Skip to main content

Direct Numerical Simulation of Polymer Electrolyte Fuel Cell Catalyst Layers

  • Chapter
Modern Aspects of Electrochemistry No. 40

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 40))

Abstract

Fuel cells, due to their high energy efficiency, zero pollution and low noise, are widely considered as the 21st century energy-conversion devices for mobile, stationary and portable power. Among the several types of fuel cells, polymer electrolyte fuel cell (PEFC) has emerged as the most promising power source for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Gottesfeld and T.A. Zawodzinski, in Advances in Electrochemical Science and Engineering, Vol. 5, Ed. by C. Tobias, Wiley and Sons, New York, 1997.

    Google Scholar 

  2. T. E. Springer, T. A. Zawodinski, and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334.

    Article  CAS  Google Scholar 

  3. D. M. Bemardi and M. W. Verbrugge, J. Electrochem. Soc. 139 (1992) 2477.

    Article  Google Scholar 

  4. V. Gurau, H. Liu, and S. Kakac, AIChEJ. 44 (1998) 2410.

    Article  CAS  Google Scholar 

  5. S. Urn, C. Y. Wang, and K. S. Chen, J. Electrochem. Soc. 147 (2000) 4485.

    Article  Google Scholar 

  6. T. E. Springer and S. Gottesfeld, in Modeling of Batteries and Fuel Cells, Ed. by R. E. White, Electrochem. Soc. Proc, Pennington, NJ, 1991, p. 197.

    Google Scholar 

  7. M. L. Perry, J. Newman, and E. J. Cairns, J. Electrochem. Soc. 145 (1998) 5.

    Article  CAS  Google Scholar 

  8. M. Eikerling and A. A. Kornyshev, J. Electroanal. Chem. 453 (1998) 89.

    Article  CAS  Google Scholar 

  9. C. Y. Wang, Chem. Rev. 104 (2004) 4727.

    Article  CAS  Google Scholar 

  10. A. Z. Weber and J. Newman, Chem. Rev. 104 (2004) 4679.

    Article  CAS  Google Scholar 

  11. L. Pisani, M. Valentini, and G. Murgia, J. Electrochem. Soc. 150 (2003) A1558.

    Article  Google Scholar 

  12. G. Wang, PhD Dissertation, Deptartment of Mechanical and Nuclear Engineering, The Pennsylvania State University (2003).

    Google Scholar 

  13. J. Stumper, H. Haas, and A. Granados, J. Electrochem. Soc. 152 (2005) A837.

    Article  CAS  Google Scholar 

  14. T. Baritaud, T. Poinsot and M. Baum, Direct Numerical Simulation for Turbulent Flows, Publisher, Paris. Ed. Technip (1996).

    Google Scholar 

  15. M. Sahraoui and M. Kaviany, Int. J. Heat Mass Transfer 37 (1994) 2817.

    Article  CAS  Google Scholar 

  16. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington DC (1980).

    Google Scholar 

  17. H. A. Gasteiger, W. Gu, R. Makharia, M. F. Mathias, and B. Sompalli, in Handbook of Fuel Cells—Fundamentals, Technology and Applications, Vol. 3, Ed. by W. Vielstich, A. Lamm, and H. A. Gasteiger, Wiley, Chichester, 2003, Ch. 46.

    Google Scholar 

  18. P. M. Adler, Porous Media: geometry and transports, Butterworth-Heinemann, Stoneham,MA (1992).

    Google Scholar 

  19. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley & Sons Inc., New York (1960).

    Google Scholar 

  20. S. Urn, and C. Y. Wang, J. Power Sources 125 (2004) 40.

    Article  Google Scholar 

  21. S. Dutta, S. Shimpalee, and J.W. Van Zee, J. Appl. Electrochem. 30 (2000) 135.

    Article  CAS  Google Scholar 

  22. S. Dutta, S. Shimpalee, and J.W. Van Zee, Int. J. Heat Mass Transfer 44 (2001) 2029.

    Article  CAS  Google Scholar 

  23. T. Berning, D. M. Lu, and N. Djilali, J. Power Sources 106 (2002) 284.

    Article  CAS  Google Scholar 

  24. S. Mazumder and J. V. Cole, J. Electrochem. Soc. 150 (2003) A1503.

    Article  CAS  Google Scholar 

  25. T. A. Zawodzinski, J. Davey, J. Valerio, and S. Gottesfeld, Electrochimica Acta, 40 (1995) 297.

    Article  CAS  Google Scholar 

  26. T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334.

    Article  CAS  Google Scholar 

  27. M. Joshi, Ph.D. Dissertation, U. of Kansas, Lawrence, Kansas (1974).

    Google Scholar 

  28. J. A. Quiblier, J. Coll. Interf. Sci. 98 (1984) 84.

    CAS  Google Scholar 

  29. P. M. Adler, C. G. Jacquin, and J. A. Quiblier, Int. J. Multiphase Flow 16 (1990) 691.

    Article  CAS  Google Scholar 

  30. M. Ioannidis, M. Kwiecien, and I. Chatzis, SPE Petroleum Computer Conference, Houston, 11–14 June (1995).

    Google Scholar 

  31. D. P. Bentz, and N. S. Martys, Transport in Porous Media 17 (1995) 221.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mukherjee, P.P., Wang, G., Wang, CY. (2007). Direct Numerical Simulation of Polymer Electrolyte Fuel Cell Catalyst Layers. In: White, R.E., Vayenas, C.G., Gamboa-Aldeco, M.E. (eds) Modern Aspects of Electrochemistry No. 40. Modern Aspects of Electrochemistry, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46106-9_6

Download citation

Publish with us

Policies and ethics