Skip to main content

The MEMS Design Process

  • Chapter
  • First Online:
MEMS Materials and Processes Handbook

Part of the book series: MEMS Reference Shelf ((MEMSRS,volume 1))

  • 8338 Accesses

Abstract

Today’s ubiquitous commercial MEMS devices, such as accelerometers, inkjet printheads, pressure sensors, and micromirror arrays, took 10–20 years from first report to commercialization. Timelines from initial development through product release for some successful MEMS commercial products have been getting shorter as MEMS technologies have matured. Companies can no longer afford such long development times. MEMS development time can be systematically shortened through the use of structured design methods. This chapter overviews the design process and design methods, illustrating structured design methods through case studies. We suggest reading this chapter prior to getting into the details of materials and process seletion, and applying the methods described to shorten development time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 319.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.S. Smith: Piezoresistance effect in germanium and silicon, Phys. Rev. 94, 42–49 (1954)

    Article  Google Scholar 

  2. H.A. Nielsen: From Locomotives to Strain Gauges (Vantage Press, New York, NY, 1985)

    Google Scholar 

  3. S.C. Terry, J.H. Jerman, J.B. Angell: A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Trans. Electron Dev. ED-26, 1880–1886 (1979)

    Article  Google Scholar 

  4. L.J. Hornbeck: Digital light processing and MEMS: Timely convergence for a bright future. Proceedings of SPIE, 2639, 1–21 (1995)

    Google Scholar 

  5. J.A. Hoerni: Planar Silicon Diodes and Transistors. Proceedings of the International Electron Devices Meeting, pp. 50–50 (1960)

    Google Scholar 

  6. W.G. Pfann, R.N. Thurston: Semiconducting stress transducers utilizing the transverse and shear piezoresistance effects, J. Appl. Phys. 32, 2008–2019 (1961)

    Article  Google Scholar 

  7. O.N. Tufte, P.W. Chapman, D. Long: Silicon diffused-element piezoresistive diaphragms, J. Appl. Phys. 33, 3322–3327 (1962)

    Article  Google Scholar 

  8. K.E. Petersen: Silicon as a mechanical material, Proc. IEEE 70, 420–457 (1982)

    Article  Google Scholar 

  9. Y. Kanda: A graphical representation of the piezoresistance coefficients in silicon, IEEE Trans. Electron Dev. 29, 64–70 (1982)

    Article  Google Scholar 

  10. O.N. Tufte, E.L. Stelzer: Piezoresistive properties of silicon diffused layers, J. Appl. Phys. 34, 313–318 (1963)

    Article  Google Scholar 

  11. W.D. Cussins: Effects produced by the ionic bombardment of germanium, Proc. Phys. Soc. Lond. 68, 213–222 (1955)

    Article  Google Scholar 

  12. B.W. Chui, T.W. Kenny, H.J. Mamin, B.D. Terris, D. Rugar: Independent detection of vertical and lateral forces with a sidewall-implanted dual-axis piezoresistive cantilever, Appl. Phys. Lett. 72, 1388–1390 (1998)

    Article  Google Scholar 

  13. M. Tortonese, R.C. Barrett, C.F. Quate: Atomic resolution with an atomic force microscope using piezoresistive detection, Appl. Phys. Lett. 62, 834–836 (1993)

    Article  Google Scholar 

  14. J.A. Harley, T.W. Kenny: 1/f noise considerations for the design and process optimization of piezoresistive cantilevers, J. Microelectromech. Syst. 9, 226–235 (2000)

    Article  Google Scholar 

  15. K. Matsuda, K. Suzuki, K. Yamamura, Y. Kanda: Nonlinear piezoresistance effects in silicon, J. Appl. Phys. 73, 1838–1847 (1993)

    Article  Google Scholar 

  16. R.J. Wilfinger, P.H. Bardell, D.S. Chhabra: The resonistor: A frequency selective device utilizing the mechanical resonance of a silicon substrate, IBM J. Res. Dev. 12, 113–118 (1968)

    Article  Google Scholar 

  17. T.N. Jackson, M.A. Tischler, K.D. Wise: An electrochemical P-N junction etch-stop for the formation of silicon microstructures, IEEE Electron Dev. Lett. 2, 44–45 (1981)

    Article  Google Scholar 

  18. K. Petersen, P. Barth, J. Poydock, J. Brown, J.J. Mallon, J. Bryzek: Silicon Fusion Bonding for Pressure Sensors. Proceedings of the IEEE Solid-State Sensor and Actuator Workshop (Hilton Head Island, SC), pp. 144–147 (1988)

    Google Scholar 

  19. L. Roylance, J. Angell: Batch-fabricated silicon accelerometer, IEEE Trans. Electron Dev. 26, 1911–1917 (1979)

    Article  Google Scholar 

  20. K.-Y. Ng, J. Shajii, M.A. Schmidt: A Liquid Shear-Stress Sensor Fabricated Using Wafer Bonding Technology. Proceedings of the International Conference on Solid-State Sensors and Actuators, TRANSDUCERS’91, San Francisco, pp. 931–934 (1991)

    Google Scholar 

  21. J. Bardeen, W.H. Brattain: The transistor, a semi-conductor triode, Phys. Rev. 74, 230 (1948)

    Article  Google Scholar 

  22. D.I. Pomerantz: Anodic Bonding, US Patent No. 3,397,278, Oct 3, 1968

    Google Scholar 

  23. R. Noyce: Semiconductor Device-and-Lead Structure, US Patent No. 2,981,877, April 25, 1961

    Google Scholar 

  24. W.F. Brinkman, D.E. Haggan, W.W. Troutman: A history of the invention of the transistor and where it will lead us, IEEE J. Solid-State Circuits 32, 1858–1865 (1997)

    Article  Google Scholar 

  25. R.M. Finne, D.L. Klein: A water-amine-complexing agent system for etching silicon, J. Electrochem. Soc. 114, 965–970 (1967)

    Article  Google Scholar 

  26. C.S. Fuller: Diffusion of donor and acceptor elements into germanium, Phys. Rev. 86, 136 (1952)

    Article  Google Scholar 

  27. S.M. Hu: Formation of stacking faults and enhanced diffusion in the oxidation of silicon, J. Appl. Phys. 45, 1567–1573 (1974)

    Article  Google Scholar 

  28. E.B. Karlsson: The Nobel Prize in Physics, In A.W. Levinovitz, N. Ringertz (Eds.): The Nobel Prize: The First 100 Years, p. 235 (World Scientific, Singapore, 2001)

    Google Scholar 

  29. J.S.C. Kilby: Turning potential into realities: The invention of the integrated circuit (Nobel lecture), ChemPhysChem 2, 482–489 (2001)

    Article  Google Scholar 

  30. F. Laermer, A. Schilp: Method of anisotropically etching silicon, US Patent No. 6,284,198, Mar 26, 1996

    Google Scholar 

  31. J.B. Lasky: Wafer bonding for silicon-on-insulator technologies, Appl. Phys. Lett. 48, 78–80 (1986)

    Article  Google Scholar 

  32. J.F. Marshall: Method for electrolytically etching semiconductor material, US Patent No. 4,054,497, Oct 18, 1977

    Google Scholar 

  33. M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa: Silicon-to-silicon direct bonding method, J. Appl. Phys. 60, 2987–2989 (1986)

    Article  Google Scholar 

  34. A.A. Barlian, W.-T. Park, J.R. Mallon Jr., A.J. Rastegar, B.L. Pruitt: Semiconductor piezoresistance for microsystems, Proc. IEEE, 97, 513–552 (2009)

    Article  Google Scholar 

  35. B. Bae, B.R. Flachsbart, K. Park, M.A. Shannon: Design optimization of a piezoresistive pressure sensor considering the output signal-to-noise ratio, J. Micromech. Microeng., 14, 1597–1607 (2004)

    Article  Google Scholar 

  36. S.D. Senturia: Microsystem Design, p. 720 (Springer, New York, NY, 2004)

    Google Scholar 

  37. N. Yazdi, F. Ayazi, K. Najafi: Micromachined inertial sensors, Proc. IEEE, 86, 1640–1659 (1998)

    Article  Google Scholar 

  38. J.B. Revelle, J.W. Moran, C. Cox: The QFD Handbook (Wiley, New York, NY, 1998)

    Google Scholar 

  39. K. Ishii, M.V. Martin: QFD Template (Stanford University Manufacturing Modeling Lab Course Website, 2000)

    Google Scholar 

  40. M.R. Douglass: DMD Reliability: A MEMS Success Story. Proceedings of the Reliability, Testing, and Characterization of MEMS/MOEMS II, Bellingham, WA, (2003)

    Google Scholar 

  41. M.R. Douglass: Development of the Digital Micromirror Device (DMD) Microsystem. Proceedings of the Second Mechatronics and Microsystems Symposium (2005)

    Google Scholar 

  42. M.G. daSilva: MEMS Design for Manufacturability (DFM). Proceedings of the Sensors Expo, Rosemont, IL, (2002)

    Google Scholar 

  43. K.L. Lamers: Components of an Improved Design Process for Micro-Electro-Mechanical Systems, Doctoral Dissertation, Stanford University (2008)

    Google Scholar 

  44. Y. Akao: New product development and quality assurance – quality deployment system, Standard. Qual. Control 25, 9–14 (1972)

    Google Scholar 

  45. H. Nishimura: Ship design and quality table, Jpn. Union Sci. Eng. Qual. Control 23, 16–20 (1972)

    Google Scholar 

  46. J. Hauser, D. Clausing: The house of quality, Harv. Bus. Rev. May–June, No. 3, 63–73 (1988)

    Google Scholar 

  47. M.V. Martin, K. Ishii: ME 317 Design for Manufacturability Course Reader: Section 3.2. Introduction to Quality Function Deployment (2000)

  48. S. Pugh: Concept Selection – A Method That Works, in Creating Innovative Products Using Total Design, pp. 167–176 (Clausing, D., Andrade, R. (Eds.) Addison-Wesley, Reading, MA, 1996)

    Google Scholar 

  49. T. Kelley: The Art of Innovation (Currency/Doubleday, New York, NY, 2001)

    Google Scholar 

  50. T.L. Lamers, R.S. Fazzio: Accelerating Development of a MEMS Piezoelectric Microphone. Proceedings of the 2007 ASME IDETC, Las Vegas, NV (2007)

    Google Scholar 

  51. P. Loeppert: Personal communication to Lamers, T.L., interview by Tina Lamers, Denver, CO, 6/23 (2009)

    Google Scholar 

  52. P. Loeppert: Personal communication to Lamers, T.L., email to Tina Lamers, 8/17 (2009)

    Google Scholar 

  53. V.T. Srikar, S.M. Spearing: Materials selection in micromechanical design: An application of the Ashby approach, J. Microelectromech. Syst. 12, 3–10 (2003)

    Article  Google Scholar 

  54. D.J. Quinn, S.M. Spearing, M.F. Ashby, N.A. Fleck: A systematic approach to process selection in MEMS, J. Microelectromech. Syst. 15, 1039–1050 (2006)

    Article  Google Scholar 

  55. G.T.A. Kovacs: Micromachined Transducers Sourcebook (McGraw-Hill, Boston, MA, 1998)

    Google Scholar 

  56. M.J. Madou: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC Press, Boca Raton, FL, 2002)

    Google Scholar 

  57. S. Timoshenko, S. Woinowsky-Krieger: Theory of Plates and Shells: Chapter 3, pp. 51–56 (McGraw-Hill, New York, NY, 1959)

    Google Scholar 

  58. M. Liu, K. Maute, D.M. Frangopol: Multi-objective design optimization of electrostatically actuated microbeam resonators with and without parameter uncertainty, Reliab. Eng. Syst. Safety 92, 1333–1343 (2007)

    Article  Google Scholar 

  59. A.A. Barlian, S.-J. Park, V. Mukundan, B.L. Pruitt: Design and characterization of microfabricated piezoresistive floating element-based shear stress sensors, Sens. Act. A: Phys. 134, 77–87 (2007)

    Article  Google Scholar 

  60. J.C. Doll, S.-J. Park, B.L. Pruitt: Design optimization of piezoresistive cantilevers for force sensing in air and water, J.Appl. Phys. 106, 064310 (2009)

    Article  Google Scholar 

  61. J.C. Liu, S.C. Heilshorn, D.A. Tirrell: Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains, Biomacromolecules, 5, 497–504 (2004)

    Article  Google Scholar 

  62. S.-J. Park, A.J. Rastegar, T.H. Fung, A.A. Barlian, J.R. Mallon, B.L. Pruitt: Optimization of piezoresistive cantilever performance. Proceedings of the Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, pp. 98–101 (2008)

    Google Scholar 

  63. R. Bharadwaj, J.G. Santiago, B. Mohammadi: Design and optimization of on-chip capillary electrophoresis, Electrophoresis 23, 2729–2744 (2002)

    Article  Google Scholar 

  64. S. Bhardwaj, M. Sheplak, T. Nishida: Signal to noise optimization and noise considerations for piezoresistive microphones. Proceedings of the 16th International Conference on Noise in Physical Systems and 1/f Fluctuations, Gainesville, FL (2001)

    Google Scholar 

  65. G.E.P. Box, W.G. Hunter, J.S. Hunter: Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building (Wiley, New York, NY, 1978)

    MATH  Google Scholar 

  66. J.P. Holman: Experimental Methods for Engineers, 7th ed. (McGraw-Hill, New York, NY, 2000)

    Google Scholar 

  67. K.O. Abrokwah, P.R. Chidambaram, D.S. Boning: Pattern based prediction for plasma etch, IEEE Trans. Semicond. Manuf. 20, 77–86 (2007)

    Article  Google Scholar 

  68. D.S. Boning, J.E. Chung: Statistical metrology: Understanding spatial variation in semiconductor manufacturing. Proceedings of the SPIE Symposium on Microelectronic Manufacturing, Microelectronic Manufacturing Yield, Reliability, and Failure Analysis II, Austin, TX (1996)

    Google Scholar 

  69. S. Reh, P. Lethbridge, D.F. Ostergaard: Quality based design and design for reliability of micro electro mechanical systems (MEMS) using probabilistic methods. Proceedings of the International Conference on Modeling and Simulation of Microsystems, San Diego, CA, pp. 708–711 (2000)

    Google Scholar 

  70. P. Palady: Failure Modes and Effects Analysis, Author’s Edition, 2nd ed. (Pal Publications, Pottstown, PA, 1998)

    Google Scholar 

  71. R.E. McDermott, R.J. Mikulak, M.R. Beauregard: The Basics of FMEA (Productivity Press, NY, NY, 1996)

    Google Scholar 

Download references

Acknowledgments

We dedicate this chapter to the late Professor Kos Ishii of Stanford University who championed design methodologies across engineering disciplines; he was a friend, a mentor, and an inspiration to the authors. The authors are grateful to Dr. Markus Lutz, Dr. Robert Candler, and Dr. Pete Loeppert for helpful discussions and suggestions. The authors thank the Avago Technologies FBAR development team, particularly Shane Fazzio and Atul Goel, for their assistance on the acoustic sensor work. Dr. Pruitt was supported in part by the National Science Foundation (NSF) under CAREER Award ECS-0449400, COINS NSF-NSEC ECS-0425914, CPN PHY-0425897, Sensors CTS-0428889 and NER ECCS-0708031. Dr. Lamers was supported in part by an NSF Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina L. Lamers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lamers, T.L., Pruitt, B.L. (2011). The MEMS Design Process. In: Ghodssi, R., Lin, P. (eds) MEMS Materials and Processes Handbook. MEMS Reference Shelf, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47318-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47318-5_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47316-1

  • Online ISBN: 978-0-387-47318-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics