Ki-67 immunostaining in pancreatic cancer and chronic active pancreatitis: does in vivo FDG uptake correlate with proliferative activity? J Nucl Med. 2001;42:721–5.

    PubMed  CAS  Google Scholar 

  95. Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4:1334–6.

    Article  PubMed  CAS  Google Scholar 

  96. von Forstner C, Egberts JH, Ammerpohl O, et al. Gene expression patterns and tumor uptake of 18F-FDG, 18F-FLT, and 18F-FEC in PET/MRI of an orthotopic mouse xenotransplantation model of ­pancreatic cancer. J Nucl Med. 2008;49:1362–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Fanti MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fanti, S., Maffione, A.M. (2013). Pancreatic Cancer. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics