Skip to main content

Predictive Capabilities and Limitations of Molecular Simulations

  • Chapter
  • First Online:
Book cover Atomistic and Continuum Modeling of Nanocrystalline Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 112))

Atomistic simulations – in which the position, velocity, and energy (among others) of each atom within a group of atoms subjected to various types of external constraints (e.g., displacement, temperature, stress) can be predicted – are particularly suited to study the response of nanocrystalline (NC) materials. Indeed, the size of numerically generated microstructures, typically varying from ~105 up to ~3.106 atoms, is sufficient to study both local processes, such as the emission of a dislocation from bicrystals, and larger scale processes, such as grain growth via grain boundary coalescence. The amazing predictive capabilities provided by atomistic simulations are unfortunately limited (1) by their computational cost and (2) by the description of the interaction between atoms via use of an energy potential function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burghaus, U., J. Stephan, L. Vattuone, and J.M. Rogowska, A Practical Guide to Kinetic Monte Carlo Simulations and Classical Molecular Dynamics Simulations. Nova Science, New York, (2005)

    Google Scholar 

  2. Rapaport, D.C., The Art of Molecular Dynamics Simulation. Cambridge University Press, New York, (1995)

    Google Scholar 

  3. Chapra, C. and R.P. Canale, Numerical Methods for Engineers. McGraw-Hill, New York, (2005)

    Google Scholar 

  4. Kubo, R., Statistical Mechanics. North Holland, Amsterdam, (1988)

    Google Scholar 

  5. Wannier, G.H., Statistical Physics. Dover Publications, New York, (1966)

    Google Scholar 

  6. Hoover, W.G., ed. Proceedings of the International School of Physics – Enrico Fermi- Molecular Dynamics Simulations of Statistical Mechanical Systems. North Holland: Amsterdam, (1985)

    Google Scholar 

  7. Hildebrand, F.B., Methods of Applied Mathematics, Dover Publications, New York, (1992)

    Google Scholar 

  8. Hohenberg, P. and W. Kohn, Physical Review 136, (1964)

    Google Scholar 

  9. Kohn, W. and L.J. Sham, Physical Review 140, (1965)

    Google Scholar 

  10. Daw, M.S. and M.I. Baskes, Physical Review B 29, (1984)

    Google Scholar 

  11. Foiles, S.M., M.I. Baskes, and M.S. Daw, Physical Review B 33, (1986)

    Google Scholar 

  12. Finnis, M.W. and J.E. Sinclair, Philosophical Magazine A 50, (1984)

    Google Scholar 

  13. Daw, M.S., Physical Review B 39, (1989)

    Google Scholar 

  14. Baskes, M.I., Physical Review B 46, (1992)

    Google Scholar 

  15. Chandler, D., Introduction to Modern Statistical Mechanics. Oxford University Press, New York, (1987)

    Google Scholar 

  16. Holian, B.L., H.A. Posch, and W.G. Hoover, Physical Review A 42, (1990)

    Google Scholar 

  17. Hoover, W.G., A.J.C. Ladd, and B. Moran, Physical Review Letters 48, 1818–1820 (1982)

    Article  CAS  Google Scholar 

  18. Nose, S., Molecular Physics 52, (1984)

    Google Scholar 

  19. Nose, S., Molecular Physics 57, (1986)

    Google Scholar 

  20. Melchionna, S., G. Ciccotti, and B.L. Holian, Molecular Physics 78, (1993)

    Google Scholar 

  21. Spearot, D., Atomistic Calculations of Nanoscale Interface Behaviors in FCC Metals. Georgia Institute of Technology, Atlanta, GA, (2005)

    Google Scholar 

  22. Tsai, D.H., Journal of Chemical Physics (1979)

    Google Scholar 

  23. Kelchner, C.L., S.J. Plimpton, and J.C. Hamilton, Physical Review B 58, (1998)

    Google Scholar 

  24. Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations. Upper Saddle River, NJ: Prentice Hall, (1971)

    Google Scholar 

  25. Rittner, J.D. and D.N. Seidman, Physical Review B 54, (1996)

    Google Scholar 

  26. Haslam, A.J., S.R. Phillpot, D. Wolf, D. Moldovan, and H. Gleiter, Materials Science and Engineering A 318, (2001)

    Google Scholar 

  27. Van Swygenhoven, H., P.M. Derlet, and A.G. Froseth, Acta Materialia 54, (2006)

    Google Scholar 

  28. Parrinello, M. and A. Rahman, Journal of Applied Physics 52, (1981)

    Google Scholar 

  29. Yamakov, V., D. Wolf, S.R. Phillpot, and H. Gleiter, Acta Materialia (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Cherkaoui .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cherkaoui, M., Capolungo, L. (2009). Predictive Capabilities and Limitations of Molecular Simulations. In: Atomistic and Continuum Modeling of Nanocrystalline Materials. Springer Series in Materials Science, vol 112. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46771-9_4

Download citation

Publish with us

Policies and ethics