Skip to main content

Redox Signaling in Oxygen Sensing by Vessels

  • Chapter
  • 801 Accesses

Abstract

Oxidant production and regulation is becoming increasingly important in the study of vascular signaling mechanism.Alarge number of studies during the last 50 years have provided evidence that vascular preparations show alterations in contractile function over a wide range of O2 tensions that are observed in physiological systems. Based on observations that reactive oxygen species were vasoactive and appeared to have distinct signaling mechanisms, itwas suggested that these species could function in vascular O2 sensing mechanisms that mediated responses to acute changes in pO2.1,2

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer, S.L., Will, J.A., and Weir, E.K., Redox status in the control of pulmonary vascular tone, Herz 11(3), 127–141 (1986).

    PubMed  CAS  Google Scholar 

  2. Burke, T.M., and Wolin, M.S., Hydrogen peroxide elicits pulmonary arterial relaxation and guanylate cyclase activation, Am. J. Physiol. 252(4), H721–H732 (1987).

    PubMed  CAS  Google Scholar 

  3. Wolin, M.S., Burke-Wolin, T.M., and Mohazzab, H., Roles for NAD(P)H oxidases and reactive oxygen species in vascular oxygen sensing mechanisms, Respir. Physiol. 115(2), 229–238 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. Archer, S.L., Weir, E.K., Reeve, H.L., and Michelakis, E., Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation, Adv. Exp. Med. Biol. 475, 219–240 (2000).

    PubMed  CAS  Google Scholar 

  5. Waypa, G.B., Chandel, N.S., and Schumacker, P.T., Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing, Circ. Res. 88(12), 1259–1266 (2001).

    PubMed  CAS  Google Scholar 

  6. Weir, E.K., Archer, S.L., The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels, FASEB J. 9(2), 183–189 (1995).

    PubMed  CAS  Google Scholar 

  7. Post, J.M., Hume, J.R., Archer, S.L., and Weir, E.K., Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction, Am. J. Physiol. 262(4 Pt 1), C882–C890 (1992).

    PubMed  CAS  Google Scholar 

  8. Reeve, H.L., Tolarova, S., Nelson, D.P., Archer, S., and Weir, E.K., Redox control of oxygen sensing in the rabbit ductus arteriosus, J. Physiol. 533(Pt 1), 253–261 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. Yuan, X.J., Goldman, W.F., Tod, M.L., Rubin, L.J., and Blaustein, M.P., Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes, Am. J. Physiol. 264(2 Pt 1), L116–L123 (1993).

    PubMed  CAS  Google Scholar 

  10. McMurtry, I.F., Davidson, A.B., Reeves, J.T., and Grover, R.F., Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs, Circ. Res. 38(2), 99–104 (1976).

    PubMed  CAS  Google Scholar 

  11. McMurtry, I.F., BAY K 8644 potentiates and A23187 inhibits hypoxic vasoconstriction in rat lungs, Am. J. Physiol. 249(4 Pt 2), H741–H746 (1985).

    PubMed  CAS  Google Scholar 

  12. Tolins, M., Weir, E.K., Chesler, E., Nelson, D.P., and From, A.H., Pulmonary vascular tone is increased by a voltage-dependent calcium channel potentiator, J. Appl. Physiol. 60(3), 942–948 (1986).

    PubMed  CAS  Google Scholar 

  13. Nakanishi, T., Gu, H., Hagiwara, N., and Momma, K., Mechanisms of oxygen-induced contraction of ductus arteriosus isolated from the fetal rabbit, Circ. Res. 72(6), 1218–1228 (1993).

    PubMed  CAS  Google Scholar 

  14. Roulet, M.J., Coburn, R.F., Oxygen-induced contraction in the guinea pig neonatal ductus arteriosus, Circ. Res. 49(4), 997–1002 (1981).

