Skip to main content

Measurement of Hardness and Young’s Modulus by Nanoindentation

  • Chapter
Nanostructured Coatings

Part of the book series: Nanostructure Science and Technology ((NST))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ISO Central Secretariat, Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters, ISO 14577 (ISO Central Secretariat, Geneva, Switzerland, 2002).

    Google Scholar 

  2. Determination of Hardness and Modulus of Thin Films and Coatings by Nanoindentation (INDICOAT), European project, Contract No. SMT4-CT98-2249, NPL Report MATC(A) 24, May 2001.

    Google Scholar 

  3. K. Herrmann, N. M. Jennett, S. R. J. Saunders, J. Meneve, and F. Pohlenz, Development of a standard on hardness and Young’s modulus testing of thin coatings by nanoindentation, in Proceedings of 2nd European Symposium on Nanomechanical Testing, Hückelhofen, 25–27 September, 2001, Z. Met.kd. 93(9), 879–885 (2002).

    CAS  Google Scholar 

  4. H. O’Neill, Hardness Measurement of Metals and Alloys (Chapman and Hall, London, 1967), p. 2.

    Google Scholar 

  5. F. Mohs, Grundriß der Mineralogie (Dresden, 1822).

    Google Scholar 

  6. J. B. Pethica, Microhardness test with penetration depth less than ion implanted layer thickness in ion implantation into metals, in Third International Conference on Modification of Surface Properties of Metals by Ion-Implantation, Manchester, England, 1981, June 23–26, edited by V. Ashworth, W. A. Grunt, und R. P. M. Procter (Pergamon Press, Oxford, 1982), pp. 147–157.

    Google Scholar 

  7. Universal Hardness Testing, DIN 50359 (DIN Deutsches Institut für Normung e.V., Berlin, 1997).

    Google Scholar 

  8. M. F. Doerner and W. D. Nix, A method for interpreting the data from depth sensing indentation instruments, J. Mater. Res. 1, 601–609 (1986).

    Google Scholar 

  9. W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564–1583 (1992).

    CAS  Google Scholar 

  10. I. N. Sneddon, Boussinesq’s problem for a rigid cone, Proc. Camb. Phil. Soc. 44, 492–507 (1948).

    Article  Google Scholar 

  11. L. D. Landau and F. M. Lifschitz, Lehrbuch der Theoretischen Physik. Bd. 7: Elastizitätstheorie, (Verlag Harri Deutsch, Frankfurt am Main, 1991).

    Google Scholar 

  12. A. K. Bhattacharya and W. D. Nix, Finite element analysis of cone indentation, Int. J. Solids Struct. 27, 1047–1058 (1991).

    Article  Google Scholar 

  13. G. M. Pharr, W. C. Oliver, and F. R. Brotzen, On the generality of the relationship between contact stiffness, contact area, and elastic modulus during indentation, J. Mater. Res. 7, 613–618 (1992).

    CAS  Google Scholar 

  14. H. Gao and T.-W. Wu, A note on the elastic contact stiffness of a layered medium, J. Mater. Res. 8, 3229–3233 (1993).

    Google Scholar 

  15. R. B. King, Elastic analysis of some punch problems for a layered medium, Int. J. Solids Struct. 23(12), 1657–1664 (1987).

    Article  Google Scholar 

  16. G. G. Bilodeau, Regular pyramid punch problem, J. Appl. Mech. 59, 519–523 (1992).

    Google Scholar 

  17. A. E. Giannakopoulos, P.-L. Larsson, and R. Vestergaard, Analysis of Vickers indentation, Int. J. Solids Struct. 31, 2679–2708 (1994).

    Article  Google Scholar 

  18. M. T. Hendrix, The use of shape correction factors for elastic indentation measurements, J. Mater. Res. 10, 255–258 (1995).

    CAS  Google Scholar 

  19. W. Weiler, Zur definition einer neuen Härteskala bei der Ermittlung des Härtewertes unter Prüflast, Materialprüfung 28, 217–220 (1986).

    Google Scholar 

  20. K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  21. A. C. Fischer-Cripps, Introduction to contact mechanics, in Mechanical Engineering Series (Springer, Berlin, 2000).

    Google Scholar 

  22. T. Chudoba and K. Herrmann, Verfahren zur Ermittlung der realen Spitzenform von Vickers-und Berkovich-Eindringkörpern, HTM Härterei-Tech. Mitt. 56, 258–264 (2001).

    Google Scholar 

  23. J. Meneve, J. F. Smith, N. M. Jennett, and S. R. J. Saunders, Surface mechanical property testing by depth sensing indentation, Appl. Surf. Sci. 100–101, 64–68 (1996).

    Article  Google Scholar 

  24. W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19, 3–20 (2004).

    Article  CAS  Google Scholar 

  25. T. Chudoba, N. Schwarzer, and F. Richter, Determination of elastic properties of thin films by indentation measurements with a spherical indenter, Surf. Coat. Technol. 127, 9–17 (2000).

    Article  CAS  Google Scholar 

  26. Certified Reference Materials for Depth Sensing Indentation Instrumentation (DESIRED), European Project, Contract no. G6RD-CT2000-00418, funded by the European Community under the “Competitive and Sustainable Growth” Program, finished March 2004.

    Google Scholar 

  27. K. Herrmann, N. M. Jennett, W. Wegener, J. Meneve, K. Hasche, and R. Seemann, Progress in determination of the area function of indenters used for nanoindentation, Thin Solid Films 377–378, 394–400 (2000).

    Article  Google Scholar 

  28. H. Bückle, Mikrohärteprüfung und Ihre Anwendung (Berliner Union Verlag, Stuttgart, 1965).

    Google Scholar 

  29. P. J. Burnett and D. S. Rickerby, Assessment of coating hardness, Surf. Eng. 3(1), 69–75 (1987).

    CAS  Google Scholar 

  30. M. Wittling, A. Bendavid, P. J. Martin, and M. V. Swain, Influence of thickness and substrate on the hardness and deformation of TiN films, Thin Solid Films 270, 283–288 (1995).

    Article  CAS  Google Scholar 

  31. D. Chirac and J. Lesage, Absolute hardness of films and coatings, Thin Solid Films 254, 123–130 (1995).

    Article  Google Scholar 

  32. N. G. Chechenin, J. Bøttiger, and J. P. Krog, Nanoindentation of amorphous aluminum oxide films, I: The influence of the substrate on the plastic properties, Thin Solid Films 261, 219–227 (1995).

    Article  CAS  Google Scholar 

  33. T. Chudoba, N. Schwarzer, F. Richter, and U. Beck, Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical indenter, Thin Solid Films 377–378, 366–372 (2000).

    Article  Google Scholar 

  34. A. K. Bhattacharya and W. D. Nix, Analysis of elastic and plastic deformation associated with indentation testing of thin film substrates, Int. J. Solids Struct. 24, 1287–1298 (1988).

    Article  Google Scholar 

  35. H. Gao, C.-H. Chiu, and J. Lee, Elastic contact versus indentation modeling of multi-layered materials, Int. J. Solids Struct. 29, 2471–2492 (1992).

    Article  Google Scholar 

  36. J. Menčik, D. Munz, E. Quandt, and E. R. Weppelmann, Determination of elastic modulus of thin layers using nanoindentation, J. Mater. Res. 12, 2475–2484 (1997).

    Google Scholar 

  37. A. Bolshakov and G. Pharr, Influences on pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res. 13, 1049–1058 (1998).

    CAS  Google Scholar 

  38. T. J. Bell, J. S. Field, and M. V. Swain, Stress-strain behavior of thin films using a spherical tipped indenter, Mater. Res. Soc. Symp. Proc. 239, 331–336 (1992).

    CAS  Google Scholar 

  39. J. S. Field and M. V. Swain, A simple predictive model for spherical indentation, J. Mater. Res. 8(2), 297–307 (1993).

    CAS  Google Scholar 

  40. N. Schwarzer, F. Richter, and G. Hecht, The elastic field in a coated half-space under Hertzian pressure distribution, Surf. Coat. Technol. 114, 292–304 (1999).

    Article  CAS  Google Scholar 

  41. N. Schwarzer, Arbitrary load distribution on a layered half space, ASME J. Tribol. 122, 672–681 (2000).

    Article  Google Scholar 

  42. V. I. Fabrikant, Application of Potential Theory in Mechanics: A Selection of New Results (Kluwer Academic, Dordrecht, The Netherlands, 1989).

    Google Scholar 

  43. V. I. Fabrikant, Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering (Kluwer Academic, Dordrecht, The Netherlands, 1991).

    Google Scholar 

  44. T. Chudoba, M. Griepentrog, A. Dück, D. Schneider, and F. Richter, Young’s modulus measurements on ultra-thin coatings, J. Mater. Res. 19, 301–314 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chudoba, T. (2006). Measurement of Hardness and Young’s Modulus by Nanoindentation. In: Cavaleiro, A., De Hosson, J.T.M. (eds) Nanostructured Coatings. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48756-4_6

Download citation

Publish with us

Policies and ethics