Skip to main content

Sound Processing in Real-World Environments

  • Chapter
Hearing and Sound Communication in Amphibians

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 28))

7. Conclusions

Acoustic communication in a frog’s natural environment is challenging because sound is susceptible to distortion during transmission and to masking by chorus noise. At present, knowledge of how anurans solve these communication problems is limited. This chapter describes the many interesting behavioral and physiological questions that remain unresolved. In particular, behavioral evaluations of detection, recognition, or localization have been made extensively, but mostly in quiet backgrounds. Further studies are much needed to gain insight into the auditory performances in the presence of multiple competing sounds (resembling the frog’s natural listening environments). The extent of involvement of other sensory cues in localization and recognition of mates also needs to be reexamined. Future experiments should examine frog’s behaviors either in total darkness or in an optically uniform arena. Another issue needing further study is whether frogs perform auditory grouping and source segregation, that is, whether they hear different callers within a chorus as separate perceptual objects or whether the entire auditory scene is perceived as a single object as in insects (Wendler 1989; Helversen and Helversen 1995; Helversen et al. 2001). This issue must be resolved before the search for neuronal correlates of stream segregation and auditory grouping can begin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckers OM, Schul J (2004) Phonotaxis in Hyla versicolor (Anura, Hylidae): The effect of absolute call amplitude. J Comp Physiol A 190:869–876.

    Google Scholar 

  • Bibikov NG (2002) Addition of noise enhances neural synchrony to amplitude-modulated sounds in the frog’s midbrain. Hear Res 173:21–28.

    Article  CAS  PubMed  Google Scholar 

  • Bibikov NG, Grubnik ON (1990) Detection of a periodic component of amplitude modulation against a background of noise by neurones of the torus semicircularis of the lake frog. Sens Sys 4:28–34.

    Google Scholar 

  • Bibikov NG, Grubnik ON (1996) Enhancement of neural discharge synchronization with stimulus envelope in the course of long-term adaptation. Sens Sys 10:5–18.

    Google Scholar 

  • Bibikov NG, Nizamov SV (1996) Temporal coding of low-frequency amplitude modulation in the torus semicircularis of the grass frog. Hear Res 101:23–44.

    Article  CAS  PubMed  Google Scholar 

  • Bosch J, Riva DLI (2004) Are frog calls modulated by the environment? An analysis with anuran species from Bolivia. Can J Zool 82:880–888.

    Article  Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of Animal Communication. Sunderland MA: Sinauer.

    Google Scholar 

  • Bregman A (1990) Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brush JS, Narins PM (1989) Chorus dynamics of a neotropical amphibian assemblage: Comparison of computer simulation and natural behavior. Anim Behav 37:33–44.

    Article  Google Scholar 

  • Brzoska J (1980) Quantitative studies on the elicitation of the electrodermal response by calls and synthetic acoustical stimuli in Rana lessonae Camerano, Rana ridibunda Pallas and the hybrid Rana “esculenta” L. (Anura, Amphibia). Behav Processes 5:113–141.

    Article  Google Scholar 

  • Brzoska J, Walkowiak W, Schneider H (1977) Acoustic communication in the grass frog (Rana t. temporaria L.): Calls, auditory thresholds and behavioral responses. J Comp Physiol A 118:173–186.

    Article  Google Scholar 

  • Buchanan BW (1998) Lo-illumination prey detection by squirrel treefrogs. J Herpetol 32:270–274.

    Article  Google Scholar 

  • Buus S (1985) Release from masking caused by envelope fluctuations. J Acoust Soc Am 78:1958–1965.

    Article  CAS  PubMed  Google Scholar 

  • Capranica RR, Moffat AJM (1983) Neurobehavioral correlates of sound communication in anurans. In: Ewert JP, Capranica RR, Ingle DJ eds Advances in Vertebrate Neuroethology. New York: Plenum, pp. 701–730.

    Google Scholar 

  • Chek AA, Bogart JP, Lougheed SC (2003) Mating signal partitioning in multi-species assemblages: A null model test using frogs. Ecol Lett 6:235–247.

    Article  Google Scholar 

  • Deily JA, Schul J (2004) Recognition of calls with exceptionally fast pulse rates: Female phonotaxis in the genus Neoconocephalus (Orthoptera: Tettigoniidae). J Exp Biol 207:3523–3529.

    Article  PubMed  Google Scholar 

  • Drewry GE, Rand AS (1983) Characteristics of an acoustic community: Puerto Rican frogs of the genus Eleutherodactylus. Copeia 1983:941–953.

    Article  Google Scholar 

  • Dunia R, Narins PM (1989) Tone-derived vs. tone-in-noise-derived filter functions of frog auditory nerve fibers: A comparison. Hear Res 37:241–254.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (1988) Mechanisms of sound localization in anurans. In: Fritsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W eds, The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 307–336.

    Google Scholar 

  • Ehret G, Capranica RR (1980) Masking patterns and filter characteristics of auditory nerve fibers in the green treefrog (Hyla cinerea). J Comp Physiol A 141:1–12.

    Article  Google Scholar 

  • Ehret G, Gerhardt HC (1980) Auditory masking and effects of noise on responses of the green treefrog (Hyla cinerea) to synthetic mating calls. J Comp Physiol A 141:13–18.

    Article  Google Scholar 

  • Elepfandt A, Eistettler A, Fleig E, Günther M, Hainich S, Hepperle S, Traub B (2000) Hearing threshold and frequency discrimination in the purely aquatic frog Xenopus laevis (Pipidae): Measurement by means of conditioning. J Exp Biol 203:3621–3629.

    CAS  PubMed  Google Scholar 

  • Endepols H, Walkowiak W (1999) Influence of descending forebrain projections on processing of acoustic signals and audiomotor integration in the anuran midbrain. Eur J Morphol 37:182–184.

    Article  CAS  PubMed  Google Scholar 

  • Endepols H, Walkowiak W (2001) Integration of ascending and descending inputs in the auditory midbrain of anurans. J Comp Physiol A 186:1119–1133.

    Article  CAS  Google Scholar 

  • Fantini DA, Moore BCJ, Schooneveldt (1993) Comodulation masking release as a function of type of signal, gated or continuous masking, monaural or dichotic presentation of flanking bands and center frequency. J Acoust Soc Am 93:2106–2114.

    Article  CAS  PubMed  Google Scholar 

  • Farris HE, Rand AS, Ryan MJ (2002) The effects of spatially separated call components on phonotaxis in tungara frogs: Evidence for auditory grouping. Brain Behav Evol 60(3):181–188.

    Article  PubMed  Google Scholar 

  • Fay RR, Feng AS (1987) Mechanisms for directional hearing among non-mammalian vertebrates. In: Yost WA, Gourevitch G eds Directional Hearing. New York: Springer-Verlag, pp. 179–213.

    Google Scholar 

  • Fay RR, Popper AN (1999) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag.

    Google Scholar 

  • Feng AS, Narins PM, Xu CH (2002) Vocal acrobatics in a Chinese frog, Amolops tormotus. Naturwissenschaften 89:352–356.

    Article  CAS  PubMed  Google Scholar 

  • Feng AS, Schellart NAM (1999) Central auditory processing in fish and amphibians. In: Popper AN, Fay RR (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 218–268.

    Google Scholar 

  • Feng AS, Shofner WP (1981) Peripheral basis of sound localization in anurans. Acoustic properties of the frog’s ear. Hearing Res 5:201–216.

    Article  CAS  Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phys 12:47–65.

    Article  Google Scholar 

  • Forrest TG (1994) From sender to receiver: Propagation and environmental effects on acoustic signals. Am Zool 34:644–654.

    Google Scholar 

  • Freedman EG, Ferragamo M, Simmons AM (1988) Masking patterns in the bullfrog (Rana catesbeiana). II: Physiological effects. J Acoust Soc Am 84:2081–2091.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa S, Middlebrooks JC (2001) Sensitivity of auditory cortical neurons to locations of signals and competing noise sources. J Neurophysiol 86:226–240.

    CAS  PubMed  Google Scholar 

  • Galazyuk AV, Lin WY, Llano D, Feng AS (2005) Leading inhibition to neural oscillation is important for time domain processing in the auditory midbrain. J Neurophysiol 94: 314–326.

    Article  PubMed  Google Scholar 

  • Galazyuk AV, Feng AS (2001) Oscillation may play a role in time domain central auditory processing. J Neurosci 21 (RC147): pp. 1–5.

    Google Scholar 

  • Garcia EJ, Narins PM (2001) Shared acoustic resources in an Old World frog community. Herpetologica 57:104–116.

    Google Scholar 

  • Gerhardt HC (2001) Acoustic communication in two groups of closely related treefrogs. Adv Study Behav 30:99–167.

    Article  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic Communication in Insects and Anurans. Chicago: University of Chicago Press.

    Google Scholar 

  • Gerhardt HC, Klump GM (1988a) Phonotactic responses and selectivity of barking treefrogs (Hyla gratiosa) to chorus sounds. J Comp Physiol A 163:795–802.

    Article  Google Scholar 

  • Gerhardt HC, Klump GM (1988b) Masking of acoustic signals by the chorus background noise in the green tree frog: A limitation on mate choice. Anim Behav 36:1247–1249.

    Article  Google Scholar 

  • Gerhardt HC, Schwartz JJ (2001) Auditory tuning and frequency preferences in anurans. In: Ryan MJ ed Anuran Communication. Washington: Smithsonian Institution Press, pp. 73–85.

    Google Scholar 

  • Gerhardt HC, Tanner SD, Corrigan CM, Walton HC (2000) Female preference functions based on call duration in the gray tree frog (Hyla versicolor). Behav Ecol 11:663–669.

    Article  Google Scholar 

  • Goense JBM, Feng AS (2003) Effects of noise bandwidth and modulation on signal detection for single neurons in the frog auditory midbrain. ARO Abstr 26:176.

    Google Scholar 

  • Good MD, Gilkey RH (1996) Sound localization in noise: The effect of signal-to-noise ratio. J Acoust Soc Am 99:1108–1117.

    Article  CAS  PubMed  Google Scholar 

  • Good MD, Gilkey RH, Ball JM (1997) The relation between detection in noise and localization in noise in the free field. In: Gilkey RH, Anderson TR eds Binaural and Spatial Hearing in Real and Virtual Environments. Mahwah, NJ: Erlbaum, pp. 349–376.

    Google Scholar 

  • Grafe, TU (1997) Cost and benefits of mate choice in the lek-breeding frog, Hyperolius marmoratus. Anim Behav 53:1103–1117.

    Article  Google Scholar 

  • Greenfield MD (1994) Synchronous and alternating choruses in insects and anurans: Common mechanisms and diverse functions. Amer Zool 34:605–615.

    Google Scholar 

  • Greenfield MD, Rand AS (2000) Frogs have rules: Selective attention algorithms regulate chorusing in Physalaemus pustulosus (Leptodactylidae). Ethology 106:331–347.

    Article  Google Scholar 

  • Hall JW, Grose JH (1988) Comodulation masking release: Evidence for multiple cues. J Acoust Soc Am 84:1669–1675.

    Article  PubMed  Google Scholar 

  • Hall JW, Haggard MP, Fernandes MA (1984) Detection in noise by spectro-temporal pattern analysis. J Acoust Soc Am 76:50–56.

    Article  CAS  PubMed  Google Scholar 

  • Helversen Dv, Helversen Ov (1995) Acoustic pattern recognition in orthopteran insects: Parallel or serial processing. J Comp Physiol A 177:767–774.

    Article  Google Scholar 

  • Helversen Dv, Schul J, Kleindienst HU (2001) Male recognition mechanism for female responses implies a dilemma for their localization in a phaneropterine bushcricket. J Comp Physiol A 186:1153–1158.

    Article  CAS  Google Scholar 

  • Helversen Dv, Wender G (2000) Coupling of visual to auditory cues during phonotactic approach in the phaneropterine bushcricket Poecilimon affinis. J Comp Physiol A 186: 729–736.

    Article  Google Scholar 

  • Hödl W, Amézquita A (2001) Visual signalling in anuran amphibians. In: Ryan MJ ed Anuran Communication. Washington: Smithsonian Institution Press, pp. 121–141.

    Google Scholar 

  • Jørgensen MB, Gerhardt HC (1991) Directional hearing in the gray treefrog Hyla versicolor: Eardrum vibrations and phonotaxis. J Comp Physiol A 169:177–183.

    Article  PubMed  Google Scholar 

  • Kime NM, Turner WR, Ryan MJ (2000) The transmission of advertisment calls in central American frogs. Behav Ecol 11:71–83.

    Article  Google Scholar 

  • Klump GM, Dooling RJ, Fay RR, Stebbins WC (1995) Methods in Comparative Psychoacoustics. Basel: Birkhäuser Verlag.

    Google Scholar 

  • Klump GM, Langemann U (1995) Comodulation masking release in a songbird. Hear Res 87:157–164.

    Article  CAS  PubMed  Google Scholar 

  • Klump GM, Langemann U, Friebe A, Hamann I (2001) An animal model for studying across-channel processes: CMR and MDI in the European starling. In: Breebart DJ, Houtsma AJM, Kohlrausch A, Prijs VF, Schoonhoven R eds Physiological and Psychophysical Bases of Auditory Function.Maastricht: Shaker, pp. 266–272.

    Google Scholar 

  • Lang F (2000) Acoustic communication distances of a gomphocerine grasshopper. Bioacoustics 10:233–258.

    Google Scholar 

  • Langemann U, Klump GM (2001) Signal detection in amplitude-modulated maskers: I. Behavioral auditory threshold in a songbird. Eur J Neurosci 13:1025–1032.

    Article  CAS  PubMed  Google Scholar 

  • Langendijk EHA, Kistler DJ, Wightman FL (2001) Sound localization in the presence of one to two distractors. J Acoust Soc Am 109:2123–2134.

    Article  CAS  PubMed  Google Scholar 

  • Lardner B, bin Lakim M (2002) Tree-hole frogs exploit resonance effects. Nature 420:475.

    Article  CAS  Google Scholar 

  • Larsen LO, Pedersen JN (1982) The snapping response of the toad Bufo bufo, towards prey dummies at very low light intensities. Amphibia-Reptilia 2:321–327.

    Google Scholar 

  • Lin WY, Feng AS (2001) Free-field unmasking response characteristics of frog auditory nerve fibers: Comparison with the responses of midbrain auditory neurons. J Comp Physiol A 187:699–712.

    Article  CAS  PubMed  Google Scholar 

  • Lin WY, Feng AS (2003) GABA is involved in spatial unmasking in the frog auditory midbrain. J Neurosci 23:8143–8151.

    CAS  PubMed  Google Scholar 

  • Litovski RY, Shinn-Cunningham BG (2001) Investigation of the relationship among three common measures of precedence: Fusion, localization dominance, and discrimination suppression. J Acoust Soc Am 109:346–358.

    Article  Google Scholar 

  • Littlejohn MJ (1977) Long range acoustic communication in anurans: An integrated and evolutionary approach. In: Taylor DH, Guttman SI eds The Reproductive Biology of Amphibians. New York: Plenum, pp. 263–334.

    Google Scholar 

  • Liu C, Wheeler BC, O’Brien WD Jr, Bilger RC, Lansing CR, Feng AS (2000) Localization of multiple sound sources with two microphones. J Acoust Soc Am 108:1888–1905.

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Wheeler BC, O’Brien WD Jr, Bilger RC, Lansing CR, Jones DL, Feng AS (2001) Atwo-microphone dual delay-line approach for extraction of a speech sound in the presence of multiple interferers. J Acoust Soc Am 110:3218–3231.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzi C, Gatehouse S, Lever C (1999) Sound localization in noise in normal-hearing listeners. J Acoust Soc Am 105:1810–1820.

    Article  CAS  PubMed  Google Scholar 

  • McFadden D (1986) Comodulation masking release: Effects of varying the level, duration, and time delay of the cue band. J Acoust Soc Am 80:1658–1667.

    Article  CAS  PubMed  Google Scholar 

  • Megela AL, Capranica RR (1982) Differential patterns of physiological masking in the anuran auditory nerve. J Acoust Soc Am 71:641–645.

    Article  CAS  PubMed  Google Scholar 

  • Michelsen A (1978) Sound reception in different environments. In: Ali AB ed Perspectives in Sensory Ecology. New York: Plenum, pp. 345–373.

    Google Scholar 

  • Michelsen A, Rohrseitz K (1997) Sound localisation in a habitat: An analytical approach to quantifying the degradation of directional cues. Bioacoustics 7:291–313.

    Google Scholar 

  • Moore BCJ (1990) Co-modulation masking release: Spectro-temporal pattern analysis in hearing. Br J Audiol 24:131–137.

    CAS  PubMed  Google Scholar 

  • Moore BCJ (1999) Modulation minimizes masking. Nature 397:108–109.

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ, Schooneveldt GP (1990) Comodulation masking release (CMR) as a function of bandwidth and time delay between on-frequency and flanking band maskers. J Acoust Soc Am 88:725–731.

    Article  CAS  PubMed  Google Scholar 

  • Morris MR (1991) Female choice of large males in the treefrog Hyla ebraccata. J Zoology Lond 223:371–378.

    Article  Google Scholar 

  • Moss CF, Simmons AM (1986) Frequency selectivity of hearing in the green treefrog, Hyla cinerea. J Comp Physiol A 159:257–266.

    Article  CAS  PubMed  Google Scholar 

  • Murphy CG (2003) The cause of correlations between nightly numbers of male and female barking treefrogs (Hyla gratiosa) attending choruses. Behav Ecol 14:274–281.

    Article  Google Scholar 

  • Murphy CG, Gerhardt HC (2002) Mate sampling by female barking treefrogs (Hyla gratiosa). Behav Ecol 13:472–480.

    Article  Google Scholar 

  • Narins PM (1982) Effects of masking noise on evoked calling in the Puerto Rican coqui (Anura: Leptodactylidae). J Comp Physiol A 147:439–446.

    Article  Google Scholar 

  • Narins PM (1987) Coding of signals in noise by amphibian auditory nerve fibers. Hear Res 26:145–154.

    Article  CAS  PubMed  Google Scholar 

  • Narins PM, Feng AS, Lin W, Schnitzler HU, Denzinger A, Suthers RA, Xu CH (2004) Old world frog and bird vocalizations contain prominent ultrasonic harmonics. J Acoust Soc Am 115:910–913.

    Article  PubMed  Google Scholar 

  • Narins PM, Grabul DS, Soma KK, Gaucher P, Hödl W (2005) Cross-modal integration in a dart-poison frog. Proc Natl Acad Sci USA 102:2425–2429.

    Article  CAS  PubMed  Google Scholar 

  • Narins PM, Hödl W, Grabul DS (2003) Bimodal signal requisite for agonistic behavior in the dart-poison frog, Epipedobates femoralis. Proc Natl Acad Sci USA 100:577–580.

    Article  CAS  PubMed  Google Scholar 

  • Narins PM, Wagner I (1989) Noise susceptibility and immunity of phase locking in amphibian auditory-nerve fibers. J Acoust Soc Am 85:1225–1264.

    Article  Google Scholar 

  • Narins PM, Zelick R (1988) The effects of noise on auditory processing and behavior in amphibians. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 511–536.

    Google Scholar 

  • Niemic AJ (2001) The effects of increasing masker temporal regularity on co-modulation masking thresholds in chinchillas. ARO Abstr 24:85.

    Google Scholar 

  • Niemic AJ, Florin Z, Winter A (2000) The use of spectral and temporal cues by chinchillas in co-modulation masking experiments. ARO Abstr 23:27.

    Google Scholar 

  • Padgham M (2004) Reverberation and frequency attenuation in forests-Implications for acoustic communication in animals. J Acoust Soc Am 115:402–410.

    Article  PubMed  Google Scholar 

  • Passmore NI, Capranica RR, Telford SR, Bishop PJ (1984) Phonotaxis in the painted reed frog (Hyperolius marmoratus). The localization of elevated sound sources. J Comp Physiol A 154:189–197.

    Article  Google Scholar 

  • Penna M (2004) Amplification and spectral shifts of vocalizations inside burrows of the frog Eupsophus calcaratus (Leptodactylidae). J Acoust Soc Am 116:1254–1260.

    Article  PubMed  Google Scholar 

  • Penna M, Solís R (1998) Frog call intensities and sound propagation in the South American temperate forest region. Behav Ecol Sociobiol 42:371–381.

    Article  Google Scholar 

  • Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8: 2635–2639.

    CAS  PubMed  Google Scholar 

  • Ratnam R, Feng AS (1998) Detection of auditory signals by frog inferior colliculus neurons in the presence of spatially separated noise. J Neurophysiol 80:2848–2859.

    CAS  PubMed  Google Scholar 

  • Ratnam R, Iyer N, Goense J, Feng AS (2004) Effect of reverberation on neural response to amplitude modulated signals. ARO Abstr 27:113–336.

    Google Scholar 

  • Rheinlaender J, Gerhardt HC, Yager DD (1979) Accuracy of phonotaxis by the green treefrog (Hyla cinerea). J Comp Physiol A 133:247–255.

    Article  Google Scholar 

  • Richards DG, Wiley RH (1980) Reverberations and amplitude fluctuations in the propagation of sound in a forest: implications for animal communication. Am Nat 115: 381–399.

    Article  Google Scholar 

  • Rinberg D, Davidowitz H (2003) Wind spectra and the response of the cercal system in the cockroach. J Comp Physiol A 189:867–876.

    Article  CAS  Google Scholar 

  • Römer H, Krusch M (2000) A gain control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera, Tettigoniidae). J Comp Physiol A 186:181–191.

    Article  PubMed  Google Scholar 

  • Römer H, Lewald J (1992) High-frequency sound transmission in natural habitats: Implications for the evolution of insect acoustic communication. Behav Ecol Sociobiol 29: 437–444.

    Article  Google Scholar 

  • Ryan MJ, Cocroft RB, Wilczynski W (1990) The role of environmental selection in intraspecific divergence of mate recognition signals in the cricket frog, Acris crepitans. Evolution 44:1869–1872.

    Article  Google Scholar 

  • Ryan MJ, Rand AS (1990) The sensory basis of sexual selection for complex calls in the túngara frog, Physalaemus pustulosus (sexual selection for sensory exploitation). Evolution 44:305–314.

    Article  Google Scholar 

  • Ryan MJ, Wilczynski W (1991) Evolution of intraspecific variation in the advertisement call of a cricket frog (Acris crepitans, Hylidae) Biol J Linn Soc 44:249–271.

    Google Scholar 

  • Scharf B (1970) Critical bands. In: Tobias JV ed Foundations of Modern Auditory Theory. New York: Academic, pp. 159–202.

    Google Scholar 

  • Schooneveldt GP, Moore BCJ (1987) Comodulation masking release as a function of signal frequency, flanking band frequency, masker bandwidth, and flanking band level. J Acoust Soc Am 82:1944–1956.

    Article  CAS  PubMed  Google Scholar 

  • Schul J, Bush SL (2002) Non-parallel coevolution of sender and receiver in the acoustic communication system of treefrogs, Proc Roy Soc B 269:1847–1852.

    Article  Google Scholar 

  • Schwartz JJ, Buchanan BW, Gerhardt HC (2001) Female mate choice in the gray treefrog (Hyla versicolor) in three experimental environments. Behav Ecol Sociobiol 49: 443–455.

    Article  Google Scholar 

  • Schwartz JJ, Gerhardt HC (1989) Spatially mediated release from auditory masking in an anuran amphibian. J Comp Physiol A 166:37–41.

    Article  Google Scholar 

  • Schwartz JJ, Gerhardt HC (1995) Directionality of the auditory system and call pattern recognition during acoustic interference in the gray tree frog Hyla versicolor. Audit Neurosci 1:195–206.

    Google Scholar 

  • Schwartz JJ, Gerhardt HC (1998) The neuroethology of frequency preferences in the spring peeper. Anim Behav 56:55–69.

    Article  PubMed  Google Scholar 

  • Schwartz JJ, Huth K, Lasker J (2004) Impact of the chorus environment on temporal processing of advertisement calls by gray treefrogs. Abstract 147th Meeting Acoust Soc Amer 115:2374.

    Google Scholar 

  • Schwartz JJ, Wells KD (1983) An experimental study of acoustic interference between two species of neotropical treefrogs. Anim Behav 31:181–190.

    Article  Google Scholar 

  • Strother WF (1962) Hearing in frogs. J Aud Res 2:279–286.

    Google Scholar 

  • Wang J, Narins PM (1996) Directional masking of phase locking in the amphibian auditory nerve. J Acoust Soc Am 99:1611–1620.

    Article  CAS  PubMed  Google Scholar 

  • Wendler G (1989) Acoustic orientation of crickets (Gryllus campestris) in the presence of two sound sources. Naturwissenschaften 76:128–129.

    Article  Google Scholar 

  • Wilczynski W, Ryan MJ (1999) Geographic variation in animal communication systems, In: Foster SA, Endler JA eds Geographic Variation of Behavior, pp. 234–261. New York: Oxford University Press.

    Google Scholar 

  • Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behav Ecol Sociobiol 3:69–94.

    Article  Google Scholar 

  • Wollerman L (1999) Acoustic interference limits call detection in a neotropical frog, Hyla ebraccata. Anim Behav 57:841–851.

    Article  Google Scholar 

  • Wollerman L, Wiley RH (2002) Background noise from a natural chorus alters female discrimination of male calls in a Neotropical frog. Anim Behav 63:15–22.

    Article  Google Scholar 

  • Zelick R, Narins PN (1985) Temporary threshold shift, adaptation, and recovery characteristics of frog auditory nerve fibers. Hear Res 17:161–176.

    Article  CAS  PubMed  Google Scholar 

  • Zhang HM, Xu J, Feng AS (1999) Effects of GABA-mediated inhibition on directiondependent frequency tuning in the frog inferior colliculus. J Comp Physiol A 184:85–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Feng, A.S., Schul, J. (2007). Sound Processing in Real-World Environments. In: Narins, P.M., Feng, A.S., Fay, R.R., Popper, A.N. (eds) Hearing and Sound Communication in Amphibians. Springer Handbook of Auditory Research, vol 28. Springer, New York, NY . https://doi.org/10.1007/978-0-387-47796-1_11

Download citation

Publish with us

Policies and ethics