Skip to main content

Frequency-Domain Lifetime Measurements

  • Chapter

Abstract

In the preceding chapter we described the theory and instrumentation for measuring fluorescence intensity decays using time-domain measurements. In the present chapter we continue this discussion, but describe frequency-domain fluorometry. In this method the sample is excited with light that is intensity modulated at a high frequency comparable to the reciprocal of the lifetime. When this is done, the emission is intensity modulated at the same frequency. However, the emission does not precisely follow the excitation, but rather shows time delays and amplitude changes that are determined by the intensity decay law of the sample. The time delay is measured as a phase angle shift between the excitation and emission, as was shown in Figure 4.2. The peak-to-peak height of the modulated emission is decreased relative to the modulated excitation, and provides another independent measure of the lifetime.

Time-resolved measurements, whether performed in the time domain or in the frequency domain, provides information about intensity decay of the sample. Samples with multiple fluorophores typically display multi-exponential decays. Even samples with a single fluorophore can display complex intensity decays due to conformational heterogeneity, resonance energy transfer, and transient effects in diffusive quenching or fluorophore—solvent interactions, to name just the most common origins. The goal of the time-resolved measurement is to determine the form of the intensity decay law, and to interpret the decay in terms of molecular features of the sample.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gratton E, Limkeman M. 1983. A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys J 44:315–324.

    Article  CAS  Google Scholar 

  2. Lakowicz JR, Maliwal BP. 1985. Construction and performance of a variable-frequency phase-modulation fluorometer. Biophys Chem 21:61–78.

    Article  CAS  Google Scholar 

  3. Lakowicz JR, Gryczynski I. 1991. Frequency-domain fluorescence spectroscopy. In Topics in fluorescence spectroscopy. Vol 1: Techniques, pp. 293–355. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  4. Gratton E. 1984. The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl Spectrosc Rev 20(1):55–106.

    Article  Google Scholar 

  5. Gratton E, Jameson DM, Hall RD. 1984. Multifrequency phase and modulation fluorometry, Ann Rev Biophys Bioeng 13:105–124.

    Article  CAS  Google Scholar 

  6. Lakowicz JR. 1986. Biochemical applications of frequency-domain fluorometry. In Applications of fluorescence in the biomedical sciences, pp. 225–244. Ed D Lansing, AS Waggoner, F Lanni, RF Murphy, RR Birge. Alan R. Liss, New York.

    Google Scholar 

  7. Bright FV, Betts TA, Litwiler KS. 1990. Advances in multifrequency phase and modulation fluorescence analysis. Anal Chem 21:389–405.

    CAS  Google Scholar 

  8. Lakowicz JR. 1985. Frequency-domain fluorometry for resolution of time-dependent fluorescence emission. Spectroscopy 1:28–37.

    Google Scholar 

  9. Rabinovich EM, O’Brien M, Srinivasan B, Elliott S, Long X-C, Ravinder KJ. 1998. A compact, LED-based phase fluorimeter-detec-tion system for chemical and biosensor arrays, SPIE Proc 3258:2–10.

    Article  CAS  Google Scholar 

  10. Bevington PR, Robinson DK. 1992. Data reduction and error analysis for the physical sciences. McGraw-Hill, New York.

    Google Scholar 

  11. Taylor JR. 1982. An introduction to error analysis, the study of uncertainties in physical measurements. University Science Books, Mill Valley, CA.

    Google Scholar 

  12. Lakowicz JR, Laczko G, Cherek H, Gratton E, Limkeman M. 1984. Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys J 46:463–477.

    Article  CAS  Google Scholar 

  13. Gratton E, Limkeman M, Lakowicz JR, Maliwal B, Cherek H, Laczko G. 1984. Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys J 46:479–486.

    Article  CAS  Google Scholar 

  14. Straume M, Frasier-Cadoret SG, Johnson ML. 1991. Least-squares analysis of fluorescence data. In Topics in fluorescence spectroscopy. Vol. 2: Principles, pp. 177–239. Plenum Press, New York.

    Chapter  Google Scholar 

  15. Johnson ML. 1994. Use of least-squares techniques in biochemistry. Methods Enzymol 240:1–22.

    Article  Google Scholar 

  16. Johnson ML, Faunt LM. 1992. Parameter estimation by least-squares methods. Methods Enzymol 210:1–37.

    Article  CAS  Google Scholar 

  17. Klein UKA. 1984. Picosecond fluorescence decay studied by phase fluorometry and its application to the measurement of rotational diffusion in liquids. Arabian J Sci Eng 9(4):327–344.

    CAS  Google Scholar 

  18. Gaviola Z. 1926. Ein Fluorometer, apparat zur messung von fluo-reszenzabklingungszeiten. Z Phys 42:853–861.

    Google Scholar 

  19. Wood RW. 1921. The time interval between absorption and emission of light in fluorescence. Proc Roy Soc London A 99:362–371.

    Article  CAS  Google Scholar 

  20. Abraham H, Lemoine T. 1899. C R Hebd Seanas Acad Sci 129:206–208. As cited in reference [23].

    Google Scholar 

  21. Duschinsky VF. 1933. Der zeitliche intensitatsverlauf von intermittierend angeregter resonanzstrahlung. Z Phys 81:7–22.

    Article  CAS  Google Scholar 

  22. Szymanowski W. 1935. Verbesserte fluorometermethode zur messung der abklingzeiten der fluoreszensatrahlung. Z Phys 95:440–449.

    Article  CAS  Google Scholar 

  23. Tumerman LA. 1941. On the law of decay of luminescence of complex molecules. J Phys (USSR) 4:151–166.

    CAS  Google Scholar 

  24. Maercks VO. 1938. Neuartige fluorometer. Z Phys 109:685–699.

    Article  CAS  Google Scholar 

  25. Hupfeld VH-H. 1929. Die nachleuchtdauern der J2-, K2-, Na2- und Na-resonanzstrahlung. Z Phys 54:484–497.

    Article  CAS  Google Scholar 

  26. Schmillen A. 1953. Abklingzeitmessungen an flussigen und festen losungen mit einem neuen fluorometer. Z Phys 135:294–308.

    Article  CAS  Google Scholar 

  27. Galanin MD. 1950. Duration of the excited state of a molecule and the properties of fluorescent solutions. Trudy Fiz Inst, Akad Nauk SSSR 5:339–386.

    CAS  Google Scholar 

  28. Birks JB, Little WA. 1953. Photo-fluorescence decay times of organic phosphors. Proc Phys Soc A66:921–928.

    Google Scholar 

  29. Resewitz VE-P, Lippert E. 1974. Ein neuartiges phasenfluorometer. Ber Bunsenges 78:1227–1229.

    CAS  Google Scholar 

  30. Labhart VH. 1964. Eine experimentelle methode zur ermittlung der singulett-triplett-konversionswahrscheinlichkeit und der triplettspektren von gelosten organischen molekeln messungen an 1,2—ben-zanthracen. Fasciculus S 252:2279–2288.

    Google Scholar 

  31. Bailey EA, Rollefson GK. 1953. The determination of the fluorescence lifetimes of dissolved substances by a phase shift method. J Chem Phys 21:1315–1326.

    Article  CAS  Google Scholar 

  32. Bonch-Breuvich AM, Kazarin IM, Molchanov VA, Shirokov IV. 1959. An experimental model of a phase fluorometer. Instrum Exp Technol (USSR) 2:231–236.

    Google Scholar 

  33. Bauer RK, Rozwadowski M. 1959. A new type of fluorometer: measurements of decay periods of fluorescence of acridine yellow solutions as a function of concentration. Bull Acad Pol Sci Ser Sci Math Astr Phys 8:365–368.

    Google Scholar 

  34. Birks JB, Dyson DJ. 1961. Phase and modulation fluorometer. J Sci Instrum 38:282–285.

    Article  Google Scholar 

  35. Muller A, Lumry R, Kokubun H. 1965. High-performance phase flu-orometer constructed from commercial subunits. Rev Sci Instrum 36:1214–1226.

    Article  CAS  Google Scholar 

  36. Michelbacher E. 1969. Decay time measurements on pseudo-isocya-nine by a phase-fluorometer of 200 Mc modulation frequency. Z Naturforsch A 24:790–796.

    Google Scholar 

  37. Demtroder W. 1962. Bestimmung von oszillatorenstarken durch lebensdauermessungen der ersten angeregten niveaus für die elemente Ga, Al, Mg, Tl und Na. Z Phys 42:42–55.

    Google Scholar 

  38. Schlag EW, Wessenhoff HV. 1969. Direct timing of the relaxation from selected excited states; beta-naphthylamine. J Chem Phys 51(6):2508–2514.

    Article  CAS  Google Scholar 

  39. Venetta BD. 1959. Microscope phase fluorometer for determining the fluorescence lifetimes of fluorochromes. Rev Sci Instrum 30(6):450–457.

    Article  CAS  Google Scholar 

  40. Schaefer VW. 1956. Bestimmung der schwingungsrelaxationszeit in CO/N2-gasgemischen aus der analyse des frequenzganges eines ultrarot-gasanalysators. Z Ang Physik 19:55–61.

    Google Scholar 

  41. Spencer RD, Weber G. 1969. Measurement of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer. Ann NY Acad Sci 158:361–376.

    Article  CAS  Google Scholar 

  42. Debye P, Sears FW. 1932. On the scattering of light by supersonic waves. Proc Natl Acad Sci USA 18:409–414.

    Article  CAS  Google Scholar 

  43. 43. Lakowicz JR. 1983. Principles of Fluorescence Spectroscopy, pp. 76–78. Plenum Press, New York.

    Google Scholar 

  44. Hauser M, Heidt G. 1975. Phase fluorometer with a continuously variable frequency. Rev Sci Instrum 46(4):470–471.

    Article  CAS  Google Scholar 

  45. Salmeen I, Rimal L. 1977. A phase-shift fluorometer using a laser and a transverse electrooptic modulator for subnanosecond lifetime measurements. Biophys J 20:335–342.

    Article  CAS  Google Scholar 

  46. Menzel ER, Popovic ZD. 1978. Picosecond-resolution fluorescence lifetime measuring system with a cw laser and a radio. Rev Sci Instrum 49(1):39–44.

    Article  CAS  Google Scholar 

  47. Haar H-P, Hauser M. 1978. Phase fluorometer for measurement of picosecond processes. Rev Sci Instrum 49(5):632–633.

    Article  CAS  Google Scholar 

  48. Gugger H, Calzaferri G. 1979. Picosecond time resolution by a continuous wave laser amplitude modulation technique, I: a critical investigation. J Photochem 13:21–33.

    Article  Google Scholar 

  49. Gugger H, Calzaferri G. 1980. Picosecond time resolution by a continuous wave laser amplitude modulation technique, II: experimental basis. J Photochem 13:295–307.

    Article  CAS  Google Scholar 

  50. Gugger H, Calzaferri G. 1981. Picosecond time resolution by a continuous wave laser amplitude modulation technique, III: dual-beam luminescence experiment. J Photochem 16:31–41.

    Article  CAS  Google Scholar 

  51. Baumann J, Calzaferri G. 1983. Development of picosecond time-resolved techniques by continuous-wave laser amplitude modulation, IV: systematic errors. J Photochem 22:297–312.

    Article  CAS  Google Scholar 

  52. Baumann J, Calzaferri G. 1983. Development of picosecond time-resolved techniques by continuous-wave, V: elimination of r.f. interference problems. J Photochem 23:387–390.

    CAS  Google Scholar 

  53. Ide G, Engelborghs Y, Persoons A. 1983. Fluorescence lifetime resolution with phase fluorometry. Rev Sci Instrum 54(7):841–844.

    Article  CAS  Google Scholar 

  54. 54. Kaminov IP. 1984. An introduction to electrooptic devices. Academic Press, New York.

    Google Scholar 

  55. Wilson J, Hawkes JFB. 1983. Optoelectronics: an introduction. Prentice/Hall, London.

    Google Scholar 

  56. ISS Inc., Urbana, IL. http://www.ISS.com.

  57. McGuinness CD, Sagoo K, McLoskey D, Birch DJS. 2004. A new sub-nanosecond LED at 280 nm: application to protein fluorescence. Meas Sci Technol 15:L1–L4.

    Article  CAS  Google Scholar 

  58. Fedderson BA, Piston DW, Gratton E. 1989. Digital parallel acquisition in frequency domain fluorimetry. Rev Sci Instrum 60(9):2929–2936.

    Article  Google Scholar 

  59. Watkins AN, Ingersoll CM, Baker GA, Bright FV. 1998. A parallel multiharmonic frequency-domain fluorometer for measuring excited-state decay kinetics following one-, two-, or three-photon excitation. Anal Chem 70:3384–3396.

    Article  CAS  Google Scholar 

  60. Alcala JR. 1991. Comment on “Digital parallel acquisition in frequency domain fluorometry.” Rev Sci Instrum 62(6):1672–1673.

    Article  CAS  Google Scholar 

  61. Barbieri B, De Piccoli F, Gratton E. 1989. Synthesizers’ phase noise in frequency-domain fluorometry. Rev Sci Instrum 60(10):3201–3206.

    Article  CAS  Google Scholar 

  62. Levy R, Guignon EF, Cobane S, St. Louis E, Fernandez SM. 1997. Compact, rugged and inexpensive frequency-domain fluorometer. SPIE Proc 2980:81–89.

    CAS  Google Scholar 

  63. Lakowicz JR, Cherek H, Balter A. 1981. Correction of timing errors in photomultiplier tubes used in phase-modulation fluorometry. J Biochem Biophys Methods 5:131–146.

    Article  CAS  Google Scholar 

  64. Berndt K, Dürr H, Palme D. 1983. Picosecond phase fluorometry and color delay error. Opt Commun 47(5):321–323.

    Article  CAS  Google Scholar 

  65. Baumann J, Calzaferri G, Forss L, Hungentobler Th. 1985. Wavelength-dependent fluorescence decay: an investigation by multiple-frequency picosecond phase fluorometry. J Photochem 28:457–473.

    Article  CAS  Google Scholar 

  66. Pouget J, Mugnier J, Valeur B. 1989. Correction of systematic phase errors in frequency-domain fluorometry. J Phys E: Sci Instrum 22:855–862.

    Article  CAS  Google Scholar 

  67. Barrow DA, Lentz BR. 1983. The use of isochronal reference standards in phase and modulation fluorescence lifetime measurements. J Biochem Biophys Methods 7:217–234.

    Article  CAS  Google Scholar 

  68. Thompson RB, Gratton E. 1988. Phase fluorometric method for determination of standard lifetimes. Anal Chem 60:670–674.

    Article  CAS  Google Scholar 

  69. Lakowicz JR, Jayaweera R, Joshi N, Gryczynski I. 1987. Correction for contaminant fluorescence in frequency-domain fluorometry. Anal Biochem 160:471–479.

    Article  CAS  Google Scholar 

  70. Reinhart GD, Marzola P, Jameson DM, Gratton E. 1991. A method for on-line background subtraction in frequency domain fluorometry. J Fluoresc 1(3):153–162.

    Article  CAS  Google Scholar 

  71. Gryczynski I, Malak H. Unpublished observations.

    Google Scholar 

  72. 72. Dattelbaum JD, Castellano FN, Gryczynski I, Lakowicz JR. 1998. Two-photon spectroscopic properties of a mutant green fluorescent protein. Manuscript in preparation. Biophysical Society Meeting, March 1998. Kansas City, MO, Tu-pos 369.

    Google Scholar 

  73. Swaminathan R, Hoang CP, Verkman AS. 1997. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J 72:1900–1907.

    Article  CAS  Google Scholar 

  74. Illsley NP, Verkman AS. 1987. Membrane chloride transport measured using a chloride-sensitive fluorescent probe. Biochemistry 26:1215–1219.

    Article  CAS  Google Scholar 

  75. Verkman AS. 1990. Development and biological applications of chloride-sensitive fluorescent indicators. Am J Physiol 253:C375–C388.

    Google Scholar 

  76. Verkman AS, Sellers MC, Chao AC, Leung T, Ketcham R. 1989. Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications. Anal Biochem 178:355–361.

    Article  CAS  Google Scholar 

  77. Visser AJWG, van Hoek A. 1981. The fluorescence decay of reduced nicotinamides in aqueous solution after excitation with a UV-mode locked Ar ion laser. Photochem Photobiol 33:35–40.

    Article  CAS  Google Scholar 

  78. Berndt KW, Gryczynski I, Lakowicz JR. 1990. Phase-modulation fluorometry using a frequency-doubled pulsed laser diode light source. Rev Sci Instrum 61(7):1816–1820.

    Article  CAS  Google Scholar 

  79. Thompson RB, Frisoli JK, Lakowicz JR. 1992. Phase fluorometry using a continuously modulated laser diode. Anal Chem 64:2075–2078.

    Article  CAS  Google Scholar 

  80. Sipior J, Carter GM, Lakowicz JR, Rao G. 1996. Single quantum well light-emitting diodes demonstrated as excitation sources for nanosecond phase-modulation fluorescence lifetime measurements. Rev Sci Instrum 67(11):3795–3798.

    Article  CAS  Google Scholar 

  81. Landgraf S. 2001. Application of semiconductor light sources for investigations of photochemical reactions. Spectrosc Acta A 57:2029–2048.

    Article  CAS  Google Scholar 

  82. Landgraf S, Grampp G. 1998. Application of laser diodes and ultra-bright light-emitting diodes for the determination of fluorescence lifetimes in the nano- and subnanosecond region. J Inf Rec Mater 24:141–148.

    CAS  Google Scholar 

  83. Landgraf S, Grampp G. 1996. Application of cw-laser diodes for the determination of fluorescence lifetimes. J Inf Rec Mater 23:203–207.

    CAS  Google Scholar 

  84. Szmacinski H, Chang Q. 2000. Micro- and sub-nanosecond lifetime measurements using a UV light-emitting diode. Appl Spectrosc 54:106–109.

    Article  CAS  Google Scholar 

  85. Sipior J, Carter GM, Lakowicz JR, Rao G. 1997. Blue light-emitting diode demonstrated as an ultraviolet excitation source for nanosecond phase-modulation fluorescence lifetime measurements. Rev Sci Instrum 68(7):2666–2670.

    Article  CAS  Google Scholar 

  86. Fantini S, Franceschini MA, Fishkin JB, Barbieri B, Gratton E. 1994. Quantitative determination of the absorption spectra of chro-mophores in strongly scattering media: a light-emitting diode based technique. Appl Opt 33(22):5204–5213.

    Article  Google Scholar 

  87. Berndt KW, Lakowicz JR. 1992. Electroluminescent lamp-based phase fluorometer and oxygen sensor. Anal Biochem 201:319–325.

    Article  CAS  Google Scholar 

  88. Morgan CG, Hua Y, Mitchell AC, Murray JG, Boardman AD. 1996. A compact frequency domain fluorometer with a directly modulated deuterium light source. Rev Sci Instrum 67(1):41–47.

    Article  CAS  Google Scholar 

  89. Holavanahali R, Romano MG, Carter GM, Rao G, Sipior J, Lakowicz JR, Bierlein JD. 1996. Directly modulated diode laser frequency doubled in a KTP waveguide as an excitation source for CO2and O2 phase fluorometric sensors. J Biomed Opt 1(1):124–130.

    Article  Google Scholar 

  90. Szmacinski H, Lakowicz JR. 1993. Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry. Anal Chem 65:1668–1674.

    Article  CAS  Google Scholar 

  91. Thompson RB, Lakowicz JR. 1993. Fiber optic pH sensor based on phase fluorescence lifetimes. Anal Chem 65:853–856.

    Article  CAS  Google Scholar 

  92. O’Keefe G, MacCraith BD, McEvoy AK, McDonagh CM, McGilp JF. 1995. Development of an LED-based phase fluorimetric oxygen sensor using evanescent wave excitation of a sol-gel immobilized gel. Sens Actuators 29:226–230.

    Article  Google Scholar 

  93. Lippitsch ME, Pasterhofer J, Leiner MJP, Wolfbeis OS. 1988. Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier. Anal Chim Acta 205:1–6.

    Article  CAS  Google Scholar 

  94. Sipior J, Randers-Eichhorn L, Lakowicz JR, Carter GM, Rao G. 1996. Phase fluorometric optical carbon dioxide gas sensor for fermentation off-gas monitoring. Biotechnol Prog 12:266–271.

    Article  CAS  Google Scholar 

  95. Cobb WT, McGown LB. 1987. Phase-modulation fluorometry for on-line liquid chromatographic detection and analysis of mixtures of benzo(k)fluoranthene and benzo(b)fluoranthene. Appl Spectrosc 41(8):1275–1279.

    Article  CAS  Google Scholar 

  96. Cobb WT, McGown LB. 1989. Multifrequency phase-modulation fluorescence lifetime determinations on-the-fly in HPLC. Appl Spectrosc 43(8):1363–1367.

    Article  CAS  Google Scholar 

  97. Cobb WT, Nithipatikom K, McGown LB. 1988. Multicomponent detection and determination of polycyclic aromatic hydrocarbons using HPLC and a phase-modulation spectrofluorometer. Special Technical Publication, American Society for Testing and Materials, Vol. 1009, pp. 12–25.

    CAS  Google Scholar 

  98. Szmacinski H, Lakowicz JR. 1994. Lifetime-based sensing. In Topics in fluorescence spectroscopy, Vol. 4: Probe Design and Chemical Sensors, pp. 295–334. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  99. Merkelo HS, Hartman SR, Mar T, Singhal GS, Govindjee GS. 1969. Mode-locked lasers: measurements of very fast radiative decay in fluorescent systems. Science 164:301–303.

    Article  CAS  Google Scholar 

  100. Gratton E, Lopez-Delgado R. 1980. Measuring fluorescence decay times by phase-shift and modulation techniques using the high harmonic content of pulsed light sources. Nuovo Cimento B56:110–124.

    Google Scholar 

  101. Gratton E, Jameson DM, Rosato N, Weber G. 1984. Multifrequency cross-correlation phase fluorometer using synchrotron radiation. Rev Sci Instrum 55:486–494.

    Article  CAS  Google Scholar 

  102. Gratton E, Delgado RL. 1979. Use of synchrotron radiation for the measurement of fluorescence lifetimes with subpicosecond resolution. Rev Sci Instrum 50(6):789–790.

    Article  CAS  Google Scholar 

  103. Berndt K, Duerr H, Palme D. 1982. Picosecond phase fluorometry by mode-locked CW lasers. Opt Commun 42:419–422.

    Article  CAS  Google Scholar 

  104. Gratton E, Barbieri B. 1986. Multifrequency phase fluorometry using pulsed sources: theory and applications. Spectroscopy 1(6): 28–36.

    CAS  Google Scholar 

  105. Lakowicz JR, Laczko G, Gryczynski I. 1986. 2-GHz frequency-domain fluorometer. Rev Sci Instrum 57(10):2499–2506.

    Article  CAS  Google Scholar 

  106. Laczko G, Gryczynski I, Gryczynski Z, Wiczk W, Malak H, Lakowicz JR. 1990. A 10-GHz frequency-domain fluorometer. Rev Sci Instrum 61(9):2331–2337.

    Article  CAS  Google Scholar 

  107. Lakowicz JR, Laczko G, Gryczynski I, Szmacinski H, Wiczk W. 1989. Frequency-domain fluorescence spectroscopy: principles, biochemical applications and future developments. Ber Bunsenges Phys Chem 93:316–327.

    CAS  Google Scholar 

  108. Lakowicz JR, Laczko G, Gryczynski I, Szmacinski H, Wiczk W. 1988. Gigahertz frequency domain fluorometry: resolution of complex decays, picosecond processes and future developments. J Photochem Photobiol B: Biol 2:295–311.

    Article  CAS  Google Scholar 

  109. Berndt K, Durr H, Palme D. 1985. Picosecond fluorescence lifetime detector. Opt Commun 55(4):271–276.

    Article  CAS  Google Scholar 

  110. Berndt K. 1987. Opto-electronic high-frequency cross-correlation using avalanche photodiodes. Measurement 5(4):159–166.

    Article  Google Scholar 

  111. Berndt K, Klose E, Schwarz P, Feller K-H, Fassler D. 1984. Time-resolved fluorescence spectroscopy of cyanine dyes. Z Phys Chem 265:1079–1086.

    CAS  Google Scholar 

  112. Berndt K, Durr H, Feller K-H. 1987. Time resolved fluorescence spectroscopy of cyanine dyes. Z Phys Chem 268:250–256.

    CAS  Google Scholar 

  113. Lakowicz JR, Gryczynski I, Laczko G, Gloyna D. 1991. Picosecond fluorescence lifetime standards for frequency- and time-domain fluorescence. J Fluoresc 1(2):87–93.

    Article  CAS  Google Scholar 

  114. Gryczynski I, Szmacinski H, Laczko G, Wiczk W, Johnson ML, Kusba J, Lakowicz JR. 1991. Conformational differences of oxytocin and vasopressin as observed by fluorescence anisotropy decays and transient effects in collisional quenching of tyrosine fluorescence. J Fluoresc 1(3):163–176.

    Article  CAS  Google Scholar 

  115. Vos R, Strobbe R, Engelborghs Y. 1997. Gigahertz phase fluorome-try using a fast high-gain photomultiplier. J Fluoresc 7(1):33S–35S.

    CAS  Google Scholar 

  116. Gryczynski I. Unpublished observations.

    Google Scholar 

  117. Brochon JC, Livesey AK, Pouget J, Valeur B. 1990. Data analysis in frequency-domain fluorometry by the maximum entropy method: recovery of fluorescence lifetime distributions. Chem Phys Lett 174(5):517–522.

    Article  CAS  Google Scholar 

  118. Shaver JM, McGown LB. 1996. Maximum entropy method for frequency domain fluorescence lifetime analysis, 1: effects of frequency range and random noise. Anal Chem 68:9–17.

    Article  CAS  Google Scholar 

  119. Shaver JM, McGown LB. 1996. Maximum entropy method for frequency-domain fluorescence lifetime analysis, 2: timing, mismatched intensity, and reference lifetime errors. Anal Chem 68:611–620.

    Article  CAS  Google Scholar 

  120. He Y, Geng L. 2001. Analysis of heterogeneous fluorescence decays: distribution of pyrene derivatives in an octadecylsilane layer in capillary electrochromatography. Anal Chem 73:5564–5575.

    Article  CAS  Google Scholar 

  121. Vinogradov SA, Wilson DF. 2000. Recursive maximum entropy algorithm and its application to the luminescence lifetime distribution recovery. Appl Spectrosc 54(6):849–855.

    Article  CAS  Google Scholar 

  122. Manzini G, Barcellona ML, Avitabile M, Quadrifoglio F. 1983. Interaction of diamidino-2 phenylindole (DAPI) with natural and synthetic nucleic acids. Nucleic Acids Res 11(24):8861–8876.

    Article  CAS  Google Scholar 

  123. Cavatorta P, Masotti L, Szabo AG. 1985. A time-resolved florescence study of 4',6-diamidino-2-phenylindole dihydrochloride binding to polynucleotides. Biophys Chem 22:11–16.

    Article  CAS  Google Scholar 

  124. Tanious FA, Veal JM, Buczak H, Ratmeyer LS, Wilson WD. 1992. DAPI (4’,6-diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites. Biochemistry 31:3103–3112.

    Article  CAS  Google Scholar 

  125. Barcellona ML, Gratton E. 1989. Fluorescence lifetime distributions of DNA-4’,6-diamidino-2-phenylindole complex. Biochim Biophys Acta 993:174–178.

    CAS  Google Scholar 

  126. Barcellona ML, Gratton E. 1990. The fluorescence properties of a DNA probe. Eur Biophys J 17:315–323.

    Article  CAS  Google Scholar 

  127. Szmacinski H, Lakowicz JR. 1996. Fluorescence lifetime characterization of magnesium probes: improvement of Mg2+ dynamic range and sensitivity using phase-modulation fluorometry. J Fluoresc 6:83–95.

    Article  CAS  Google Scholar 

  128. Lakowicz JR, Cherek H, Gryczynski I, Joshi N, Johnson ML. 1987. Analysis of fluorescence decay kinetics measured in the frequency domain using distributions of decay times. Biophys Chem 28:35–50.

    Article  CAS  Google Scholar 

  129. Alcala JR, Gratton E, Prendergast FG. 1987. Resolvability of fluorescence lifetime distributions using phase fluorometry. Biophys J 51:587–596.

    Article  CAS  Google Scholar 

  130. Lakowicz JR, Gryczynski I, Wiczk W, Johnson ML. 1994. Distributions of fluorescence decay times for synthetic melittin in water–methanol mixtures and complexed with calmodulin, troponin C, and phospholipids. J Fluoresc 4(2):169–177.

    Article  CAS  Google Scholar 

  131. Collini M, D’Alfonso L, Baldini G, Oldani A, Cellai L, Giordano C, Barone F, Mazzei F, Chirico G. 2004. Fluorescence anisotropy in the frequency domain by an optical microscope. Appl Spectrosc 58(2):160–165.

    Article  CAS  Google Scholar 

  132. Despa S, Vecer J, Steels P, Ameloot M. 2000. Fluorescence lifetime microscopy of the Na+ indicator sodium green in HeLA cells. Anal Biochem 281:159–175.

    Article  CAS  Google Scholar 

  133. Booth MJ, Wilson T. 2004. Low-cost, frequency-domain, fluorescence lifetime confocal microscopy. J Microsc 214(1):36–42.

    Article  CAS  Google Scholar 

  134. Herman P, Maliwal BP, Lin H-J, Lakowicz JR. 2001. Frequency-domain fluorescence microscopy with the LED as a light source. J Microsc 203(2):176–181.

    Article  CAS  Google Scholar 

  135. Lakowicz JR, Jayaweera R, Szmacinski H, Wiczk W. 1990. Resolution of multicomponent fluorescence emission using frequency-dependent phase angle and modulation spectra. Anal Chem 62:2005–2012.

    Article  CAS  Google Scholar 

  136. Lakowicz JR, Jayaweera R, Szmacinski H, Wiczk W. 1989. Resolution of two emission spectra for tryptophan using frequency-domain phase-modulation spectra. Photochem Photobiol 50(4):541–546.

    Article  CAS  Google Scholar 

  137. Kilin SF. 1962. The duration of photo- and radioluminescence of organic compounds. Opt Spectrosc 12:414–416.

    Google Scholar 

  138. Jameson DM, Gratton E, Hall RD. 1984. The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl Spectrosc Rev 20(1):55–106.

    Article  CAS  Google Scholar 

  139. 139. Ware WR. 1971. Transient luminescence measurements. In Creation and detection of the excited state, pp. 213–302. Ed AA Lamola. Marcel Dekker, New York.

    Google Scholar 

  140. Lakowicz JR, Cherek H. 1981. Phase-sensitive fluorescence spec-troscopy: a new method to resolve fluorescence lifetimes or emission spectra of components in a mixture of fluorophores. J Biochem Biophys Methods 5:19–35.

    Article  CAS  Google Scholar 

  141. Lakowicz JR, Cherek H. 1981. Resolution of heterogeneous fluorescence from proteins and aromatic amino acids by phase-sensitive detection of fluorescence. J Biol Chem 256:6348–6353.

    CAS  Google Scholar 

  142. Lakowicz JR, Cherek H. 1982. Resolution of heterogeneous fluorescence by phase-sensitive fluorescence spectroscopy. Biophys J 37:148–150.

    Article  CAS  Google Scholar 

  143. Jameson DM, Gratton E, Hall RD. 1984. The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl Spectrosc Rev 20(1):55–106.

    Article  CAS  Google Scholar 

  144. McGown L, Bright F. 1984. Phase-resolved fluorescence spec-troscopy. Anal Chem 56(13):1400–1415.

    Article  Google Scholar 

  145. Fugate RD, Bartlett JD, Mattheis JR. 1984. Phase-resolution in spetrofluorometric measurements: applications to biochemical systems. BioTechniques 2(3):174–180.

    CAS  Google Scholar 

  146. Demas JN, Keller RA. 1985. Enhancement of luminescence and Raman spectroscopy by phase-resolved background suppression. Anal Chem 57:538–545.

    Article  CAS  Google Scholar 

  147. Nithipatikom K, McGown LB. 1987. Phase-resolved suppression of scattered light in total luminescence spectra. Appl Spectrosc 41(6):1080–1082.

    Article  CAS  Google Scholar 

  148. Wirth MJ, Chou S-H. 1988. Comparison of time and frequency domain methods for rejecting fluorescence from raman spectra. Anal Chem 60:1882–1886.

    Article  CAS  Google Scholar 

  149. Nithipatikom K, McGown LB. 1986. Elimination of scatter background in synchronous excitation spectrofluorometry by the use of phase-resolved fluorescence spectroscopy. Anal Chem 58:3145–3147.

    Article  CAS  Google Scholar 

  150. Crowell E, Geng L. 2001. Reduction of multiexponential background in fluorescence with phase-sensitive detection. Appl Spec-trosc 55(12):1709–1716.

    Article  CAS  Google Scholar 

  151. Lakowicz JR, Balter A. 1982. Direct recording of the initially excited and the solvent relaxed fluorescence emission spectra of trypto-phan by phase-sensitive detection of fluorescence. Photochem Photobiol 36:125–132.

    Article  CAS  Google Scholar 

  152. Lakowicz JR, Balter A. 1982. Detection of the reversibility of an excited-state reaction by phase-modulation fluorometry. Chem Phys Lett 92(2):117–121.

    Article  CAS  Google Scholar 

  153. Lakowicz JR, Thompson RB, Cherek H. 1983. Phase fluorometric studies of spectral relaxation at the lipid-water interface of phospho-lipid vesicles. Biochim Biophys Acta 734:295–308.

    Article  CAS  Google Scholar 

  154. Nithipatikom K, McGown LB. 1987. Five- and six-component determinations using phase-resolved fluorescence spectroscopy and synchronous excitation. Appl Spectrosc 41(3):395–398.

    Article  CAS  Google Scholar 

  155. Bright FV, McGown LB. 1986. Three-component determinations using fluorescence anisotropy measurements and wavelength selectivity. Anal Chem 58:1424–1427.

    Article  CAS  Google Scholar 

  156. Bright FV, McGown LB. 1985. Phase-resolved fluorometric determinations of four-component systems using two modulation frequencies. Anal Chem 57:2877–2880.

    Article  CAS  Google Scholar 

  157. Bright FV, McGown LB. 1985. Four-component determinations using phase-resolved fluorescence spectroscopy. Anal Chem 57:55–59.

    Article  CAS  Google Scholar 

  158. Vitense KR, McGown LB. 1987. Simultaneous determination of metals in two-component mixtures with 5-sulfo-8-quinolinol by using phase-resolved fluorimetry. Anal Chim Acta 193:119–125.

    Article  CAS  Google Scholar 

  159. Nithipatikom K, McGown LB. 1986. Multidimensional data formats for phase-resolved fluorometric multicomponent determinations using synchronous excitation and emission spectra. Anal Chem 58:2469–2473.

    Article  CAS  Google Scholar 

  160. Bright FV, McGown LB. 1984. Elimination of bilirubin interference in fluorometric determination of fluorescein by phase-resolved fluorescence spectrometry. Anal Chim Acta 162:275–283.

    Article  CAS  Google Scholar 

  161. Lakowicz JR, Keating S. 1983. Binding of an indole derivative to micelles as quantified by phase-sensitive detection of fluorescence. J Biol Chem 258(9):5519–5524.

    CAS  Google Scholar 

  162. McGown LB. 1984. Phase-resolved fluoroimetric determination of two albumin-bound fluorescein species. Anal Chim Acta 157:327–332.

    Article  CAS  Google Scholar 

  163. Nithipatikom K, McGown LB. 1989. Studies of the homogeneous immunochemical determination of insulin by using a fluorescent label. Talanta 36(1/2):305–309.

    Article  CAS  Google Scholar 

  164. Nithipatikom K, McGown LB. 1987. Homogeneous immunochemi-cal technique for determination of human lactoferrin using excitation transfer and phase-resolved fluorometry. Anal Chem 59:423–427.

    Article  CAS  Google Scholar 

  165. Tahboub YR, McGown LB. 1986. Phase-resolved fluoroimmunoas-say of human serum albumin. Anal Chim Acta 182:185–191.

    Article  CAS  Google Scholar 

  166. Veselova TV, Cherkasov AS, Shirokov VI. 1970. Fluorometric method for individual recording of spectra in systems containing two types of luminescent centers. Opt Spectrosc 29:617–618.

    Google Scholar 

  167. Gratton E, Jameson DM. 1985. New approach to phase and modulation resolved spectra. Anal Chem 57:1694–1697.

    Article  CAS  Google Scholar 

  168. Lakowicz JR, Balter A. 1982. Theory of phase-modulation fluorescence spectroscopy for excited state processes. Biophys Chem 16:99–115.

    Article  CAS  Google Scholar 

  169. Lakowicz JR, Balter A. 1982. Analysis of excited-state processes by phase-modulation fluorescence spectroscopy. Biophys Chem 16:117–132.

    Article  CAS  Google Scholar 

  170. Veselova TV, Limareva LA, Cherkasov AS, Shirokov VI. 1965. Fluorometric study of the effect of solvent on the fluorescence spectrum of 3-amino-N-methylphthalimide. Opt Spectrosc 19:39–43.

    Google Scholar 

  171. Limareva LA, Cherkasov AS, Shirokov VI. 1968. Evidence of the radiating-centers inhomogeneity of crystalline anthracene in fluoro-metric phase spectra. Opt Spectrosc 25:132–134.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Frequency-Domain Lifetime Measurements. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46312-4_5

Download citation

Publish with us

Policies and ethics