Skip to main content

Abstract

The axial (z-) resolution of any fluorescence microscope using a single lens is limited by diffraction to >500nm. While a modest improvement by up to a factor of 2 may be achieved by mathematical deconvolution, a substantial improvement of the axial resolution requires a radical change of the physics of imaging Since the 1990s, two families of methods have evolved that accomplished substantially improved axial resolution in threedimensional (3D) imaging. The first family, comprising 4Pi microscopy and I5M, coherently combines the aperture of two opposing lenses (Hell and Stelzer, 1992a, 1992b; Gustafsson et al., 1995, 1999; Eģner and Hell, 2005). The second family, of which stimulated emission depletion (STED) microscopy (Hell and Wichmann, 1994; see also Chapter 31, this volume) is the most established member, exploits photophysical or photochemical properties of the dye to break the diffraction barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bewersdorf, J., Pick, R., and Hell, S.W., 1998, Multifocal multiphoton microscopy, Opt. Lett. 23:655–657.

    CAS  Google Scholar 

  • Bewersdorf, J., Schmidt, R., and Hell, S.W., 2005, Comparison of 4Piconfocal microscopy and I5M, submitted.

    Google Scholar 

  • Booth, M.J., Neil, M.A.A., Juskaitis, R., and Wilson, T., 2002, Adaptive aberration correction in a confocal microscope, Proc. Natl. Acad. Sci. USA 99:5788–5792.

    Article  CAS  PubMed  Google Scholar 

  • Bornfleth, H., Satzler, K., Eils, R., and Cremer, C., 1998, High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy, J. Microsc. 189:118–136.

    Article  Google Scholar 

  • Bradl, J., Hausmann, M., Ehemann, V., Komitowski, D., and Cremer, C., 1992, A tilting device for 3-dimensional microscopy — Application to in situ imaging of interphase cell-nuclei, J. Microsc. 168:47–57.

    CAS  Google Scholar 

  • Brakenhoff, G.J., and Visscher, K., 1992, Confocal imaging with bilateral scanning and array detectors, J. Microsc. 165:139–146.

    Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.

    Article  CAS  PubMed  Google Scholar 

  • Dyba, M., and Hell, S.W., 2002, Focal spots of size l/23 open up far-field fluorescence microscopy at 33 nm axial resolution, Phys. Rev. Lett. 88:163901.

    Article  PubMed  Google Scholar 

  • Dyba, M., Jakobs, S., and Hell, S.W., 2003, Immunofluorescence stimulated emission depletion microscopy, Nat. Biotechnol. 21:1303–1304.

    Article  CAS  Google Scholar 

  • Egner, A., and Hell, S.W., 2000, Time multiplexing and parallelization in multifocal multiphoton microscopy, J. Opt. Soc. Am. A. 17:1192–1201.

    Article  Google Scholar 

  • Egner, A., Andresen, V., and Hell, S.W., 2002a, Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: Theory and experiment, J. Microsc. 206:24–32.

    Article  CAS  Google Scholar 

  • Egner, A., Jakobs, S., and Hell, S.W., 2002b, Fast 100-nm resolution 3Dmicroscope reveals structural plasticity of mitochondria in live yeast, Proc. Natl. Acad. Sci. USA 99:3370–3375.

    Article  CAS  PubMed  Google Scholar 

  • Egner, A., Schrader, M., and Hell, S.W., 1998, Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi-microscopy, Opt. Commun. 153:211–217.

    CAS  Google Scholar 

  • Egner, A., Verrier, S., Goroshkov, A., Söling, H.-D., and Hell, S.W., 2004, 4Pimicroscopy of the Golgi apparatus in live mammalian cells, J. Struct. Biol. 147:70–76.

    Article  CAS  PubMed  Google Scholar 

  • Egner, A., and Hell, S.W., 2005, Fluorescence microscopy with super-resolved optical section, Trends Cell Biol. 15:207–215.

    Article  CAS  PubMed  Google Scholar 

  • Gelles, J., Schnapp, B.J., and Sheetz, M.P., 1988, Tracking kinesin-driven movements with nanometre-scale precision, Nature 331:450–453.

    Article  CAS  PubMed  Google Scholar 

  • Gugel, H., Bewersdorf, J., Jakobs, S., Engelhardt, J., Storz, R., and Hell, S.W., 2004, Combining 4Pi excitation and detection delivers seven-fold sharper sections in confocal imaging of live cells, Biophys. J. 87:4146–4152.

    CAS  Google Scholar 

  • Gustafsson, M.G.L., Agard, D.A., and Sedat, J.W., 1995, Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses, Proc. SPIE 2412:147–156.

    Article  Google Scholar 

  • Gustafsson, M.G.L., Agard, D.A., and Sedat, J.W., 1999, I5M: 3D widefield light microscopy with better than 100 nm axial resolution, J. Microsc. 195:10–16.

    Article  CAS  Google Scholar 

  • Heintzmann, R., and Cremer, C., 2002, Axial tomographic confocal fluorescence microscopy, J. Microsc. 206:7–23.

    Article  CAS  Google Scholar 

  • Hell, S.W., 1990, Double-confocal microscrope, European Patent 0491289.

    Google Scholar 

  • Hell, S., and Stelzer, E.H.K., 1992a, Properties of a 4Pi-confocal fluorescence microscope, J. Opt. Soc. Am. A 9:2159–2166.

    Article  Google Scholar 

  • Hell, S.W., 2004, Strategy for far-field optical imaging and writing without diffraction limit, Phys. Lett. A 326:140–145.

    Article  CAS  Google Scholar 

  • Hell, S.W., and Stelzer, E.H.K., 1992b, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Opt. Commun. 93:277–282.

    Google Scholar 

  • Hell, S.W., and Wichmann, J., 1994, Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy, Opt. Lett. 19:780–782.

    CAS  Google Scholar 

  • Hell, S.W., Dyba, M., and Jakobs, S., 2004, Concepts for nanoscale resolution in fluorescence microscopy, Curr. Opin. Neurobio. 14:599–609.

    Article  CAS  Google Scholar 

  • Hell, S.W., Lindek, S., Cremer, C., and Stelzer, E.H.K., 1994, Measurement of the 4Pi-confocal point spread function proves 75 nm resolution, Appl. Phys. Lett. 64:1335–1338.

    Article  Google Scholar 

  • Khurich, D., Nouvain, R., Pujol, R., Dieck, S., Egner, A., Gundelfinger, E., and Moser, T., 2005, Hair cell synaptic ribbons are essential for synchronous auditory signalling, Nature 434:889–894.

    Article  Google Scholar 

  • König, K., Becker, T.W., Fischer, P., Riemann, I., and Halbhuber, K.-J. 1999, Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes, Opt. Lett. 24:113–115.

    Google Scholar 

  • Lacoste, T.D., Michalet, X., Pinaud, F., Chemla, D.S., Alivisatos, A.P., and Weiss, S., 2000, Ultrahigh-resolution multicolor colocalization of single fluorescent probes, Proc. Natl. Acad. Sci. USA 97:9461–9466.

    Article  CAS  PubMed  Google Scholar 

  • Nagorni, M., and Hell, S.W., 2001a, Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts, J. Opt. Soc. Am. A 18:36–48.

    CAS  Google Scholar 

  • Nagorni, M., and Hell, S.W., 2001b, Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. II. Power and limitation of nonlinear image restoration, J. Opt. Soc. Am. A 18:49–54.

    CAS  Google Scholar 

  • Richards, B., and Wolf, E., 1959, Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system, Proc. R. Soc. Lond. A 253:358–379.

    Google Scholar 

  • Schmidt, M., Nagorni, M., and Hell, S.W., 2000, Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer, Rev. Sci. Instrum. 71:2742–2745.

    Article  CAS  Google Scholar 

  • Thompson, R.E., Larson, D.R., and Webb, W.W., 2002, Precise nanometer localization analysis for individual fluorescent probes, Biophys. J. 82:2775–2783.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bewersdorf, J., Egner, A., Hell, S.W. (2006). 4Pi Microscopy. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_30

Download citation

Publish with us

Policies and ethics