    PubMed  CAS  Google Scholar 

  15. Tristani-Firouzi, M., Reeve, H.L., Tolarova, S., Weir, E.K., and Archer, S.L., Oxygen-induced constriction of rabbit ductus arteriosus occurs via inhibition of a 4-aminopyridine-, voltage-sensitive potassium channel, J. Clin. Invest. 98(9), 1959–1965 (1996).

    PubMed  CAS  Google Scholar 

  16. Michelakis, E.D., Hampl, V., Nsair, A., Wu, X., Harry, G., Haromy, A., Gurtu, R., and Archer, S.L., Diversity in mitochondrial function explains differences in vascular oxygen sensing, Circ. Res. 90(12), 1307–1315 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. Archer, S.L., Wu, X.C., Thebaud, B., Moudgil, R., Hashimoto, K., and Michelakis, E.D., O2 sensing in the human ductus arteriosus: redox- sensitive K+ channels are regulated by mitochondria- derived hydrogen peroxide, Biol. Chem. 385(3–4), 205–216 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. Youngson, C., Nurse, C., Yeger, H., and Cutz, E., Oxygen sensing in airway chemoreceptors, Nature 365(6442), 153–155 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. Zulueta, J.J., Yu, F.S., Hertig, I.A., Thannickal, V.J., and Hassoun, P.M., Release of hydrogen peroxide in response to hypoxia-reoxygenation: role of an NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane, Am. J. Respir. Cell Mol. Biol. 12(1), 41–49 (1995).

    PubMed  CAS  Google Scholar 

  20. Kummer, W., Acker, H., Immunohistochemical demonstration of four subunits of neutrophil NAD(P)H oxidase in type I cells of carotid body, J. Appl. Physiol. 78(5), 1904–1909 (1995).

    PubMed  CAS  Google Scholar 

  21. Mohazzab, K.M., Wolin, M.S., Properties of a superoxide anion-generating microsomal NADH oxidoreductase, a potential pulmonary artery PO2 sensor, Am. J. Physiol. 267(6 Pt 1), L823–L831 (1994).

    PubMed  CAS  Google Scholar 

  22. Griendling, K.K., Minieri, C.A., Ollerenshaw, J.D., and Alexander, R.W., Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells, Circ. Res. 74(6), 1141–1148 (1994).

    PubMed  CAS  Google Scholar 

  23. Pagano, P.J., Tornheim, K., and Cohen, R.A., Superoxide anion production by rabbit thoracic aorta: effect of endothelium-derived nitric oxide, Am. J. Physiol. 265(2), H707–H712 (1993).

    PubMed  CAS  Google Scholar 

  24. Pagano, P.J., Ito, Y., Tornheim, K., Gallop, P.M., Tauber, A.I., and Cohen, R.A., An NADPH oxidase superoxide-generating system in the rabbit aorta, Am. J. Physiol. 268(6), H2274–H2280 (1995).

    PubMed  CAS  Google Scholar 

  25. Griendling, K.K., Ushio-Fukai, M., Redox control of vascular smooth muscle proliferation, J. Lab. Clin. Med. 132(1), 9–15 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. Ohara, Y., Peterson, T.E., and Harrison, D.G., Hypercholesterolemia increases endothelial superoxide anion production, J. Clin. Invest. 91(6), 2546–2551 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. Pagano, P.J., Chanock, S.J., Siwik, D.A., Colucci, W.S., and Clark, J.K., Angiotensin II induces p67phox mRNA expression and NADPH oxidase superoxide generation in rabbit aortic adventitial fibroblasts, Hypertension 32(2), 331–337 (1998).

    PubMed  CAS  Google Scholar 

  28. Wang, D., Youngson, C., Wong, V., Yeger, H., Dinauer, M.C., Vega-Saenz, M.E., Rudy, B., and Cutz, E., NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines, Proc. Natl. Acad. Sci. USA. 93(23), 13182–13187 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. Archer, S.L., Reeve, H.L., Michelakis, E., Puttagunta, L., Waite, R., Nelson, D.P., Dinauer, M.C., and Weir, E.K., O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase, Proc. Natl. Acad. Sci. USA. 96, 7944–7949 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. Marshall, C., Mamary, A.J., Verhoeven, A.J., and Marshall, B.E., Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction, Am. J. Respir. Cell Mol. Biol. 15(5), 633–644 (1996).

    PubMed  CAS  Google Scholar 

  31. Weissmann, N., Tadic, A., Hanze, J., Rose, F., Winterhalder, S., Nollen, M., Schermuly, R.T., Ghofrani, H.A., Seeger, W., and Grimminger, F., Hypoxic vasoconstriction in intact lungs: a role for NADPH oxidase-derived H2O2?, Am. J. Physiol. Lung Cell. Mol. Physiol. 279(4), L683–L690 (2000).

    PubMed  CAS  Google Scholar 

  32. Nozik-Grayck, E., Piantadosi, C.A., van, A.J., Alper, S.L., and Huang, Y.C., Protection of perfused lung from oxidant injury by inhibitors of anion exchange, Am. J. Physiol. 273(2), L296–L304 (1997).

    PubMed  CAS  Google Scholar 

  33. Archer, S.L., Nelson, D.P., and Weir, E.K., Simultaneous measurement of O2 radicals and pulmonary vascular reactivity in rat lung, J. Appl. Physiol. 67(5), 1903–1911 (1989).

    PubMed  CAS  Google Scholar 

  34. Paky, A., Michael, J.R., Burke-Wolin, T.M., Wolin, M.S., and Gurtner, G.H., Endogenous production of superoxide by rabbit lungs: effects of hypoxia or metabolic inhibitors, J. Appl. Physiol. 74(6), 2868–2874 (1993).

    PubMed  CAS  Google Scholar 

  35. Oury, T.D., Chang, L.Y., Marklund, S.L., Day, B.J., and Crapo, J.D., Immunocytochemical localization of extracellular superoxide dismutase in human lung, Lab. Invest. 70(6), 889–898 (1994).

    PubMed  CAS  Google Scholar 

  36. Oury, T.D., Day, B.J., and Crapo, J.D., Extracellular superoxide dismutase in vessels and airways of humans and baboons, Free Radic. Biol. Med. 20(7), 957–965 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. Stralin, P., Karlsson, K., Johansson, B.O., and Marklund, S.L., The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase, Arterioscler. Thromb. Vasc. Biol. 15(11), 2032–2036 (1995).

    PubMed  CAS  Google Scholar 

  38. Carlsson, L.M., Jonsson, J., Edlund, T., and Marklund, S.L., Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia, Proc. Natl. Acad. Sci. USA. 92(14), 6264–6268 (1995).

    Article  PubMed  CAS  Google Scholar 

  39. Mills, E., Jobsis, F.F., Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension, J. Neurophysiol. 35(4), 405–428 (1972).

    PubMed  CAS  Google Scholar 

  40. Chandel, N.S., Maltepe, E., Goldwasser, E., Mathieu, C.E., Simon, M.C., and Schumacker, P.T., Mitochondrial reactive oxygen species trigger hypoxia-induced transcription, Proc. Natl. Acad. Sci. USA. 95(20), 11715–11720 (1998).

    Article  PubMed  CAS  Google Scholar 

  41. Chandel, N.S., McClintock, D.S., Feliciano, C.E., Wood, T.M., Melendez, J.A., Rodriguez, A.M., and Schumacker, P.T., Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1a during hypoxia: a mechanism of O2 sensing, J. Biol. Chem. 275(33), 25130–25138 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. Chandel, N.S., Schumacker, P.T., Cellular oxygen sensing by mitochondria: old questions, new insight, J. Appl. Physiol. 88(5), 1880–1889 (2000).

    PubMed  CAS  Google Scholar 

  43. Budinger, G.R., Chandel, N.S., Shao, Z.H., Li, C.Q., Mehmed, A., Becker, L.B., and Schumacker, P.T., Cellular energy utilization and supply during hypoxia in embryonic cardiac myocytes, Am. J. Physiol. 270, L44–L53 (1996).

    PubMed  CAS  Google Scholar 

  44. Budinger, G.R., Duranteau, J., Chandel, N.S., and Schumacker, P.T., Hibernation during hypoxia in cardiomyocytes. Role of mitochondria as the O2 sensor, J. Biol. Chem. 273(6), 3330–3336 (1998).

    Article  Google Scholar 

  45. Michelakis, E.D., Rebeyka, I., Wu, X.C., Nsair, A., Thébaud, B., Hashimoto, K., Dyck, J.R.B., Haromy, A., Harry, G., Barr, A., and Archer, S.L., O2 sensing in the human ductus arteriosus—Regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor, Circ. Res. 91(6), 478–486 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. Waypa, G.B., Marks, J.D., Mack, M.M., Boriboun, C., Mungai, P.T., and Schumacker, P.T., Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes, Circ. Res. 91(8), 719–726 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. Archer, S.L., Huang, J., Henry, T., Peterson, D., and Weir, E.K., A redox-based O2 sensor in rat pulmonary vasculature, Circ. Res. 73(6), 1100–1112 (1993).

    PubMed  CAS  Google Scholar 

  48. Nelson, M.T., Quayle, J.M., Physiological roles and properties of potassium channels in arterial smooth muscle, Am. J. Physiol. 268(4 Pt 1), C799–C822 (1995).

    PubMed  CAS  Google Scholar 

  49. Park, M.K., Lee, S.H., Lee, S.J., Ho, W.K., and Earm, Y.E., Different modulation of Ca-activated K channels by the intracellular redox potential in pulmonary and ear arterial smooth muscle cells of the rabbit, Pflügers Arch. 430(3), 308–314 (1995).

    Article  PubMed  CAS  Google Scholar 

  50. Thuringer, D., Findlay, I., Contrasting effects of intracellular redox couples on the regulation of maxi-K channels in isolated myocytes from rabbit pulmonary artery, J. Physiol. 500(Pt 3), 583–592 (1997).

    PubMed  CAS  Google Scholar 

  51. Yuan, X.J., Voltage-gated K+ currents regulate resting membrane potential and [Ca2 +]i in pulmonary arterial myocytes, Circ. Res. 77(2), 370–378 (1995).

    PubMed  CAS  Google Scholar 

  52. Archer, S.L., Huang, J.M., Reeve, H.L., Hampl, V., Tolarova, S., Michelakis, E., and Weir, E.K., Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia, Circ. Res. 78(3), 431–442 (1996).

    PubMed  CAS  Google Scholar 

  53. Archer, S.L., Souil, E., Dinh-Xuan, A.T., Schremmer, B., Mercier, J.C., Yaagoubi, A. El, Nguyen-Huu, L., Reeve, H.L., and Hampl, V., Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes, J. Clin. Invest. 101(11), 2319–2330 (1998).

    PubMed  CAS  Google Scholar 

  54. Park, M.K., Bae, Y.M., Lee, S.H., Ho, W.K., and Earm, Y.E., Modulation of voltage-dependent K+ channel by redox potential in pulmonary and ear arterial smooth muscle cells of the rabbit, Pflügers Arch. 434(6), 764–771 (1997).

    Article  PubMed  CAS  Google Scholar 

  55. Reeve, H.L., Weir, E.K., Nelson, D.P., Peterson, D.A., and Archer, S.L., Opposing effects of oxidants and antioxidants on K+ channel activity and tone in rat vascular tissue, Exp. Physiol. 80(5), 825–834 (1995).

    PubMed  CAS  Google Scholar 

  56. Olschewski, A., Hong, Z., Peterson, D.A., Nelson, D.P., Porter, V.A., and Weir, E.K., Opposite effects of redox status on membrane potential, cytosolic calcium, and tone in pulmonary arteries and ductus arteriosus, Am. J. Physiol. Lung Cell. Mol. Physiol. 286(1), L15–L22 (2004).

    Article  PubMed  CAS  Google Scholar 

  57. Suzuki, Y.J., Cleemann, L., Abernethy, D.R., and Morad, M., Glutathione is a cofactor for H2O2-mediated stimulation of Ca2 +-induced Ca2 + release in cardiac myocytes, Free Radic. Biol. Med. 24(2), 318–325 (1998).

    Article  PubMed  CAS  Google Scholar 

  58. Boyer, C.S., Bannenberg, G.L., Neve, E.P., Ryrfeldt, A., and Moldeus, P., Evidence for the activation of the signal-responsive phospholipase A2 by exogenous hydrogen peroxide, Biochem. Pharmacol. 50(6), 753–761 (1995).

    Article  PubMed  CAS  Google Scholar 

  59. Dreher, D., Junod, A.F., Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells, J. Cell Physiol. 162(1), 147–153 (1995).

    Article  PubMed  CAS  Google Scholar 

  60. Sweetman, L.L., Zhang, N.Y., Peterson, H., Gopalakrishna, R., and Sevanian, A., Effect of linoleic acid hydroperoxide on endothelial cell calcium homeostasis and phospholipid hydrolysis, Arch. Biochem. Biophys. %20 323(1), 97–107 (1995).

    Article  CAS  Google Scholar 

  61. Az-ma, T., Saeki, N., and Yuge, O., Cytosolic Ca2 + movements of endothelial cells exposed to reactive oxygen intermediates: role of hydroxyl radical-mediated redox alteration of cell-membrane Ca2 + channels, Br. J. Pharmacol. 126(6), 1462–1470 (1999).

    Article  PubMed  CAS  Google Scholar 

  62. Shasby, D.M., Lind, S.E., Shasby, S.S., Goldsmith, J.C., and Hunninghake, G.W., Reversible oxidant-induced increases in albumin transfer across cultured endothelium: alterations in cell shape and calcium homeostasis, Blood 65(3), 605–614 (1985).

    PubMed  CAS  Google Scholar 

  63. Siflinger-Birnboim, A., Lum, H., Del Vecchio, P.J., and Malik, A.B., Involvement of Ca2 + in the H2O2-induced increase in endothelial permeability, Am. J. Physiol. 270(6), L973–L978 (1996).

    PubMed  CAS  Google Scholar 

  64. Feng, W., Liu, G., Allen, P.D., and Pessah, I.N., Transmembrane redox sensor of ryanodine receptor complex, J. Biol. Chem. 275(46), 35902–35907 (2000).

    Article  PubMed  CAS  Google Scholar 

  65. Eu, J.P., Sun, J., Xu, L., Stamler, J.S., and Meissner, G., The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions, Cell 102(4), 499–509 (2000).

    Article  PubMed  CAS  Google Scholar 

  66. Boraso, A., Williams, A.J., Modification of the gating of the cardiac sarcoplasmic reticulum Ca2 +-release channel by H2O2 and dithiothreitol, Am. J. Physiol. 267(3 Pt 2), H1010–H1016 (1994).

    PubMed  CAS  Google Scholar 

  67. Abramson, J.J., Salama, G., Sulfhydryl oxidation and Ca2 + release from sarcoplasmic reticulum, Mol. Cell. Biochem. 82(1–2), 81–84 (1988).

    PubMed  CAS  Google Scholar 

  68. Abramson, J.J., Salama, G., Critical sulfhydryls regulate calcium release from sarcoplasmic reticulum, J. Bioenerg. Biomembr. 21(2), 283–294 (1989).

    Article  PubMed  CAS  Google Scholar 

  69. Zaidi, N.F., Lagenaur, C.F., Abramson, J.J., Pessah, I., and Salama, G., Reactive disulfides trigger Ca2 + release from sarcoplasmic reticulum via an oxidation reaction, J. Biol. Chem. 264(36), 21725–21736 (1989).

    PubMed  CAS  Google Scholar 

  70. Wilson, H.L., Dipp, M., Thomas, J.M., Lad, C., Galione, A., and Evans, A.M., Adp-ribosyl cyclase and cyclic ADP-ribose hydrolase act as a redox sensor. a primary role for cyclic ADP-ribose in hypoxic pulmonary vasoconstriction, J. Biol. Chem. 276(14), 11180–11188 (2001).

    Article  PubMed  CAS  Google Scholar 

  71. Grover, A.K., Samson, S.E., Effect of superoxide radical on Ca2 + pumps of coronary artery, Am. J. Physiol. 255(3), C297–C303 (1988).

    PubMed  CAS  Google Scholar 

  72. Grover, A.K., Samson, S.E., and Fomin, V.P., Peroxide inactivates calcium pumps in pig coronary artery, Am. J. Physiol. 263(2), H537–H543 (1992).

    PubMed  CAS  Google Scholar 

  73. Bradford, J.R., Dean, H.P., The pulmonary circulation, J. Physiol. 16, 34–96 (1894).

    PubMed  CAS  Google Scholar 

  74. Euler v, U.S., Liljestrand, G., Observations on the pulmonary arterial blood pressure in the cat, Acta Physiol. Scand. 12, 301–320 (1946).

    Article  Google Scholar 

  75. Burke-Wolin, T., Abate, C.J., Wolin, M.S., and Gurtner, G.H., Hydrogen peroxide-induced pulmonary vasodilation: role of guanosine 3′,5′-cyclic monophosphate, Am. J. Physiol. 261(6), L393–L398 (1991).

    PubMed  CAS  Google Scholar 

  76. Archer, S.L., Hampl, V., Nelson, D.P., Sidney, E., Peterson, D.A., and Weir, E.K., Dithionite increases radical formation and decreases vasoconstriction in the lung. Evidence that dithionite does not mimic alveolar hypoxia, Circ. Res. 77(1), 174–181 (1995).

    PubMed  CAS  Google Scholar 

  77. Shono, T., Ono, M., Izumi, H., Jimi, S.I., Matsushima, K., Okamoto, T., Kohno, K., and Kuwano, M., Involvement of the transcription factor NF-kB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress, Mol. Cell. Biol. 16(8), 4231–4239 (1996).

    PubMed  CAS  Google Scholar 

  78. Brand, K., Page, S., Walli, A.K., Neumeier, D., and Baeuerle, P.A., Role of nuclear factor-kB in atherogenesis, Exp. Physiol. 82(2), 297–304 (1997).

    PubMed  CAS  Google Scholar 

  79. Maruyama, I., Shigeta, K., Miyahara, H., Nakajima, T., Shin, H., Ide, S., and Kitajima, I., Thrombin activates NF-k B through thrombin receptor and results in proliferation of vascular smooth muscle cells: role of thrombin in atherosclerosis and restenosis, Ann. NY Acad. Sci. 811, 429–436 (1997).

    Article  PubMed  CAS  Google Scholar 

  80. Ladoux, A., Frelin, C., Hypoxia is a strong inducer of vascular endothelial growth factor mRNA expression in the heart, Biochem. Biophys. Res. Commun. 195(2), 1005–1010 (1993).

    Article  PubMed  CAS  Google Scholar 

  81. Chua, C.C., Hamdy, R.C., and Chua, B.H., Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells, Free Radic. Biol. Med. 25(8), 891–897 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Olschewski, A., Weir, E.K. (2007). Redox Signaling in Oxygen Sensing by Vessels. In: Wang, D.H. (eds) Molecular Sensors for Cardiovascular Homeostasis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47530-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47530-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47528-8

  • Online ISBN: 978-0-387-47530-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics