Skip to main content

Doping Processes for MEMS

  • Chapter
  • First Online:
MEMS Materials and Processes Handbook

Part of the book series: MEMS Reference Shelf ((MEMSRS,volume 1))

  • 8180 Accesses

Abstract

Doping processes are utilized to modify electrical properties of semiconductors by making mobile charge carriers available in the material. Doping processes are used in MEMS devices for creating electrically conductive layers for power distribution, heaters, transducers, and other structures. Doped layers are also widely used for controlling specialty etch processes by modification of surface electrochemistry. Typical MEMS doping applications, standard processes for doping MEMS materials, and diagnostic techniques are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 319.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.D. Thurmond: The standard thermodynamic function of the formation of electrons and holes in Ge, Si, GaAs and GaP, J. Electrochem. Soc. 122, 1133–1141 (1975)

    Article  Google Scholar 

  2. B.W. Chui, M. Asheghi, Y.S. Ju, K.E. Goodson, T.W. Kenny, H.J. Mamin: Thermal conduction from microcantilever heaters in partial vacuum, Nanoscale Microscale Thermophys. Eng. 3, 217 (1999)

    Article  Google Scholar 

  3. W.A. Harrison: Electronic Structure and the Properties of Solids (W.H. Freeman and Company, San Francisco, CA, 1980)

    Google Scholar 

  4. N.W. Ashcroft, N.D. Mermin: Solid State Physics (Saunders College, Philadelphia, PA, 1976)

    Google Scholar 

  5. S.M. Sze: Physics of Semiconductor Devices (Wiley, New York, NY, 1981)

    Google Scholar 

  6. D.A. Drabold, S.K. Estreicher: Theory of Defects in Semiconductors (Springer, New York, NY, 2007)

    MATH  Google Scholar 

  7. S.M. Sze: VLSI Technology (McGraw-Hill, New York, NY, 1988)

    Google Scholar 

  8. M. Pawlik: Resistivity of n- and p-Type Si, Doping Dependence, Properties of Silicon, p. 83 (INSPEC, London, 1988)

    Google Scholar 

  9. G.L. Vick, K.M. Whittle: Solid solubility and diffusion coefficients of boron in silicon, J. Electrochem. Soc. 116, 1142–1144 (1969)

    Article  Google Scholar 

  10. F.A. Trumbore: Solid solubilities of impurity elements in germanium and silicon, Bell Syst. Techn. J. 39, 205–233 (1960)

    Google Scholar 

  11. J.S. Sandhu, J.L. Reuter: Arsenic source vapor pressure kinetics and capsule diffusion, IBM J. Res. Dev. 15, 464–471 (1971)

    Article  Google Scholar 

  12. M. Gad-el-Hak: The MEMS Handbook (CRC Press, Boca Raton, FL, 2002)

    MATH  Google Scholar 

  13. T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, J.K Kivilahti: Reactive sputter deposition and properties of TaxN thin films, Microelectron. Eng. 64, 289–297 (2002)

    Article  Google Scholar 

  14. Y. Kanda: A graphical representation of the piezoresistance coefficients in silicon, IEEE Trans. Electron Dev. 29, 64–70 (1982)

    Article  Google Scholar 

  15. P.J. French, A.G.R. Evans: Piezoresistance in polysilicon and its applications to strain gauges, Solid State Electron. 32, 1–10 (1989)

    Article  Google Scholar 

  16. L.J. Brillson: The structure and properties of metal-semiconductor interfaces, Surf. Sci. Rep. 2, 123–326 (1982)

    Article  Google Scholar 

  17. L.J. Brillson: Contacts to Semiconductors: Fundamentals and Technology (Noyes Publications, Park Ridge, NJ, 1993)

    Google Scholar 

  18. H. Robbins, B. Schwartz: Chemical etching of silicon, J. Electrochem. Soc. 106, 505–508 (1959)

    Article  Google Scholar 

  19. R.M. Finne, D.L. Klein: A water-amine complexing agent for etching silicon, J. Electrochem. Soc. 114, 965–970 (1967)

    Article  Google Scholar 

  20. J.T.L. Thong, W.K. Choi, C.W. Chong: TMAH etching of silicon and the interaction of etching parameters, Sens. Actuators A63, 243–249 (1997)

    Article  Google Scholar 

  21. H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel: Anisotropic etching of crystalline silicon in alkaline solutions I, J. Electrochem. Soc. 137, 3612–3626 (1990)

    Article  Google Scholar 

  22. K. Petersen: Silicon as a mechanical material, Proc. IEEE 70, 420–457 (1982)

    Article  Google Scholar 

  23. V.A. Ukraintsev, R. McGlothlin, M.A. Gribelyuk, H. Edwards: Strong effect of dopant concentration on etching rate, J. Vac. Sci. Technol. B 16, 476–480 (1998)

    Article  Google Scholar 

  24. H. Robbins, B. Schwartz: Chemical etching of silicon, J. Electrochem. Soc. 107, 108–111 (1960)

    Article  Google Scholar 

  25. G.T.A. Kovaks, N.I. Maluf, K.E. Petersen: Bulk micromachining of silicon, Proc. IEEE 1536–1551 (1998)

    Google Scholar 

  26. E.D. Palik, J.W. Faust, H.F. Gray, R.F. Greene: Study of the etch-stop mechanism in silicon, J. Electrochem. Soc. 129, 2051–2059 (1982)

    Article  Google Scholar 

  27. E.D. Palik, O.J. Glembocki, R.E. Stahlbush: Fabrication and characterization of Si membranes, J. Electrochem. Soc. 135, 3126–3134 (1988)

    Article  Google Scholar 

  28. H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel: Anisotropic etching of crystalline silicon in alkaline solutions II, J. Electrochem. Soc. 137, 3626–3632 (1990)

    Article  Google Scholar 

  29. E. Steinsland, M. Nese, A. Hanneborg, R. Bernstein, H. Sandmo, G. Kittilsland: Boron etch-stop in TMAH solutions, Sens. Actuators A54, 728–732 (1996)

    Article  Google Scholar 

  30. S.D. Collins: Etch stop techniques for micromachining, J. Electrochem. Soc. 144, 2242–2262 (1997)

    Article  Google Scholar 

  31. T.N. Jackson, M.A. Tischler, K.D. Wise: An electrochemical p-n junction etch-stop for the formation of silicon microstructures, IEEE Electron Dev. Lett. EDL-2, 44–45 (1981)

    Article  Google Scholar 

  32. P.M. Sarro, A.W. Van Herwaarden: Silicon cantilever beams fabricated by electrochemically controlled etching for sensor applications, J. Electrochem. Soc. 144, 1724–1729 (1986)

    Article  Google Scholar 

  33. T.E. Bell, P.T.J. Gennissen, D. DeMunter, M. Kuhl: Porous silicon as a sacrificial material, J. Micromech. Microeng. 6, 361–369 (1996)

    Article  Google Scholar 

  34. C.J.M. Eijkel, J. Branebjerg, M. Elwenspoek, C.M. Van De Pol: A new technology for micromachining of silicon: Dopant selective HF anodic etching for the realization of low-doped monocrystalline silicon structures, IEEE Electron Dev. Lett. 11, 588–589 (1990)

    Article  Google Scholar 

  35. C.M.A. Ashruf, P.J. French, P.M. Sarro, P.M.M.C. Bressers, J.J. Kelly: Electrochemical etch stop engineering for bulk micromachining, Mechatronics 8, 595–612 (1998)

    Article  Google Scholar 

  36. D. Lapadatu, M. De Cooman, R. Puers: A double-sided capacitive miniaturized accelerometer based on photovoltaic etch-stop technique, Sens. Actuators A 53, 261–266 (1996)

    Article  Google Scholar 

  37. I. Zubel, M. Kramkowska: The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions, Sens. Actuators A93, 138–147 (2001)

    Article  Google Scholar 

  38. A. Reisman, M. Berkenblit, S.A. Chan, F. B. Kaufman, D.C. Green: The controlled etching of silicon in catalyzed ethylenediamine-pyrocatechol-water solutions, J. Electrochem. Soc. 126, 1406–1415 (1979)

    Article  Google Scholar 

  39. E. Bassous, E.F. Baran: The fabrication of high precision nozzles by the anisotropic etching of (100) silicon, J. Electrochem. Soc. 125, 1321–1327 (1978)

    Article  Google Scholar 

  40. O. Tabata, R. Asahi, H. Funabashi, S. Sugiyama: Anisotropic Etching of Silicon in (CH3)4NOH Solutions, Solid State Sensors and Actuators, 1991, Digest of Technical Papers, 1991 International Conference on Transducers, San Francisco, CA, USA, June 24–28 (IEEE, 1991)

    Google Scholar 

  41. G. Kovacs, N. Maluf, K. Petersen: Bulk micromachining of silicon, Proc. IEEE 86, 1536–1551 (1998)

    Article  Google Scholar 

  42. B. Schwartz, H. Robbins: Chemical etching of silicon, J. Electrochem. Soc. 123, 1903–1909 (1976)

    Article  Google Scholar 

  43. H.A. Waggener: Electrochemically controlled thinning of silicon, Bell Syst. Tech. J. 49, 473–475 (1970)

    Google Scholar 

  44. E. Ibok, S. Garg: A characterization of the effect of deposition temperature on polysilicon properties, J. Electrochem. Soc. 140, 2927–2937 (1993)

    Article  Google Scholar 

  45. A. Baudrant, M. Sacilotti: The LPCVD polysilicon phosphorus doped in-situ as an industrial process, J. Electrochem. Soc. 129, 1109–1116 (1982)

    Article  Google Scholar 

  46. D. Briand, M. Sarret, K. Kis-Sion, T. Mohammed-Brahim, P. Duverneuil: In-Situ doping of silicon deposited by LPCVD: pressure influence on dopant incorporation mechanisms, Semicond. Sci. Technol. 14, 173–180 (1999)

    Article  Google Scholar 

  47. T. Sinno, E. Dornberger, W. Von Ammon, R.A. Brown, F. Dupret: Defect engineering of Czochralski single-crystal silicon, Mater. Sci. Eng. 28, 149–198 (2000)

    Article  Google Scholar 

  48. W. Zulehner: Czochralski growth of silicon, J. Crystal Growth 65, 189–213 (1983)

    Article  Google Scholar 

  49. T.F. Ciszek: Solid-source boron doping of float-zoned silicon, J. Crystal Growth 264, 116–122 (2004)

    Article  Google Scholar 

  50. E.F. Schubert: Delta doping of III-V compound semiconductors: fundamentals and device applications, J. Vac. Sci. Technol. A 8, 2980–2996 (1990)

    Article  Google Scholar 

  51. T.L. Chu, C.H. Lee, G.A. Gruber: The preparation and properties of amorphous silicon nitride films, J. Electrochem. Soc. 114, 717–722 (1967)

    Article  Google Scholar 

  52. D. Mathiot, J.C. Pfister: Dopant diffusion in silicon: A consistent view involving nonequilibrium defects, J. Appl. Phys. 55, 3518–3530 (1984)

    Article  Google Scholar 

  53. Y. Ishikawa, Y. Sakina, H. Tanaka, S. Matsumoto, T. Niimi: The enhanced diffusion of arsenic and phosphorus in silicon by thermal oxidation, J. Electrochem. Soc. 129, 644–648 (1982)

    Article  Google Scholar 

  54. B. Swaminathan, K.C. Saraswat, R.W. Dutton, T.I. Kamins: Diffusion of arsenic in polycrystalline silicon, Appl. Phys. Lett. 40, 795–798 (1982)

    Article  Google Scholar 

  55. P.M. Fahey, P.B. Griffin, J.D. Plummer: Point defects and dopant diffusion in silicon, Rev. Mod. Phys. 61, 289–384 (1989)

    Article  Google Scholar 

  56. M. Abramowitz, I. Stegun: Handbook of Mathematical Functions (Dover, New York, NY, 1972)

    MATH  Google Scholar 

  57. B.H. Justice, R. Aycock: Spin-On Dopant Method, U.S. Patent 4514440 (1985)

    Google Scholar 

  58. T. Aoyama, H. Tashiro, K. Suzuki: Diffusion of boron, phosphorus, arsenic, and antimony in thermally grown silicon dioxide, J. Electrochem. Soc. 146, 1879–1883 (1999)

    Article  Google Scholar 

  59. J.D. Plummer: Silicon VLSI Technology (Prentice-Hall, Englewood Cliffs, NJ, 2000)

    Google Scholar 

  60. Code available at www-tcad.stanford.edu at the time of this writing

    Google Scholar 

  61. J.F. Ziegler, J.P. Biersack, U. Littmark: The Stopping Range of Ions in Solids (Pergamon Press, New York, NY, 1985), SRIM software available for download at the time of this writing at http://www.srim.org

    Google Scholar 

  62. L.C. Northcliffe, R.F. Schilling: Range and stopping power tables for heavy ions, Nucl. Data A7, 233–463 (1970)

    Google Scholar 

  63. G. Hobler: Theoretical estimate of the low-energy limit to ion channeling, Nucl. Instrum. Meth. Phys. Res. B 115, 323–327 (1996)

    Article  Google Scholar 

  64. C. Park, K.M. Klein, A.F. Tasch: Efficient modeling parameter extraction for dual Pearson approach to simulation of implanted impurity profiles in silicon, Solid-State Electron. 33, 645–650 (1990)

    Article  Google Scholar 

  65. H.S. Chao, P.B. Griffin, J.D. Plummer: Influence of dislocation loops created by amorphizing implants on point defect and boron diffusion in silicon, Appl. Phys. Lett. 68, 3570–3572 (1996)

    Article  Google Scholar 

  66. B. Diem, P. Rey, S. Renard, S.V. Bosson, H. Bono, F. Michel, M.T. Delaye, G. Delapierre: SOI ‘Simox’: From bulk to surface micromachining, a new age for silicon sensors and actuators, Sens. Actuators A 46–47, 8–16 (1995)

    Google Scholar 

  67. M. Bruel, B. Aspar, A-J. Auberton-Herve: Smart-Cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding, Jpn. J. Appl. Phys. 36, 1636–1641 (1997)

    Article  Google Scholar 

  68. A. Anders: Handbook of Plasma Immersion Ion Implantation and Deposition (Wiley, New York, NY, 2000)

    Google Scholar 

  69. P.K. Chu, S. Qin, C. Chan, N.W. Cheung, L.A. Larson: Plasma immersion ion implantation – A fledgling technique for semiconductor processing, Mater. Sci. Eng. R17, 207–280 (1996)

    Google Scholar 

  70. M.A. Lieberman: Model of plasma immersion ion implantation, J. Appl. Phys. 66, 2926–2929 (1989)

    Article  Google Scholar 

  71. C. Yu, N. Cheung: Trench doping conformality by plasma immersion ion implantation (PIII), IEEE Electron Dev. Lett. 15, 196–198 (1994)

    Article  Google Scholar 

  72. M.J. Goeckner, S.B. Felch, Z. Fang, D. Lenoble, J. Galvier, A. Grouillet, G.C.-F. Yeap, D. Bang, M.-R. Lin: Plasma doping for shallow junctions, J. Vac. Sci. Technol. B 17, 2290–2293 (1999)

    Article  Google Scholar 

  73. N.W. Cheung: Plasma immersion ion implantation for semiconductor processing, Mater. Chem. Phys. 46, 132–139 (1996)

    Article  Google Scholar 

  74. J. Pelletier, A. Anders: Plasma-based ion implantation and deposition: A review of physics, technology, and applications, IEEE Trans. Plasma Sci. 33, 1944–1959 (2005)

    Article  Google Scholar 

  75. P.K. Chu: Recent developments and applications of plasma immersion ion implantation, J. Vac. Sci. Technol. B 22, 289–296 (2004)

    Article  Google Scholar 

  76. R.B. Fair: Rapid Thermal Processing (Academic, Boston, MA, 1993)

    Google Scholar 

  77. V.E. Borishenko, P.J. Hesketh: Rapid Thermal Processing of Semiconductors (Plenum Press, New York, NY, 1997)

    Google Scholar 

  78. T. Gebel, M. Voelskow, W. Skorupa, G. Mannino, V. Privitera, F. Priolo, E. Napolitani, A. Carnera: Flash lamp annealing with millisecond pulses for ultra-shallow boron profiles in silicon, Nucl. Instrum. Meth. Phys. Res. B 186, 287–291 (2002)

    Article  Google Scholar 

  79. C.W. White, J. Narayan, R.T. Young: Laser annealing of ion-implanted semiconductors, Science 4, 461–468 (1979)

    Article  Google Scholar 

  80. R.F. Wood, G.E. Giles: Macroscopic theory of pulsed-laser annealing, Phys. Rev. B 23, 2923–2942 (1981)

    Article  Google Scholar 

  81. S. Uchikoga, N. Ibaraki: Low-temperature poly-Si TFT-LCD by excimer laser anneal, Thin Solid Films 383, 19–24 (2001)

    Article  Google Scholar 

  82. L. Swartzendruber: Correction Factor Tables for Four-Point Probe Resistivity Measurements on Thin, Circular Semiconductor Samples, National Bureau of Standards Technical Note 199 (1964)

    Google Scholar 

  83. F.M. Smits: Measurement of sheet resistivities with the four point probe, Bell Syst. Tech. J. 5, 711–718 (1958)

    Google Scholar 

  84. J.Z. Hu, I.L. Spain: Phases of silicon at high pressure, Solid State Commun. 51, 263–266 (1984)

    Article  Google Scholar 

  85. T.H. Geballe, G.W. Hull: Seebeck effect in silicon, Phys. Rev. 98, 940–947 (1955)

    Article  Google Scholar 

  86. S. Selberherr: Analysis and Simulation of Semiconductor Devices (Springer, New York, NY, 1984)

    Book  Google Scholar 

  87. L.J. van der Pauw: A method of measuring specific resistivity and hall effect of discs of arbitrary shape, Philips Res. Rep. 13, 1–9 (1958)

    Google Scholar 

  88. R. Subrahmanyan, H.Z. Massoud, R.B. Fair: Accurate Junction-Depth Measurements Using Chemical Staining, Semiconductor Fabrication: Technology and Metrology, pp. 126–149 (American Society for Testing and Materials, Ann Arbor, MI, 1989)

    Book  Google Scholar 

  89. J.L. Vossen, W. Kern: Thin Film Processes (Academic, San Diego, CA, 1978)

    Google Scholar 

  90. A.W. Czanderna, T.E. Madey, C.J. Powell: Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis (Plenum Press, New York, NY, 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Raisanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Raisanen, A.D. (2011). Doping Processes for MEMS. In: Ghodssi, R., Lin, P. (eds) MEMS Materials and Processes Handbook. MEMS Reference Shelf, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47318-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47318-5_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47316-1

  • Online ISBN: 978-0-387-47318-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics