Skip to main content

The Role of DEG/ENaC Ion Channels in Sensory Mechanotransduction

  • Chapter
Molecular Sensors for Cardiovascular Homeostasis

Abstract

All living organisms have the capacity to sense and respond to mechanical stimuli permeating their environment. Mechanosensory signaling constitutes the basis for the senses of touch and hearing and contributes fundamentally to development and homeostasis. Intense genetic, molecular, and elecrophysiological studies in organisms ranging from nematodes to mammals have highlighted members of the DEG/ENaC family of ion channels as strong candidates for the elusive metazoan mechanotransducer. These channels have also been implicated in several important processes including pain sensation, gametogenesis, sodium re-absorption, blood pressure regulation, and learning and memory. In this chapter, we review the evidence linking DEG/ENaC ion channels to mechanotransduction and discuss the emerging conceptual framework for a metazoan mechanosensory apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koltzenburg, M., Stucky, C.L., and Lewin, G.R., 1997, Receptive properties of mouse sensory neurons innervating hairy skin, J. Neurophysiol. 78: 1841–1850.

    PubMed  CAS  Google Scholar 

  2. Blount, P., and Moe, P.C., 1999, Bacterial mechanosensitive channels: integrating physiology, structure and function, Trends Microbiol 7: 420–424.

    PubMed  CAS  Google Scholar 

  3. Sukharev, S.I., Blount, P., Martinac, B., and Kung, C., 1997, Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities, Annu. Rev. Physiol. 59: 633–657.

    PubMed  CAS  Google Scholar 

  4. Syntichaki, P., and Tavernarakis, N., 2004, Genetic models of mechanotransduction: The nematode Caenorhabditis elegans, Physiol. Rev. 84: 1097–1153.

    PubMed  CAS  Google Scholar 

  5. Driscoll, M., and Chalfie, M., 1991, The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration, Nature 349: 588–593.

    PubMed  CAS  Google Scholar 

  6. Huang, M., and Chalfie, M., 1994, Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans, Nature 367: 467–470.

    PubMed  CAS  Google Scholar 

  7. Liu, J., Schrank, B., and Waterston, R.H., 1996, Interaction between a putative mechanosensory membrane channel and a collagen, Science 273: 361–364.

    PubMed  CAS  Google Scholar 

  8. Tavernarakis, N., Shreffler, W., Wang, S., and Driscoll, M., 1997, unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion, Neuron 18: 107–119.

    PubMed  CAS  Google Scholar 

  9. Chalfie, M., and Wolinsky, E., 1990, The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans, Nature 345: 410–416.

    PubMed  CAS  Google Scholar 

  10. Hummler, E., and Horisberger, J.D., 1999, Genetic disorders of membrane transport. V. The epithelial sodium channel and its implication in human diseases, Am. J. Physiol. 276: G567–571.

    PubMed  CAS  Google Scholar 

  11. Kellenberger, S., and Schild, L., 2002, Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure, Physiol. Rev. 82: 735–767.

    PubMed  CAS  Google Scholar 

  12. Price, M.P., Lewin, G.R., McIlwrath, S.L., Cheng, C., Xie, J., Heppenstall, P.A., Stucky, C.L., Mannsfeldt, A.G., Brennan, T.J., Drummond, H.A., et al., 2000, The mammalian sodium channel BNC1 is required for normal touch sensation, Nature 407: 1007–1011.

    PubMed  CAS  Google Scholar 

  13. Waldmann, R., and Lazdunski, M., 1998, H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels, Curr. Opin. Neurobiol. 8: 418–424.

    PubMed  CAS  Google Scholar 

  14. Lingueglia, E., Champigny, G., Lazdunski, M., and Barbry, P., 1995, Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel, Nature 378: 730–733.

    PubMed  CAS  Google Scholar 

  15. Adams, C.M., Anderson, M.G., Motto, D.G., Price, M.P., Johnson, W.A., and Welsh, M.J., 1998, Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons, J. Cell Biol. 140: 143–152.

    PubMed  CAS  Google Scholar 

  16. Darboux, I., Lingueglia, E., Pauron, D., Barbry, P., and Lazdunski, M., 1998, A new member of the amiloride-sensitive sodium channel family in Drosophila melanogaster peripheral nervous system, Biochem. Biophys. Res. Commun. 246: 210–216.

    PubMed  CAS  Google Scholar 

  17. Take-Uchi, M., Kawakami, M., Ishihara, T., Amano, T., Kondo, K., and Katsura, I., 1998, An ion channel of the degenerin/epithelial sodium channel superfamily controls the defecation rhythm in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 95: 11775–11780.

    PubMed  CAS  Google Scholar 

  18. Tavernarakis, N., and Driscoll, M., 2001a, Degenerins: At the core of the metazoan mechanotransducer? Ann. NY Acad. Sci. 940: 28–41.

    CAS  Google Scholar 

  19. Drummond, H.A., Price, M.P., Welsh, M.J., and Abboud, F.M., 1998, A molecular component of the arterial baroreceptor mechanotransducer, Neuron 21: 1435–1441.

    PubMed  CAS  Google Scholar 

  20. Price, M.P., McIlwrath, S.L., Xie, J., Cheng, C., Qiao, J., Tarr, D.E., Sluka, K.A., Brennan, T.J., Lewin, G.R., and Welsh, M.J., 2001, The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice, Neuron 32: 1071–1083.

    PubMed  CAS  Google Scholar 

  21. Sulston, J.E., and Horvitz, H.R., 1977, Post-embriyonic cell lineages of the nematode Caenorhabditis elegans, Dev. Biol. 56: 110–156.

    PubMed  CAS  Google Scholar 

  22. Sulston, J.E., Schierenberg, E., White, J. G., and Thomson, J.N., 1983, The embryonic cell lineage of the nematode Caenorhabditis elegans, Dev. Biol. 100: 64–119.

    PubMed  CAS  Google Scholar 

  23. White, J.G., Southgate, E., Thomson, J.N., and Brenner, S., 1976, The structure of the ventral nerve cord of Caenorhabditis elegans, Philos. Trans. R. Soc. Lond. B Biol. Sci. 275: 327–348.

    PubMed  CAS  Google Scholar 

  24. White, J.G., Southgate, E., Thomson, J.N., and Brenner, S., 1986, The structure of the nervous system of Caenorhabditis elegans, Philos. Trans. R. Soc. Lond. B Biol. Sci. 314: 1–340.

    Google Scholar 

  25. Francis, R., and Waterston, R.H., 1991, Muscle cell attachment in Caenorhabditis elegans, J. Cell. Biol. 114: 465–479.

    PubMed  CAS  Google Scholar 

  26. Hresko, M.C., Williams, B.D., and Waterston, R.H., 1994, Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans, J. Cell Biol. 124: 491–506.

    PubMed  CAS  Google Scholar 

  27. Walthall, W.W., 1995, Repeating patterns of motoneurons in nematodes: the origin of segmentation? EXS 72: 61–75.

    PubMed  CAS  Google Scholar 

  28. Chalfie, M., Sulston, J.E., White, J.G., Southgate, E., Thomson, J.N., and Brenner, S., 1985, The neural circuit for touch sensitivity in Caenorhabditis elegans, J. Neurosci. 5: 956–964.

    PubMed  CAS  Google Scholar 

  29. Chalfie, M., 1993, Touch receptor development and function in Caenorhabditis elegans, J. Neurobiol. 24: 1433–1441.

    PubMed  CAS  Google Scholar 

  30. Chalfie, M., 1995, The differentiation and function of the touch receptor neurons of Caenorhabditis elegans, Prog. Brain Res, 105: 179–182.

    PubMed  CAS  Google Scholar 

  31. Chalfie, M., and Sulston, J., 1981, Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans, Dev. Biol. 82: 358–370.

    PubMed  CAS  Google Scholar 

  32. Chalfie, M., and Thomson, J.N., 1982, Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans, J. Cell Biol. 93: 15–23.

    PubMed  CAS  Google Scholar 

  33. Bargmann, C.I., and Kaplan, J.M., 1998, Signal transduction in the Caenorhabditis elegans nervous system, Annu. Rev. Neurosci. 21: 279–308.

    PubMed  CAS  Google Scholar 

  34. Colbert, H.A., Smith, T.L., and Bargmann, C.I., 1997, OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans, J. Neurosi. 17: 8259–8269.

    CAS  Google Scholar 

  35. Hart, A.C., Kass, J., Shapiro, J.E., and Kaplan, J.M., 1999, Distinct signaling pathways mediate touch and osmosensory responses in a polymodal sensory neuron, J. Neurosci. 19: 1952–1958.

    PubMed  CAS  Google Scholar 

  36. Wicks, S.R., and Rankin, C.H., 1995, Integration of mechanosensory stimuli in Caenorhabditis elegans, J. Neurosci. 15: 2434–2444.

    PubMed  CAS  Google Scholar 

  37. Mah, K.B., and Rankin, C.H., 1992, An analysis of behavioral plasticity in male Caenorhabditis elegans, Behav. Neural. Biol. 58: 211–221.

    PubMed  CAS  Google Scholar 

  38. Rankin, C.H., 2002, From gene to identified neuron to behaviour in Caenorhabditis elegans, Nat. Rev. Genet. 3: 622–630.

    PubMed  CAS  Google Scholar 

  39. Katsura, I., Kondo, K., Amano, T., Ishihara, T., and Kawakami, M., 1994, Isolation, characterization and epistasis of fluoride-resistant mutants of Caenorhabditis elegans, Genetics 136: 145–154.

    PubMed  CAS  Google Scholar 

  40. The C. elegans Sequencing Consortium, 1998, Genome sequence of the nematode C. elegans: A platform for investigating biology, Science 282: 2012–2018.

    Google Scholar 

  41. Benos, D.J., and Stanton, B.A., 1999, Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels, J. Physiol. 520 Pt 3: 631–644.

    PubMed  CAS  Google Scholar 

  42. Tavernarakis, N., and Driscoll, M., 2000, Caenorhabditis elegans degenerins and vertebrate ENaC ion channels contain an extracellular domain related to venom neurotoxins, J. Neurogenet. 13: 257–264.

    PubMed  CAS  Google Scholar 

  43. Garcia-Anoveros, J., and Corey, D.P., 1997, The molecules of mechanosensation, Annu. Rev. Neurosci. 20: 567–594.

    PubMed  CAS  Google Scholar 

  44. Tepass, U., Theres, C., and Knust, E., 1990, crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia, Cell 61: 787–799.

    PubMed  CAS  Google Scholar 

  45. Rupp, F., Hoch, W., Campanelli, J.T., Kreiner, T., and Scheller, R.H., 1992, Agrin and the organization of the neuromuscular junction, Curr. Opin. Neurobiol. 2: 88–93.

    PubMed  CAS  Google Scholar 

  46. Bevilacqua, M.P., Stengelin, S., Gimbrone, M.A., Jr., and Seed, B., 1989, Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins, Science 243: 1160–1165.

    PubMed  CAS  Google Scholar 

  47. Tavernarakis, N., and Driscoll, M., 2001b, Mechanotransduction in Caenorhabditis elegans: the role of DEG/ENaC ion channels, Cell Biochem. Biophys. 35: 1–18.

    CAS  Google Scholar 

  48. Hong, K., and Driscoll, M., 1994, A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans, Nature 367: 470–473.

    PubMed  CAS  Google Scholar 

  49. Hong, K., Mano, I., and Driscoll, M., 2000, In vivo structure-function analyses of Caenorhabditis elegans MEC-4, a candidate mechanosensory ion channel subunit, J. Neurosci. 20: 2575–2588.

    PubMed  CAS  Google Scholar 

  50. Garty, H., and Palmer, L.G., 1997, Epithelial sodium channels: function, structure, and regulation, Physiol. Rev. 77: 359–396.

    PubMed  CAS  Google Scholar 

  51. Kellenberger, S., Gautschi, I., and Schild, L., 1999, A single point mutation in the pore region of the epithelial Na+ channel changes ion selectivity by modifying molecular sieving, Proc. Natl. Acad. Sci. USA 96: 4170–4175.

    PubMed  CAS  Google Scholar 

  52. Chalfie, M., and Au, M., 1989, Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons, Science 243: 1027–1033.

    PubMed  CAS  Google Scholar 

  53. Gu, G., Caldwell, G.A., and Chalfie, M., 1996, Genetic interactions affecting touch sensitivity in Caenorhabditis elegans, Proc. Natl Acad. Sci. USA 93: 6577–6582.

    PubMed  CAS  Google Scholar 

  54. Tavernarakis, N., and Driscoll, M., 1997, Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans, Annu. Rev. Physiol. 59: 659–689.

    PubMed  CAS  Google Scholar 

  55. Ernstrom, G.G., and Chalfie, M., 2002, Genetics of sensory mechanotransduction, Annu. Rev. Genet. 36: 411–453.

    PubMed  CAS  Google Scholar 

  56. Goodman, M.B., Ernstrom, G.G., Chelur, D.S., O'Hagan, R., Yao, C.A., and Chalfie, M., 2002, MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation, Nature 415: 1039–1042.

    PubMed  CAS  Google Scholar 

  57. Syntichaki, P., and Tavernarakis, N., 2003, The biochemistry of neuronal necrosis: rogue biology? Nat. Rev. Neurosci. 4: 672–684.

    PubMed  CAS  Google Scholar 

  58. Schild, L., and Kellenberger, S., 2001, Structure function relationships of ENaC and its role in sodium handling, Adv. Exp. Med. Biol. 502: 305–314.

    PubMed  CAS  Google Scholar 

  59. Schild, L., Schneeberger, E., Gautschi, I., and Firsov, D., 1997, Identification of amino acid residues in the alpha, beta, and gamma subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation, J. Gen. Physiol. 109: 15–26.

    PubMed  CAS  Google Scholar 

  60. Garcia-Anoveros, J., Garcia, J.A., Liu, J.D., and Corey, D.P., 1998, The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations, Neuron 20: 1231–1241.

    PubMed  CAS  Google Scholar 

  61. Waldmann, R., Champigny, G., and Lazdunski, M., 1995, Functional degenerin-containing chimeras identify residues essential for amiloride-sensitive Na+ channel function, J. Biol. Chem. 270: 11735–11737.

    PubMed  CAS  Google Scholar 

  62. Syntichaki, P., and Tavernarakis, N., 2002, Death by necrosis: Uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep. 3: 604–609.

    PubMed  CAS  Google Scholar 

  63. Hall, D.H., Gu, G., Garcia-Anoveros, J., Gong, L., Chalfie, M., and Driscoll, M., 1997, Neuropathology of degenerative cell death in Caenorhabditis elegans, J. Neurosci. 17: 1033–1045.

    PubMed  CAS  Google Scholar 

  64. Park, E.C., and Horvitz, H.R., 1986, Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans, Genetics 113: 821–852.

    PubMed  CAS  Google Scholar 

  65. Shreffler, W., Magardino, T., Shekdar, K., and Wolinsky, E., 1995, The unc-8 and sup-40 genes regulate ion channel function in Caenorhabditis elegans motorneurons, Genetics 139: 1261–1272.

    PubMed  CAS  Google Scholar 

  66. Shreffler, W., and Wolinsky, E., 1997, Genes controlling ion permeability in both motorneurons and muscle, Behav. Genet. 27: 211–221.

    PubMed  CAS  Google Scholar 

  67. Garcia-Anoveros, J., Ma, C., and Chalfie, M., 1995, Regulation of Caenorhabditis elegans degenerin proteins by a putative extracellular domain, Curr. Biol. 5: 441–448.

    PubMed  CAS  Google Scholar 

  68. Goodman, M.B., and Schwarz, E.M., 2003, Transducing touch in Caenorhabditis elegans, Annu. Rev. Physiol. 65: 429–452.

    PubMed  CAS  Google Scholar 

  69. Du, H., Gu, G., William, C.M., and Chalfie, M., 1996, Extracellular proteins needed for C. elegans mechanosensation, Neuron 16: 183–194.

    PubMed  CAS  Google Scholar 

  70. Rajaram, S., Spangler, T.L., Sedensky, M.M., and Morgan, P.G., 1999, A stomatin and a degenerin interact to control anesthetic sensitivity in Caenorhabditis elegans, Genetics 153: 1673–1682.

    PubMed  CAS  Google Scholar 

  71. Tavernarakis, N., Everett, J.K., Kyrpides, N.C., and Driscoll, M., 2001, Structural and functional features of the intracellular amino terminus of DEG/ENaC ion channels, Curr. Biol. 11: R205–208.

    PubMed  CAS  Google Scholar 

  72. Gillespie, P.G., and Walker, R.G., 2001, Molecular basis of mechanosensory transduction, Nature 413: 194–202.

    PubMed  CAS  Google Scholar 

  73. Hamill, O.P., and Martinac, B., 2001, Molecular basis of mechanotransduction in living cells, Physiol. Rev. 81: 685–740.

    PubMed  CAS  Google Scholar 

  74. Hudspeth, A.J., 1989, How the ear's works work, Nature 341: 397–404.

    PubMed  CAS  Google Scholar 

  75. Pickles, J.O., and Corey, D.P., 1992, Mechanoelectrical transduction by hair cells, Trends Neurosci. 15: 254–259.

    PubMed  CAS  Google Scholar 

  76. Alvarez de la Rosa, D., Krueger, S.R., Kolar, A., Shao, D., Fitzsimonds, R.M., and Canessa, C.M., 2003, Distribution, subcellular localization, and ontogeny of ASIC1 in the mammalian central nervous system, J. Physiol. 546: 77–87.

    PubMed  CAS  Google Scholar 

  77. Wemmie, J.A., Askwith, C.C., Lamani, E., Cassell, M.D., Freeman, J.H., Jr., and Welsh, M.J., 2003, Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning, J. Neurosci. 23: 5496–5502.

    PubMed  CAS  Google Scholar 

  78. Deval, E., Salinas, M., Baron, A., Lingueglia, E., and Lazdunski, M., 2004, ASIC2b-dependent regulation of ASIC3, an essential acid-sensing ion channel subunit in sensory neurons, via the partner protein PICK-1, J. Biol. Chem. 279:19531–19539. Epub 2004 Feb 19.

    PubMed  CAS  Google Scholar 

  79. Waldmann, R., Champigny, G., Lingueglia, E., De Weille, J. R., Heurteaux, C., and Lazdunski, M., 1999, H(+)-gated cation channels, Ann NY Acad. Sci. 868: 67–76.

    PubMed  CAS  Google Scholar 

  80. Alvarez de la Rosa, D., Zhang, P., Shao, D., White, F., and Canessa, C.M., 2002, Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system, Proc. Natl. Acad. Sci. USA 99: 2326–2331.

    PubMed  CAS  Google Scholar 

  81. Reeh, P.W., and Steen, K.H., 1996, Tissue acidosis in nociception and pain, Prog. Brain Res. 113: 143–151.

    PubMed  CAS  Google Scholar 

  82. Drummond, H.A., Welsh, M.J., and Abboud, F.M., 2001, ENaC subunits are molecular components of the arterial baroreceptor complex, Ann NY Acad. Sci. 940: 42–47.

    PubMed  CAS  Google Scholar 

  83. Drummond, H.A., Abboud, F.M., and Welsh, M.J., 2000, Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad, Brain Res. 884: 1–12.

    PubMed  CAS  Google Scholar 

  84. Garcia-Anoveros, J., Derfler, B., Neville-Golden, J., Hyman, B.T., and Corey, D.P., 1997, BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels, Proc. Natl. Acad. Sci. USA 94: 1459–1464.

    PubMed  CAS  Google Scholar 

  85. Price, M.P., Snyder, P.M., and Welsh, M.J., 1996, Cloning and expression of a novel human brain Na+ channel, J. Biol. Chem. 271: 7879–7882.

    PubMed  CAS  Google Scholar 

  86. Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I., and Lazdunski, M., 1996, The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans, J. Biol. Chem. 271: 10433–10436.

    PubMed  CAS  Google Scholar 

  87. Champigny, G., Voilley, N., Waldmann, R., and Lazdunski, M., 1998, Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1, J. Biol. Chem. 273: 15418–15422.

    PubMed  CAS  Google Scholar 

  88. Lingueglia, E., de Weille, J.R., Bassilana, F., Heurteaux, C., Sakai, H., Waldmann, R., and Lazdunski, M., 1997, A modulatory subunit of acid-sensing ion channels in brain and dorsal root ganglion cells, J. Biol. Chem. 272: 29778–29783.

    PubMed  CAS  Google Scholar 

  89. Chen, C.C., England, S., Akopian, A.N., and Wood, J.N., 1998, A sensory neuron-specific, proton-gated ion channel, Proc. Natl. Acad. Sci. USA 95: 10240–10245.

    PubMed  CAS  Google Scholar 

  90. Garcia-Anoveros, J., Samad, T.A., Zuvela-Jelaska, L., Woolf, C.J., and Corey, D.P., 2001, Transport and localization of the DEG/ENaC ion channel BNaC1alpha to peripheral mechanosensory terminals of dorsal root ganglia neurons, J. Neurosci. 21: 2678–2686.

    PubMed  CAS  Google Scholar 

  91. Jarvilehto, T., Hamalainen, H., and Laurinen, P., 1976, Characteristics of single mechanoreceptive fibres innervating hairy skin of the human hand, Exp. Brain Res. 25: 45–61.

    PubMed  CAS  Google Scholar 

  92. Jarvilehto, T., Hamalainen, H., and Soininen, K., 1981, Peripheral neural basis of tactile sensations in man: II. Characteristics of human mechanoreceptors in the hairy skin and correlations of their activity with tactile sensations, Brain Res. 219: 13–27.

    PubMed  CAS  Google Scholar 

  93. Chalfie, M., 1997, A molecular model for mechanosensation in Caenorhabditis elegans, Biol. Bull. 192: 125.

    PubMed  CAS  Google Scholar 

  94. Eberl, D.F., Duyk, G.M., and Perrimon, N., 1997, A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 94: 14837–14842.

    PubMed  CAS  Google Scholar 

  95. Nicolson, T., Rusch, A., Friedrich, R.W., Granato, M., Ruppersberg, J.P., and Nusslein-Volhard, C., 1998, Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants, Neuron 20: 271–283.

    PubMed  CAS  Google Scholar 

  96. Kernan, M., Cowan, D., and Zuker, C., 1994, Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila, Neuron 12: 1195–1206.

    PubMed  CAS  Google Scholar 

  97. Chelur, D.S., Ernstrom, G.G., Goodman, M.B., Yao, C.A., Chen, A.F., O'Hagan, R., and Chalfie, M., 2002, The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel, Nature in press.

    Google Scholar 

  98. Hamill, O.P., Lane, J.W., and McBride, D.W., Jr., 1992, Amiloride: a molecular probe for mechanosensitive channels, Trends Pharmacol. Sci. 13: 373–376.

    PubMed  CAS  Google Scholar 

  99. McBride, D.W., Jr., and Hamill, O.P., 1992, Pressure-clamp: a method for rapid step perturbation of mechanosensitive channels, Pflü gers Arch. 421: 606–612.

    PubMed  Google Scholar 

  100. Zhang, Y., Gao, F., Popov, V.L., Wen, J.W., and Hamill, O.P., 2000, Mechanically gated channel activity in cytoskeleton-deficient plasma membrane blebs and vesicles from Xenopus oocytes, J Physiol 523(1): 117–130.

    PubMed  CAS  Google Scholar 

  101. Walker, R.G., Willingham, A.T., and Zuker, C.S., 2000, A Drosophila mechanosensory transduction channel, Science 287: 2229–2234.

    PubMed  CAS  Google Scholar 

  102. Awayda, M.S., Ismailov, II, Berdiev, B.K., and Benos, D.J., 1995, A cloned renal epithelial Na+ channel protein displays stretch activation in planar lipid bilayers, Am. J. Physiol. 268: C1450–1459.

    PubMed  CAS  Google Scholar 

  103. Ismailov, II, Berdiev, B.K., Shlyonsky, V.G., and Benos, D.J., 1997, Mechanosensitivity of an epithelial Na+ channel in planar lipid bilayers: release from Ca2+ block, Biophys. J. 72: 1182–1192.

    PubMed  CAS  Google Scholar 

  104. Rossier, B.C., 1998, Mechanosensitivity of the epithelial sodium channel (ENaC): controversy or pseudocontroversy? J. Gen. Physiol. 112: 95–96.

    PubMed  CAS  Google Scholar 

  105. Avery, L., Raizen, D., and Lockery, S., 1995, Electrophysiological methods, Methods Cell Biol. 48: 251–269.

    PubMed  CAS  Google Scholar 

  106. Goodman, M.B., Hall, D.H., Avery, L., and Lockery, S.R., 1998, Active currents regulate sensitivity and dynamic range in C. elegans neurons, Neuron 20: 763–772.

    PubMed  CAS  Google Scholar 

  107. Bouevitch, O., Lewis, A., Pinevsky, I., Wuskell, J.P., and Loew, L.M., 1993, Probing membrane potential with nonlinear optics, Biophys. J. 65: 672–679.

    PubMed  CAS  Google Scholar 

  108. Khatchatouriants, A., Lewis, A., Rothman, Z., Loew, L., and Treinin, M., 2000, GFP is a selective nonlinear optical sensor of electrophysiological processes in Caenorhabditis elegans, Biophys. J. 79: 2345–2352.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bazopoulou, D., Voglis, G., Tavernarakis, N. (2007). The Role of DEG/ENaC Ion Channels in Sensory Mechanotransduction. In: Wang, D.H. (eds) Molecular Sensors for Cardiovascular Homeostasis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47530-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47530-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47528-8

  • Online ISBN: 978-0-387-47530-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics