Skip to main content

Abstract

The biochemical applications of fluorescence often utilize intrinsic protein fluorescence. Among biopolymers, proteins are unique in displaying useful intrinsic fluorescence. Lipids, membranes, and saccharides are essentially nonflu-orescent, and the intrinsic fluorescence of DNA is too weak to be useful. In proteins, the three aromatic amino acids— phenylalanine, tyrosine, and tryptophan—are all fluorescent. These three amino acids are relatively rare in proteins. Tryptophan, which is the dominant intrinsic fluorophore, is generally present at about 1 mole% in proteins. The small number of tryptophan residues is probably the result of the metabolic expense of its synthesis. A protein may possess just one or a few tryptophan residues, facilitating interpretation of the spectral data. If all twenty amino acids were fluorescent then protein emission would be more complex.

A valuable feature of intrinsic protein fluorescence is the high sensitivity of tryptophan to its local environment. Changes in the emission spectra of tryptophan often occur in response to conformational transitions, subunit association, substrate binding, or denaturation. These interactions can affect the local environment surrounding the indole ring. Tyrosine and tryptophan display high anisotropies that are often sensitive to protein conformation and the extent of motion during the excited-state lifetime. Also, tryptophan appears to be uniquely sensitive to collisional quenching, apparently due to a tendency of excited-state indole to donate electrons. Tryptophan can be quenched by externally added quenchers or by nearby groups within the proteins. There are numerous reports on the use of emission spectra, anisotropy, and quenching of tryptophan residues in proteins to study protein structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brand L, Johnson ML, eds. 1997. Methods in enzymology, Vol. 278: Fluorescence spectroscopy. Academic Press, San Diego.

    Google Scholar 

  2. Ladokhin AS. 2000. Fluorescence spectroscopy in peptide and protein analysis. In Encyclopedia of analytical chemistry, pp. 5762–5779. Ed RA Meyers. John Wiley & Sons, New York.

    Google Scholar 

  3. Engelborghs Y. 2001. The analysis of time-resolved protein fluorescence in multi-tryptophan proteins. Spectrochim Acta, Part A 57:2255–2270.

    CAS  Google Scholar 

  4. Ladokhin AS, Jayasinghe S, White SH. 2000. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother. Anal Biochem 285:235–245.

    CAS  Google Scholar 

  5. Weinryb I, Steiner RF. 1971. The luminescence of the aromatic amino acids. In Excited states of proteins and nucleic acids, pp. 277–318. Ed RF Steiner, I Weinryb. Plenum Press, New York.

    Google Scholar 

  6. Demchenko AP. 1981. Ultraviolet spectroscopy of proteins. Springer-Verlag, New York.

    Google Scholar 

  7. Konev S V. 1967. Fluorescence and phosphorescence of proteins and nucleic acids. Plenum Press, New York.

    Google Scholar 

  8. Permyakov EA. 1993. Luminescent spectroscopy of proteins. CRC Press, Boca Raton, FL.

    Google Scholar 

  9. Longworth JW. 1983. Intrinsic fluorescence of proteins. In Time-resolved fluorescence spectroscopy in biochemistry and biology, pp. 651–778. Ed RB Cundall, RE Dale. Plenum Press, New York.

    Google Scholar 

  10. Chen RF. 1967. Fluorescence quantum yields of tryptophan and tyro-sine. Anal Lett 1(1):35–42.

    CAS  Google Scholar 

  11. Lakowicz JR, Maliwal BP. 1983. Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins. J Biol Chem 258(8):4794–4801.

    CAS  Google Scholar 

  12. Weber G. 1960. Fluorescence polarization spectrum and electronic-energy transfer in tyrosine, tryptophan, and related compounds. Biochem J 75:335–345.

    CAS  Google Scholar 

  13. Weber G. 1966. Polarization of the fluorescence of solutions. In Fluorescence and phosphorescence analysis, pp. 217–240. Ed DM Hercules. Wiley Interscience, New York.

    Google Scholar 

  14. Noronha M, Lima JC, Lamosa P, Santos H, Maycock C, Ventura R, Macanita AL. 2004. Intramolecular fluorescence quenching of tyro-sine by the peptide "-carbonyl group revisited. J Phys Chem A 108:2155–2166.

    CAS  Google Scholar 

  15. Guzow K, Ganzynkowicz R, Rzeska A, Mrozek J, Szabelski M, Karolczak J, Liwo A, Wiczk W. 2004. Photophysical properties of tyrosine and its simple derivatives studied by time-resolved fluorescence spectroscopy, global analysis, and theoretical calculations. J Phys Chem B 108:3879–3889.

    CAS  Google Scholar 

  16. Ross JBA, Laws WR, Rousslang KW, Wyssbrod HR. 1992. Tyrosine fluorescence and phosphorescence from proteins and polypeptides. In Topics in fluorescence spectroscopy, Vol. 3: Biochemical applications, pp. 1–63. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  17. Lakowicz JR, Maliwal BP, Cherek H, Balter A. 1983. Rotational freedom of tryptophan residues in proteins and peptides. Biochemistry 22:1741–1752.

    CAS  Google Scholar 

  18. Eftink MR, Selvidge LA, Callis PR, Rehms AA. 1990. Photophysics of indole derivatives: experimental resolution of 1La and 1Lb transitions and comparison with theory. J Phys Chem 94:3469–3479.

    CAS  Google Scholar 

  19. Yamamoto Y, Tanaka J. 1972. Polarized absorption spectra of crystals of indole and its related compounds. Bull Chem Soc Jpn45:1362–1366.

    Google Scholar 

  20. Song P-S, Kurtin WE. 1969. A spectroscopic study of the polarized luminescence of indole. J Am Chem Soc 91:4892–4906.

    CAS  Google Scholar 

  21. Albinsson B, Kubista M, Norden B, Thulstrup EW. 1989. Near-ultraviolet electronic transitions of the tryptophan chromophore: linear dichroism, fluorescence anisotropy, and magnetic circular dichroism spectra of some indole derivatives. J Phys Chem 93:6646–6655.

    CAS  Google Scholar 

  22. Albinsson B, Norden B. 1992. Excited-state properties of the indole chromophore: electronic transition moment directions from linear dichroism measurements—effect of methyl and methoxy sub-stituents. J Phys Chem 96:6204–6212.

    CAS  Google Scholar 

  23. Callis PR. 1997. 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Methods Enzymol 278:113–150.

    CAS  Google Scholar 

  24. Valeur B, Weber G. 1977. Resolution of the fluorescence excitation spectrum of indole into the 1La and 1Lb excitation bands. Photochem Photobiol 25:441–444.

    CAS  Google Scholar 

  25. Rayner DM, Szabo AG. 1977. Time-resolved fluorescence of aqueous tryptophan. Can J Chem 56:743–745.

    Google Scholar 

  26. Petrich JW, Chang MC, McDonald DB, Fleming GR. 1983. On the origin of nonexponential fluorescence decay in tryptophan and its derivatives. J Am Chem Soc 105:3824–3832.

    CAS  Google Scholar 

  27. Creed D. 1984. The photophysics and photochemistry of the near-UV absorbing amino acids, I: tryptophan and its simple derivatives. Photochem Photobiol 39(4):537–562.

    CAS  Google Scholar 

  28. Fleming GR, Morris JM, Robbins RJ, Woolfe GJ, Thistlewaite PJ, Robinson GW. 1978. Nonexponential fluorescence decay of aqueous tryptophan and two related peptides by picosecond spectroscopy. Proc Natl Acad Sci USA 75:4652–4656.

    CAS  Google Scholar 

  29. Gryczynski I, Wiczk W, Johnson ML, Lakowicz JR. 1988. Lifetime distributions and anisotropy decays of indole fluorescence in cyclo-hexane/ethanol mixtures by frequency-domain fluorometry. Biophys Chem 32:173–185.

    CAS  Google Scholar 

  30. Walker MS, Bednar TW, Lumry R. 1966. Exciplex formation in the excited state. J Chem Phys45:3455–3456.

    CAS  Google Scholar 

  31. Hershberger MV, Lumry R, Verral R. 1981. The 3-methylindole/n-butanol exciplex: evidence for two exciplex sites in indole compounds. Photochem Photobiol 33:609–617.

    CAS  Google Scholar 

  32. Strickland EH, Horwitz J, Billups C. 1970. Near-ultraviolet absorption bands of tryptophan: studies using indole and 3-methylindole as models. Biochemistry 9(25):4914–4920.

    CAS  Google Scholar 

  33. Lasser N, Feitelson J, Lumry R. 1977. Exciplex formation between indole derivatives and polar solutes. Isr J Chem 16:330–334.

    CAS  Google Scholar 

  34. Sun M, Song P-S. 1977. Solvent effects on the fluorescent states of indole derivatives-dipole moments. Photochem Photobiol 25:3–9.

    CAS  Google Scholar 

  35. Lami H, Glasser N. 1986. Indole's solvatochromism revisited. J Chem Phys 84(2):597–604.

    CAS  Google Scholar 

  36. Pierce DW, Boxer SG. 1995. Stark effect spectroscopy of tryptophan. Biophys J 68:1583–1591.

    CAS  Google Scholar 

  37. Callis PR, Burgess BK. 1997. Tryptophan fluorescence shifts in proteins from hybrid simulations: an electrostatic approach. J Phys Chem B 101:9429–9432.

    CAS  Google Scholar 

  38. Strickland EH, Billups C, Kay E. 1972. Effects of hydrogen bonding and solvents upon the tryptophanyl 1La absorption band: studies using 2,3-dimethylindole. Biochemistry 11(19):3657–3662.

    CAS  Google Scholar 

  39. Van Duuren BL. 1961. Solvent effects in the fluorescence of indole and substituted indoles. J Org Chem 26:2954–2960.

    CAS  Google Scholar 

  40. Willis KJ, Szabo AG. 1991. Fluorescence decay kinetics of tyrosi-nate and tyrosine hydrogen-bonded complexes. J Phys Chem 95:1585–1589.

    CAS  Google Scholar 

  41. Willis KJ, Szabo AG, Krajcarski DT. 1990. The use of Stokes Raman scattering in time correlated single photon counting: application to the fluorescence lifetime of tyrosinate. Photochem Photobiol 51:375–377.

    CAS  Google Scholar 

  42. Rayner DM, Krajcarski DT, Szabo AG. 1978. Excited-state acid–base equilibrium of tyrosine. Can J Chem 56:1238–1245.

    CAS  Google Scholar 

  43. Pal H, Palit DK, Mukherjee T, Mittal JP. 1990. Some aspects of steady state and time-resolved fluorescence of tyrosine and related compounds. J Photochem Photobiol A: Chem 52:391–409.

    CAS  Google Scholar 

  44. Shimizu O, Imakuvo K. 1977. New emission band of tyrosine induced by interaction with phosphate ion. Photochem Photobiol 26:541–543.

    CAS  Google Scholar 

  45. Dietze EC, Wang RW, Lu AYH, Atkins WM. 1996. Ligand effects on the fluorescence properties of tyrosine-9 in alpha 1-1 glutathione S-transferase. Biochemistry 35:6745–6753.

    CAS  Google Scholar 

  46. Behmaarai TA, Toulme JJ, Helene C. 1979. Quenching of tyrosine fluorescence by phosphate ions: a model study for protein-nucleic acid complexes. Photochem Photobiol 30:533–539.

    Google Scholar 

  47. Schnarr M, Helene C. 1982. Effects of excited-state proton transfer on the phosphorescence of tyrosine-phosphate complexes. Photochem Photobiol 36:91–93.

    CAS  Google Scholar 

  48. Szabo A, Lynn KR, Krajcarski DT, Rayner DM. 1978. Tyrosinate fluorescence maxima at 345 nm in proteins lacking tryptophan at pH 7. FEBS Lett 94:249–252.

    CAS  Google Scholar 

  49. Prendergast FG, Hampton PD, Jones B. 1984. Characteristics of tyrosinate fluorescence emission in "- and $-purothionins. Biochemistry 23:6690–6697.

    CAS  Google Scholar 

  50. Libertini LJ, Small E W. 1985. The intrinsic tyrosine fluorescence of histone H1. Biophys J 47:765–772.

    CAS  Google Scholar 

  51. Ruan K, Li J, Liang R, Xu C, Yu Y, Lange R, Balny C. 2002. A rare protein fluorescence behavior where the emission is dominated by tyrosine: case of the 33-kDA protein from spinach photosystem II. Biochem Biophys Res Commun 293:593–597.

    CAS  Google Scholar 

  52. Pundak S, Roche RS. 1984. Tyrosine and tyrosinate fluorescence of bovine testes calmodulin calcium and pH dependence. Biochemistry 23:1549–1555.

    CAS  Google Scholar 

  53. Longworth JW. 1971. Luminescence of polypeptides and proteins. In Excited states of proteins and nucleic acids, pp. 319–484. Ed RF Steiner, I Weinryb. Plenum Press, New York.

    Google Scholar 

  54. Kronman MJ, Holmes LG. 1971. The fluorescence of native, denatured and reduced denatured proteins. Photochem Photobiol 14:113– 134.

    CAS  Google Scholar 

  55. Burstein EA, Vedenkina NS, Ivkova MN. 1974. Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol18:263–279.

    Google Scholar 

  56. Burstein EA, Abornev SM, Reshetnyak YK. 2001. Decomposition of protein tryptophan fluorescence spectra into log-normal components, I: decomposition algorithms. Biophys J 81:1699–1709.

    CAS  Google Scholar 

  57. Reshetnyak YK, Burstein EA. 2001. Decomposition of protein tryp-tophan fluorescence spectra into log-normal components, II: the statistical proof of discreteness of tryptophan classes in proteins. Biophys J81:1710–1734.

    CAS  Google Scholar 

  58. Reshetnyak YK, Koshevnik Y, Burstein EA. 2001. Decomposition of protein tryptophan fluorescence spectra into log-normal components, III: correlation between fluorescence and microenvironment parameters of individual tryptophan residues. Biophys J 81:1735–1758.

    CAS  Google Scholar 

  59. Eftink MR. 1990. Fluorescence techniques for studying protein structure. Methods Biochem Anal 35:117–129.

    Google Scholar 

  60. Burstein EA. 1976. Luminescence of protein chromophores. In Model studies: science and technology results, Vol. 6: Biophysics, VINITI, Moscow.

    Google Scholar 

  61. Vivian JT, Callis P. 2001. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80:2093–2109.

    CAS  Google Scholar 

  62. Callis FR, Liu T. 2004. Quantitative prediction of fluorescence quantum yields for tryptophan in proteins. J Phys Chem B 108:4248– 4259.

    CAS  Google Scholar 

  63. Callis PR, Vivian JT. 2003. Understanding the variable fluorescence quantum yield of tryptophan in proteins using QM-MM simulations: quenching by charge transfer to the peptide backbone. Chem Phys Lett 369:409–414.

    CAS  Google Scholar 

  64. Ababou A, Bombarda E. 2001. On the involvement of electron transfer reactions in the fluorescence decay kinetics heterogeneity of proteins. Protein Sci 10:2102–2113.

    CAS  Google Scholar 

  65. Adams PD, Chen Y, Ma K, Zagorski M, Sonnichsen FD, McLaughlin ML, Barkley MD. 2002. Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J Am Chem Soc 124:9278–9286.

    CAS  Google Scholar 

  66. Chen Y, Barkley MD. 1998. Toward understanding tryptophan fluorescence in proteins. Biochemistry 37:9976–9982.

    CAS  Google Scholar 

  67. Chen Y, Liu B, Yu H-T, Barkley MD. 1996. The peptide bond quenches indole fluorescence. J Am Chem Soc 118:9271–9278.

    CAS  Google Scholar 

  68. Eftink MR, Ghiron CA. 1984. Indole fluorescence quenching studies on proteins and model systems: use of the inefficient quencher suc-cinimide. Biochemistry 23:3891–3899.

    CAS  Google Scholar 

  69. Froehlich PM, Gantt D, Paramasigamani V. 1977. Fluorescence quenching of indoles by N,N-dimethylformamide. Photochem Photobiol 26:639–642.

    CAS  Google Scholar 

  70. Froehlich PM, Nelson K. 1978. Fluorescence quenching of indoles by amides. J Phys Chem 82(22):2401–2403.

    CAS  Google Scholar 

  71. Finazzi-Agro A, Rotilio G, Avigliano L, Guerrieri P, Boffi V, Mondovi B. 1970. Environment of copper in Pseudomonas fluo-rescensazurin: fluorometric approach. Biochemistry 9(9):2009– 2014.

    CAS  Google Scholar 

  72. Burstein EA, Permyakov EA, Yashin VA, Burkhanov SA, Agro AF. 1977. The fine structure of luminescence spectra of azurin. Biochim Biophys Acta 491:155–159.

    CAS  Google Scholar 

  73. Szabo AG, Stepanik TM, Wayner DM, Young NM. 1983. Conformational heterogeneity of the copper binding site in azurin. Biophys J 41:233–244.

    CAS  Google Scholar 

  74. Fuentes L, Oyola J, Fernández M, Quiñones E. 2004. Conforma-tional changes in azurin from Pseudomonas aeruginosainduced through chemical and physical protocols. Biophys J 87:1873–1880.

    CAS  Google Scholar 

  75. Adman ET, Jensen LH. 1981. Structural features of azurin at 2.7 Å resolution. Isr J Chem 21:8–12.

    CAS  Google Scholar 

  76. Aueuhel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, eds. 1987. Current protocols in molecular biology. John Wiley & Sons, New York, (see chapter 8).

    Google Scholar 

  77. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning, chap. 15. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  78. Gilardi G, Mei G, Rosato N, Canters GW, Finazzi-Agro A. 1994. Unique environment of Trp48 in Pseudomonas aeruginosaazurin as probed by site-directed mutagenesis and dynamic fluorescence anisotropy. Biochemistry 33:1425–1432.

    CAS  Google Scholar 

  79. Petrich JW, Longworth JW, Fleming GR. 1987. Internal motion and electron transfer in proteins: a picosecond fluorescence study of three homologous azurins. Biochemistry 26:2711–2722.

    CAS  Google Scholar 

  80. Lakowicz JR, Cherek H, Gryczynski I, Joshi N, Johnson ML. 1987. Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Biophys J 51:755–768.

    CAS  Google Scholar 

  81. Georghiou S, Thompson M, Mukhopadhyay AK. 1982. Melittin-phospholipid interaction studied by employing the single-tryptophan residue as an intrinsic fluorescent probe. Biochim Biophys Acta 688:441–452.

    CAS  Google Scholar 

  82. Searcy DG, Montenay-Garestier T, Helene C. 1989. Phenylalanine-to-tyrosine singlet energy transfer in the archaebacterial histone-like protein HTa. Biochemistry 28:9058–9065.

    CAS  Google Scholar 

  83. Kupryszewska M, Gryczynski I, Kawski A. 1982. Intramolecular donor–acceptor separations in methionine- and leucine-enkephalin estimated by long-range radiationless transfer of singlet excitation energy. Photochem Photobiol 36:499–502.

    CAS  Google Scholar 

  84. Gryczynski I, Kawski A, Darlak K, Grzonka Z. 1985. Intramolecular electronic excitation energy transfer in dermorphine and its analogues. J Photochem 30:371–377.

    CAS  Google Scholar 

  85. Eisinger J. 1969. Intramolecular energy transfer in adrenocorticotro-pin. Biochemistry 8:3902–3908.

    CAS  Google Scholar 

  86. Moreno MJ, Prieto M. 1993. Interaction of the peptide hormone adrenocorticotropin, ACTH(1-24), with a membrane model system: a fluorescence study. Photochem Photobiol 57(3):431–437.

    CAS  Google Scholar 

  87. Pearce SF, Hawrot E. 1990. Intrinsic fluorescence of binding-site fragments of the nicotinic acetylcholine receptor: perturbations produced upon binding "-bungarotoxin. Biochemistry 29:10649–10659.

    CAS  Google Scholar 

  88. Schiller PW. 1983. Fluorescence study on the conformation of a cyclic enkephalin analogue in aqueous solution. Biochem Biophy Res Commun114(1):268–274.

    CAS  Google Scholar 

  89. Alfimova EYa, Likhtenstein GI. 1976. Fluorescence study of energy transfer as method of study of protein structure. Mol Biol (Moscow) 8(2):127–179.

    CAS  Google Scholar 

  90. Boteva R, Zlateva T, Dorovska-Taran V, Visser AJWG, Tsanev R, Salvato B. 1996. Dissociation equilibrium of human recombinant interferon (. Biochemistry 35:14825–14830.

    CAS  Google Scholar 

  91. Eisenhawer M, Cattarinussi S, Kuhn A, Vogel H. 2001. Fluorescence resonance energy transfer shows a close helix–helix distance in the transmembrane M13 procoat protein. Biochemistry 40:12321– 12328.

    CAS  Google Scholar 

  92. Lankiewicz L, Stachowiak K, Rzeska A, Wiczk W. 1999. Photophysics of sterically constrained phenylalanines. In Peptide science—present and future, pp. 168–170. Ed Y Shimonishi. Kluwer, New York.

    Google Scholar 

  93. Vanscyoc WS, Shea MA. 2001. Phenylalanine fluorescence studies of calcium binding to N-domain fragments of parameciumcalmod-ulin mutants show increased calcium affinity correlates with increased disorder. Protein Sci 10:1758–1768.

    CAS  Google Scholar 

  94. VanScyoc WS, Sorensen BR, Rusinova E, Laws WR, Ross JBA, Shea MA. 2002. Calcium binding to calmodulin mutants monitored by domain-specific intrinsic phenylalanine and tyrosine fluorescence. Biophys J 83:2767–2780.

    CAS  Google Scholar 

  95. Burshtein EA. 1996. Resolution of the fluorescence spectra by the degree of accessibility to quenchers. Biophysics 41(1):235–239.

    Google Scholar 

  96. Raja SM, Rawat SS, Chattopadhyay A, Lata AK. 1999. Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus. Biophys J 76:1469–1479.

    CAS  Google Scholar 

  97. Rausell C, Munoz-Garay C, Miranda-Casso Luengo R, Gomez I, Rudino-Pinera E, Soberon M, Bravo A. 2004. Tryptophan spec-troscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from bacillus thuringiensisis the membrane-insertion intermediate. Biochemistry 43:166–174.

    CAS  Google Scholar 

  98. Weber J, Senior AE. 2000. Features of F1-ATPase catalytic and non-catalytic sites revealed by fluorescence lifetimes and acrylamide quenching of specifically inserted tryptophan residues. Biochemistry 39:5287–5294.

    CAS  Google Scholar 

  99. Eftink MR, Ghiron CA. 1977. Exposure of tryptophanyl residues and protein dynamics. Biochemistry 16(25):5546–5551.

    CAS  Google Scholar 

  100. Eftink MR, Ghiron CA. 1981. Fluorescence quenching studies with proteins. Anal Biochem 114:199–227.

    CAS  Google Scholar 

  101. Eftink MR. 1991. Fluorescence quenching: theory and applications. In Topics in fluorescence spectroscopy, Vol. 2: Principles, pp. 53–126. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  102. Vazquez-Ibar JL, Guan L, Svrakic M, Kaback HR. 2003. Exploiting luminescence spectroscopy to elucidate the interaction between sugar and a tryptophan residue in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 100(22):12706–12711.

    CAS  Google Scholar 

  103. Wu C-SC, Yang JT. 1980. Helical conformation of glucagon in surfactant solutions. Biochemistry 19:2117–2122.

    CAS  Google Scholar 

  104. Boesch C, Bundi A, Oppliger M, Wüthrich K. 1978. 1H nuclear-magnetic-resonance studies of the molecular conformation of monomeric glucagon in aqueous solution. Eur J Biochem 91:209–214.

    CAS  Google Scholar 

  105. Edelhoch H, Lippoldt RE. 1969. Structural studies on polypeptide hormones. J Biol Chem 244:3876–3883.

    CAS  Google Scholar 

  106. Terwilliger TC, Eisenberg D. 1982. The structure of melittin. J Biol Chem 257:6016–6022.

    CAS  Google Scholar 

  107. Lakowicz JR, Weber G. 1973. Quenching of protein fluorescence by oxygen: detection of structural fluctuations in proteins on the nanosecond timescale. Biochemistry 12:4171–4179.

    CAS  Google Scholar 

  108. Calhoun DB, Vanderkooi JM, Englander SW. 1983. Penetration of small molecules into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry 22:1533–1539.

    CAS  Google Scholar 

  109. Calhoun DB, Englander SW, Wright WW, Vanderkooi JM. 1988. Quenching of room temperature protein phosphorescence by added small molecules. Biochemistry 27:8466–8474.

    CAS  Google Scholar 

  110. Kouyama I, Kinosita K, Ikegami A. 1989. Correlation between internal motion and emission kinetics of tryptophan residues in proteins. Eur J Biochem 182:517–521.

    CAS  Google Scholar 

  111. Lakowicz JR, Gryczynski I, Cherek I, Szmacinski H, Joshi N. 1991. Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching. Eur Biophys J 19:125–140.

    CAS  Google Scholar 

  112. Avigliano L, Finazzi-Agro A, Mondovi B. 1974. Perturbation studies on some blue proteins. FEBS Lett 38:205–208.

    CAS  Google Scholar 

  113. Glandieres J-M, Twist C, Haouz A, Zentz C, Alpert B. 2000. Resolved fluorescence of the two tryptophan residues in horse apomyoglobin. Photochem Photobiol 71(4):382–386.

    CAS  Google Scholar 

  114. Wasylewski Z, Kaszycki P, Guz A, Stryjewski W. 1988. Fluorescence quenching resolved spectra of fluorophores in mixtures and micellar solutions. Eur J Biochem 178:471–476.

    CAS  Google Scholar 

  115. Stryjewski W, Wasylewski Z. 1986. The resolution of heterogeneous fluorescence of multitryptophan-containing proteins studied by a fluorescence-quenching method. Eur J Biochem 158:547–553.

    CAS  Google Scholar 

  116. Wasylewski Z, Poloczek H, Wasniowska A. 1988. Fluorescence quenching resolved spectroscopy of proteins. Eur J Biochem 172:719–724.

    CAS  Google Scholar 

  117. Wasylewski Z, Kaszycki P, Drwiega M. 1996. A fluorescence study of Tn10-encoded tet repressor. J Protein Chem 15(1):45–52.

    CAS  Google Scholar 

  118. Eftink MR. 1997. Fluorescence methods for studying equilibrium macromolecule-ligand interactions. Methods Enzymol 278:221–257.

    CAS  Google Scholar 

  119. Ulrich A, Schmitz AAP, Braun T, Yuan T, Vogel HJ, Vergères G. 2000. Mapping the interface between calmodulin and MARCKS-related protein by fluorescence spectroscopy. Proc Natl Acad Sci USA 97(10):5191–5196.

    CAS  Google Scholar 

  120. Akyol Z, Bartos JA, Merrill MA, Faga LA, Jaren OR, Shea MA, Hell JW. 2004. Apo-calmodulin binds with its C-terminal domain to the N-methyl-D-aspartate receptor NR1 C0 region. J Biol Chem 279(3): 2166–2175.

    CAS  Google Scholar 

  121. Kilhoffer M-C, Kubina M, Travers F, Haiech J. 1992. Use of engineered proteins with internal tryptophan reporter groups and perturbation techniques to probe the mechanism of ligand-protein interactions: investigation of the mechanism of calcium binding to calmod-ulin. Biochemistry 31:8098–8106.

    CAS  Google Scholar 

  122. Chabbert M, Lukas TJ, Watterson DM, Axelsen PH, Prendergast FG. 1991. Fluorescence analysis of calmodulin mutants containing tryp-tophan: conformational changes induced by calmodulin-binding pep-tides from myosin light chain kinase and protein kinase II. Biochemistry 30:7615–7630.

    CAS  Google Scholar 

  123. Dong CZ, De Rocquigny H, Rémy E, Mellac S, Fournié-Zaluski MC, Roques BP. 1997. Synthesis and biological activities of fluorescent acridine-containing HIV-1 nucleocapsid proteins for investigation of nucleic acid-NCp7 interactions. J Pept Res 50:269–278.

    CAS  Google Scholar 

  124. Rai SS, O'Handley D, Nakai H. 2001. Conformational dynamics of a transposition repressor in modulating DNA binding. J Mol Biol 312:311–322.

    CAS  Google Scholar 

  125. Lorenz M, Diekmann S. 2001. Quantitative distance information on protein-DNA complexes determined in polyacrylamide gels by fluorescence resonance energy transfer. Electrophoresis 22:990–998.

    CAS  Google Scholar 

  126. Boyer M, Poujol N, Margeat E, Royer CA. 2000. Quantitative characterization of the interaction between purified human estrogen receptor " and DNA using fluorescence anisotropy. Nucleic Acids Res 28(13):2494–2502.

    CAS  Google Scholar 

  127. Bombarda E, Ababou A, Vuilleumier C, Gerard D, Roques BP, Piemont E, Mely Y. 1999. Time-resolved fluorescence investigation of the human immunodeficiency virus type 1 nucleocapsid protein: influence of the binding of nucleic acids. Biophys J 76:1561–1570.

    CAS  Google Scholar 

  128. Kozlov AG, Lohman TM. 2002. Stopped-flow studies of the kinetics of single-stranded DNA binding and wrapping around the Escheri-chia coliSSB tetramer. Biochemistry 41:6032–6044.

    CAS  Google Scholar 

  129. Zargarian L, Le Tilly V, Jamin N, Chaffotte A, Gabrielsen OS, Toma F, Alpert B. 1999. Myb-DNA recognition: role of tryptophan residues and structural changes of the minimal DNA binding domain of c-Myb. Biochemistry 38:1921–1929.

    CAS  Google Scholar 

  130. Pokalsky C, Wick P, Harms E, Lytle FE, Van Etten RL. 1995. Fluorescence resolution of the intrinsic tryptophan residues of bovine protein tyrosyl phosphatase. J Biol Chem 270(8):3809–3815.

    CAS  Google Scholar 

  131. Ramos P, Coste T, Piemont E, Lessinger JM, Bousquest JA, Chapus C, Kerfelec B, Ferard G, Mely Y. 2003. Time-resolved fluorescence allows selective monitoring of Trp30 environmental changes in the seven-trp-containing human pancreatic lipase. Biochemistry 42:12488–12496.

    CAS  Google Scholar 

  132. Cheung C-W, Mas MT. 1996. Substrate-induced conformational changes in yeast 3-phosphoglycerate kinase monitored by fluorescence of single tryptophan probes. Protein Sci 5:1144–1149.

    CAS  Google Scholar 

  133. Pham AS, Reinhart GD. 2003. Quantification of allosteric influence of escherichia coliphosphofructokinase by frequency domain fluorescence. Biophys J 85:656–666.

    CAS  Google Scholar 

  134. Takita T, Nakagoshi M, Inouye K, Tonomura B. 2003. Lysyl-tRNA synthetase from bacillus stearothermophilus: the Trp314 residue is shielded in a non-polar environment and is responsible for the fluorescence changes observed in the amino acid activation reaction. J Mol Biol 325:677–695.

    CAS  Google Scholar 

  135. Tang L, van Merode AEJ, Spelberg JHL, Fraaije MW, Janssen DB. 2003. Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from agrobacterium radiobacter: roles of W139 and W249 in the active site and halide-induced conformation-al change. Biochemistry 42:14057–14065.

    CAS  Google Scholar 

  136. Clark EH, East JM, Lee AG. 2003. The role of tryptophan residues in an integral membrane protein: diacylglycerol kinase. Biochemistry 42:11065–11073.

    CAS  Google Scholar 

  137. Van Duffelen M, Chrin LR, Berger CL. 2004. Nucleotide dependent intrinsic fluorescence changes of W29 and W36 in smooth muscle myosin. Biophys J 87:1767–1775.

    Google Scholar 

  138. Pattanaik P, Ravindra G, Sengupta C, Maithal K, Balaram P, Balaram H. 2003. Unusual fluorescence of W168 in plasmodium falciparumtriosephosphate isomerase, probed by single-tryptophan mutants. Eur J Biochem 270:745–756.

    CAS  Google Scholar 

  139. Loewenthal R, Sancho J, Fersht AR. 1991. Fluorescence spectrum of barnase: contributions of three tryptophan residues and a histidine-related pH dependence. Biochemistry 30:6775–6779.

    CAS  Google Scholar 

  140. Shopova M, Genov N. 1983. Protonated form of histidine 238 quenches the fluorescence of tryptophan 241 in subtilisin novo. Int J Pept Res 21:475–478.

    CAS  Google Scholar 

  141. Eftink MR. 1991. Fluorescence quenching reactions. In Biophysical and biochemical aspects of fluorescence spectroscopy, pp. 1–41. Ed TG Dewey. Plenum Press, New York.

    Google Scholar 

  142. Lux B, Baudier J, Gerard D. 1985. Tyrosyl fluorescence spectra of proteins lacking tryptophan: effects of intramolecular interactions. Photochem Photobiol 42(3):245–251.

    CAS  Google Scholar 

  143. Wu P, Li Y-K, Talalay P, Brand L. 1994. Characterization of the three tyrosine residues of)5-3-ketosteroid isomerase by time-resolved fluorescence and circular dichroism. Biochemistry 33:7415–7422.

    CAS  Google Scholar 

  144. Canet D, Doering K, Dobson CM, Dupont Y. 2001. High-sensitivity fluorescence anisotropy detection of protein-folding events: application to "-lactalbumin. Biophys J 80:1996–2003.

    CAS  Google Scholar 

  145. Ghaemmaghami S, Word JM, Burton RE, Richardson JS, Oas TG. 1998. Folding kinetics of a fluorescent variant of monomeric 8 repressor. Biochemistry 37:9179–9185.

    CAS  Google Scholar 

  146. Tcherkasskaya O, Uversky VN. 2001. Denatured collapsed states in protein folding: example of apomyoglobin. Proteins: Struct Funct Genet 44:244–254.

    CAS  Google Scholar 

  147. Gilmanshin R, Gulotta M, Dyer RB, Callender RH. 2001. Structures of apomyoglobin's various acid-destabilized forms. Biochemistry 40:5127–5136.

    CAS  Google Scholar 

  148. Jones BE, Beechem JM, Matthews CR. 1995. Local and global dynamics during the folding of Escherichia colidihydrofolate reduc-tase by time-resolved fluorescence spectroscopy. Biochemistry 34:1867–1877.

    CAS  Google Scholar 

  149. Smith CJ, Clarke AR, Chia WN, Irons LI, Atkinson T, Holbrook JJ. 1991. Detection and characterization of intermediates in the folding of large proteins by the use of genetically inserted tryptophan probes. Biochemistry 30:1028–1036.

    CAS  Google Scholar 

  150. Otto MR, Lillo MP, Beechem JM. 1994. Resolution of multiphasic reactions by the combination of fluorescence total-intensity and anisotropy stopped-flow kinetic experiments. Biophys J 67:2511– 2521.

    CAS  Google Scholar 

  151. Ballew RM, Sabelko J, Gruebele M. 1996. Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc Natl Acad Sci USA 93:5759–5764.

    CAS  Google Scholar 

  152. Service RF. 1996. Folding proteins caught in the act. Science 273:29–30.

    CAS  Google Scholar 

  153. Eftink MR. 1994. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J 66:482–501.

    CAS  Google Scholar 

  154. Eftink MR, Ionescu R, Ramsay GD, Wong C-Y, Wu JQ, Maki AH. 1996. Thermodynamics of the unfolding and spectroscopic properties of the V66W mutant of staphylococcal nuclease and its 1-136 fragment. Biochemistry 35:8084–8094.

    CAS  Google Scholar 

  155. Ropson IJ, Dalessio PM. 1997. Fluorescence spectral changes during the folding of intestinal fatty acid binding protein. Biochemistry 36:8594–8601.

    CAS  Google Scholar 

  156. Royer CA, Mann CJ, Matthews CR. 1993. Resolution of the fluorescence equilibrium unfolding profile of trpaporepressor using single tryptophan mutants. Protein Sci 2:1844–1852.

    CAS  Google Scholar 

  157. Szpikowska BK, Beechem JM, Sherman MA, Mas MT. 1994. Equilibrium unfolding of yeast phosphoglycerate kinase and its mutants lacking one or both native tryptophans: a circular dichroism and steady-state and time-resolved fluorescence study. Biochemistry 33:2217–2225.

    CAS  Google Scholar 

  158. Sendak RA, Rothwarf DM, Wedemeyer WJ, Houry WA, Scheraga HA. 1996. Kinetic and thermodynamic studies of the folding/unfolding of a tryptophan-containing mutant of ribonuclease A. Biochemistry 35:12978–12992.

    CAS  Google Scholar 

  159. Steer BA, Merrill AR. 1995. Guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide: unfolding of local segments using genetically substituted tryptophan residues. Biochemistry 34:7225–7234.

    CAS  Google Scholar 

  160. Clark PL, Liu Z-P, Zhang J, Gierasch LM. 1996. Intrinsic trypto-phans of CRABPI as probes of structure and folding. Protein Sci 5:1108–1117.

    CAS  Google Scholar 

  161. Clark PL, Weston BF, Gierasch LM. 1998. Probing the folding pathway of a $-clam protein with single-tryptophan constructs. Folding Des 3:401–412.

    CAS  Google Scholar 

  162. Meagher JL, Beechem JM, Olson ST, Gettins PGW. 1998. Deconvolution of the fluorescence emission spectrum of human antithrombin and identification of the tryptophan residues that are responsive to heparin binding. J Biol Chem 273(36):23283–23289.

    CAS  Google Scholar 

  163. Hannemann F, Bera AK, Fischer B, Lisurek B, Lisurek M, Teuchner K, Bernhardt R. 2002. Unfolding and conformational studies on bovine adrenodoxin probed by engineered intrinsic tryptophan fluorescence. Biochemistry 41:11008–11016.

    CAS  Google Scholar 

  164. Mansoor SE, Mchaourab HS, Farrens DL. 1999. Determination of protein secondary structure and solvent accessibility using site-directed fluorescence labeling: studies of T4 lysozyme using the fluorescent probe monobromobimane. Biochemistry 38:16383–16393.

    CAS  Google Scholar 

  165. Kintrup M, Schubert P, Kunz M, Chabbert M, Alberti P, Bombarda E, Schneider S, Hillen W. 2000. Trp scanning analysis of tet repres-sor reveals conformational changes associated with operator and anhydrotetracycline binding. Eur J Biochem 267:821–829.

    CAS  Google Scholar 

  166. Gasymov OK, Abduragimov AR, Yusifov TN, Glasgow BJ. 1997. Solution structure by site directed tryptophan fluorescence in tear lipocalin. Biochem Biophys Res Commun 239:191–196.

    CAS  Google Scholar 

  167. Gasymov OK, Abduragimov AR, Yusifov TN, Glasgow BJ. 2001. Site-directed tryptophan fluorescence reveals the solution structure of tear lipocalin: evidence for features that confer promiscuity in lig-and binding. Biochemistry 40:14754–14762.

    CAS  Google Scholar 

  168. Wong C-Y, Eftink MR. 1998. Incorporation of tryptophan analogues into staphylococcal nuclease, its V66W mutant, and)137-149 fragment: spectroscopic studies. Biochemistry 37:8938–8946.

    CAS  Google Scholar 

  169. Mohammadi F, Prentice GA, Merrill AR. 2001. Protein–protein interaction using tryptophan analogues: novel spectroscopic probes for toxin-elongation factor-2 interactions. Biochemistry 40:10273– 10283.

    CAS  Google Scholar 

  170. Li Q, Du H-N, Hu H-Y. 2003. Study of protein–protein interactions by fluorescence of tryptophan analogs: application to immunoglobu-lin G binding domain of streptococcal protein G. Biopolymers 72:116–122.

    CAS  Google Scholar 

  171. Acchione M, Guillemette JG, Twine SM, Hogue CWV, Rajendran B, Szabo AG. 2003. Fluorescence-based structural analaysis of trypto-phan analogue–AMP formation in single tryptophan mutants of B. stearothermophilustryptophanyl-tRNA synthetase. Biochemistry 42:14994–15002.

    CAS  Google Scholar 

  172. Das K, Ashby KD, Smirnov AV, Reinach FC, Petrich JW, Farah CS. 1999. Fluorescence properties of recombinant tropomyosin containing tryptophan 5-hydroxytryptophan and 7-azatryptophan. Photochem Photobiol 70(5):719–730.

    CAS  Google Scholar 

  173. Hogue CWV, Rasquinha I, Szabo AG, MacManus JP. 1992. A new intrinsic fluorescent probe for proteins. FEBS Lett 310:269–272.

    CAS  Google Scholar 

  174. Twine SM, Szabo AG. 2003. Fluorescent amino acid analogues. Methods Enzymol 360:104–127.

    CAS  Google Scholar 

  175. Heyduk E, Heyduk T. 1993. Physical studies on interaction of transcription activator and RNA-polymerase: fluorescent derivatives of CRP and RNA polymerase. Cell Mol Biol Res 39:401–407.

    CAS  Google Scholar 

  176. Laue TM, Senear DF, Eaton S, Ross JBA. 1993. 5-hydroxytrypto-phan as a new intrinsic probe for investigating protein-DNA interactions by analytical ultracentrifugation: study of the effect of DNA on self-assembly of the bacteriophage 8 cI repressor. Biochemistry 32:2469–2472.

    CAS  Google Scholar 

  177. Soumillion P, Jespers L, Vervoort J, Fastrez J. 1995. Biosynthetic incorporation of 7-azatryptophan into the phage lambda lysozyme: estimation of tryptophan accessibility, effect on enzymatic activity and protein stability. Protein Eng 8:451–456.

    CAS  Google Scholar 

  178. Wong C-Y, Eftink MR. 1997. Biosynthetic incorporation of trypto-phan analogues into staphylococcal nuclease: effect of 5-hydrox-ytryptophan and 7-azatryptophan on structure and stability. Protein Sci 6:689–697.

    CAS  Google Scholar 

  179. Laws WR, Schwartz GP, Rusinova E, Burke GT, Chu Y-C, Katsoyannis PG, Ross JBA. 1995. 5-hydroxytryptophan: an absorption and fluorescence probe which is a conservative replacement for [A14 tyrosine] in insulin. J Protein Chem 14:225–232.

    CAS  Google Scholar 

  180. Hogue CWV, Szabo AG. 1993. Characterization of aminoacyl-adenylates in B. subtilistryptophanyl-tRNA synthetase, by the fluorescence of tryptophan analogs 5-hydroxytryptophan and 7-azatryp-tophan. Biophys Chem 48:159–169.

    CAS  Google Scholar 

  181. Broos J, Gabellieri E, Biemans-Oldehinkel E, Strambini GB. 2003. Efficient biosynthetic incorporation of tryptophan and indole analogs in an integral membrane protein. Protein Sci 12:1991–2000.

    CAS  Google Scholar 

  182. Guharay J, Sengupta PK. 1996. Characterization of the fluorescence emission properties of 7-azatryptophan in reverse micellar environments. Biochem Biophys Res Commun 219:388–392.

    CAS  Google Scholar 

  183. Negrerie M, Gai F, Bellefeuille SM, Petrich JW. 1991. Photophysics of a novel optical probe: 7-azaindole. J Phys Chem 95:8663–8670.

    CAS  Google Scholar 

  184. Rich RL, Negrerie M, Li J, Elliott S, Thornburg RW, Petrich JW. 1993. The photophysical probe, 7-azatryptophan, in synthetic pep-tides. Photochem Photobiol 58(1):28–30.

    CAS  Google Scholar 

  185. Chen Y, Gai F, Petrich JW. 1994. Solvation and excited state proton transfer of 7-azindole in alcohols. Chem Phys Lett 222:329–334.

    CAS  Google Scholar 

  186. Chen Y, Gai F, Petrich JW. 1994. Single-exponential fluorescence decay of the nonnatural amino acid 7-azatryptophan and the nonex-ponential fluorescence decay of tryptophan in water. J Phys Chem 98:2203–2209.

    CAS  Google Scholar 

  187. Chen Y, Rich RL, Gai F, Petrich JW. 1993. Fluorescent species of 7-azindole and 7-azatryptophan in water. J Phys Chem 97:1770–1780.

    CAS  Google Scholar 

  188. English DS, Rich RL, Petrich JW. 1998. Nonexponential fluorescence decay of 7-azatryptophan induced in a peptide environment. Photochem Photobiol 67(1):76–83.

    CAS  Google Scholar 

  189. Hott JL, Borkman RF. 1989. The non-fluorescence of 4-fluorotryp-tophan. Biochem J 264:297–299.

    CAS  Google Scholar 

  190. England PM. 2004. Unnatural amino acid mutageneis: a precise tool for probing protein structure and function. Biochemistry 43(37): 11623–11629.

    CAS  Google Scholar 

  191. Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG. 1989. A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244:182–188.

    CAS  Google Scholar 

  192. Bain JD, Glabe CG, Dix TA, Chamberlin AR. 1989. Biosynthetic site-specific incorporation of a non-natural amino acid into a polypeptide. J Am Chem Soc 111:8013–8014.

    CAS  Google Scholar 

  193. Heckler TG, Chang L-H, Zama Y, Naka T, Chorghade MS, Hecht SM. 1984. T4 RNA ligase mediated preparation of novel "chemically misacylated" tRNAPhes. Biochemistry 23:1468–1473.

    CAS  Google Scholar 

  194. Taki M, Hohsaka T, Murakami H, Taira K, Sisido M. 2002. Position-specific incorporation of a fluorophore–quencher pair into single streptavidin orthogonal four-base codon–anticodon pairs. J Am Chem Soc 124:14586–14590.

    CAS  Google Scholar 

  195. Hohsaka T, Ashizuka Y, Taira H, Murakami H, Sisido M. 2001. Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coliin vitro translation systems. Biochemistry 40:11060–11064.

    CAS  Google Scholar 

  196. Wang L, Brock A, Schultz PG. 2002. Adding L-3-(2-naphthyl)ala-nine to the genetic code of E. coli. J Am Chem Soc 124:1836–1837.

    CAS  Google Scholar 

  197. Anderson RD, Zhou J, Hecht SM. 2002. Fluorescence resonance energy transfer between unnatural amino acids in a structurally modified dihydrofolate reductase. J Am Chem Soc 124:9674–9675.

    CAS  Google Scholar 

  198. Wang L, Brock A,, Herberich B, Schultz PG. 2001. Expanding the genetic code of Escherichia coli. Science 292(5516):498–500.

    CAS  Google Scholar 

  199. Murakami H, Hohsaka T, Ashizuka Y, Hashimoto K, Sisido M. 2000. Site-directed incorporation of fluorescent nonnatural amino acids into streptavidin for highly sensitive detection of biotin. Biomacromolecules 1:118–125.

    CAS  Google Scholar 

  200. Hohsaka T, Muranaka N, Komiyama C, Matsui K, Takaura S, Abe R, Murakami H, Sisido M. 2004. Position-specific incorporation of dan-sylated non-natural amino acids into streptavidin by using a four-base codon. FEBS Lett 560:173–177.

    CAS  Google Scholar 

  201. Strasser F, Dey J, Eftink MR, Plapp B V. 1998. Activation of horse liver alcohol dehydrogenase upon substitution of tryptophan 314 at the dimer interface. Arch Biochem Biophys 358(2):369–376. (The original data were courtesy of Dr. BU Plopp.)

    CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Protein Fluorescence. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46312-4_16

Download citation

Publish with us

Policies and ethics