Skip to main content

The Dynamic Association of RNA Polymerase II with Initiation, Elongation, and RNA Processing Factors during the Transcription Cycle

  • Chapter
Book cover Gene Expression and Regulation

Abstract

The transcription of protein encoding genes by RNA polymerase II (RNAPII) is a complex and highly regulated process. RNAPII and several of its associated general transcription factors (GTFs), including TBP, TFIIB, TFIIF, and TFIIH are sufficient for recognition and low levels of accurate transcription from common core promoter elements in vitro (Roeder, 1996 and Orphanides et al., 1996). However, in addition to these factors necessary for basal transcription initiation, accurately regulated transcription requires additional cofactors which assemble into various complexes to mediate the communication between DNA-binding activators, as well as repressors, and RNAPII. The precise manner in which the RNAPII transcription machinery is assembled upon a region of DNA determines the ability of RNAPII to initiate the synthesis of mRNA at a specific location and with a defined frequency and processivity. The dynamic nature of the RNAPII holoenzyme and the ever-increasing number of RNAPII-associated factors being identified that regulate transcription at the levels of initiation, elongation, and processing will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, LA., Moyle, M., Shales, M., and Ingles, C.J. (1985). Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 52, 599–610.

    Article  Google Scholar 

  • Andrulis, E.D., Guzman, E., Doring, P., Werner, J., and Lis, J.T. (2002). High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: Roles in promoter proximal pausing and transcription elongation. Genes Dev. 14, 2635–2649.

    Article  Google Scholar 

  • Archambault, J.F., Lacroute, F., Ruet, A., and Friesen, J.D. (1992). Genetic interactions between transcription elongation factor TFIIS and RNA polymerase II. Mol. Cell. Biol. 12, 4142–4152.

    PubMed  CAS  Google Scholar 

  • Archambault, J., and Friesen, J.D. (1993). Genetics of eukaryotic RNA polymerases I, II, and III. Microbiol. Rev. 57, 703–724.

    PubMed  CAS  Google Scholar 

  • Armache, K-J., Kettenberger, H., and Cramer, P. (2003). Architecture of initiation-competent 12-subunit RNA polymerase II. Proc. Natl. Acad. Sci. USA 100, 6964–6968.

    Article  PubMed  CAS  Google Scholar 

  • Aso, T., Conaway, J.W., and Conaway, R.C. (1994). Role of core promoter structure in assembly of the RNA polymerase II preinitiation complex. A common pathway for formation of preinitiation intermediates at many TATA and TATA-less promoters. J. Biol. Chem. 269, 26575–26583.

    PubMed  CAS  Google Scholar 

  • Aso, T., Lane, W.S., Conaway, J.W., and Conaway, R.C. (1995). Elongin (SIII): A multisubunit regulator of elongation by RNA polymerase II. Science 269, 1439–1443.

    Article  PubMed  CAS  Google Scholar 

  • Aso, T., Haque, D., Barstead, R.J., Conaway, R.C., and Conaway, J.W. (1996). The inducible elongin A elongation activation domain: Structure, function and interaction with the elongin BC complex. EMBO J. 15, 5557–5577.

    PubMed  CAS  Google Scholar 

  • Asturias, F.J., and Craighead, J.L. (2003). RNA polymerase II at initiation. Proc. Natl. Acad. Sci. USA 100, 6893–6895.

    Article  PubMed  CAS  Google Scholar 

  • Barilla, D., Lee, B.A., and Proudfoot, N.J. (2001). Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 98, 445–450.

    Article  PubMed  CAS  Google Scholar 

  • Belotserkovskaya, R., Oh, S., Bondarenko, V.A., Orphanides, G., Studitsky, V.M., and Reinberg, D. (2003). FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093.

    Article  PubMed  CAS  Google Scholar 

  • Belotserkovskaya, R., Saunders, A., Lis, J.T., and Reinberg, D. (2004). Transcription through chromatin: understanding a complex FACT. Biochim. Biophys. Acta 1677, 87–99

    PubMed  CAS  Google Scholar 

  • Bengal, E. Flores, O., Krauskopf, A., Reinberg, D., and Aloni, Y. (1991). Role of the mammalian transcription factors IIF, IIS, and IIX during elongation by RNA polymerase II. Mol. Cell. Biol. 11, 1195–1206.

    PubMed  CAS  Google Scholar 

  • Bentley, D.L. (1995). Regulation of transcriptional elongation by RNA polymerase II. Curr. Opin. Genet. Dev. 5, 210–216.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, D. (2002). The mRNA assembly line: transcription and processing machines in the same factory. Curr. Opin. Cell Biol. 14, 3360342.

    Article  Google Scholar 

  • Berroteran, R.W., Ware, D.E., and Hampsey, M. (1994). The sua8 suppressors of Saccharomyces cerevisiae encode replacements of conserved residues within the largest subunit of RNA polymerase II and affect transcription start site selection similarly to sua7 (TFIIB) mutations. Mol. Cell. Biol. 14, 226–237.

    PubMed  CAS  Google Scholar 

  • Blackwood, E., and Kadonaga, J.T. (1998). Going the distance: a current view of enhancer action. Science 281, 60–63.

    Article  PubMed  CAS  Google Scholar 

  • Bourbon, H-M. et al. (2004). A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerse II. Mol. Cell. 14, 553–557.

    Article  PubMed  CAS  Google Scholar 

  • Bradsher, J.N., Jackson, K.W., Conaway, R.C., and Conaway, J.W. (1993a). RNA polymerase II transcription factor SIII. I. Identification, purification, and properties. J. Biol. Chem. 268, 25587–25593.

    PubMed  CAS  Google Scholar 

  • Bradsher, J.N., Tan, S., McLaury, H.J., Conaway, J.W., and Conaway, R.C. (1993b). RNA polymerase II transcription factor SIII. II. Functional properties and role in RNA chain elongation. J. Biol. Chem. 268, 25594–25603.

    PubMed  CAS  Google Scholar 

  • Briggs, S.D., Bryk, M., Strahl, B.D., Cheung, W.L., Davie, J.K., Dent, S.Y.R., Winston, F., and Allis, C.D. (2001). Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15, 3286–3295.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S.A., Imbalzano, A.N., and Kingston, R.E. (1996). Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev. 10, 1479–1490.

    Article  PubMed  CAS  Google Scholar 

  • Burke, T.W., and Kadonaga, J.T. (1996) Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev. 10, 711–724.

    Article  PubMed  CAS  Google Scholar 

  • Bushnell, D.A., and Kornberg, R.D. (2003). Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription. Proc. Natl. Acad. Sci. USA 100, 6969–6973.

    Article  PubMed  CAS  Google Scholar 

  • Cairns, B.R., Kim, Y.J., Sayre, M.H., Laurent, B.C., and Kornberg, R.D. (1994). A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2. SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc. Natl. Acad. Sci. USA 91, 1950–1954.

    Article  PubMed  CAS  Google Scholar 

  • Carcamo, J., Bucklinder, L., and Reinberg, D. (1991). The initiator directs the assembly of a transcription factor IID-dependent transcription complex. Proc. Natl. Acad. Sci. USA 88, 8052–8056.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, M. (1997). Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu. Rev. Cell Dev. Biol. 13, 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Chang, M., and Jaehning, J.A. (1997). A multiplicity of mediators: alternative forms of transcription complexes communicate with transcriptional regulators. Nucleic Acids Res. 25, 4861–4865.

    Article  PubMed  CAS  Google Scholar 

  • Chang, M., French-Cornay, D., Fan, H-Y., Klein, H., Denis, C.L., and Jaehning, J.A. (1999). A complex containing RNA polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p plays a role in protein kinase C signaling. Mol. Cell. Biol. 19, 1056–1067.

    PubMed  CAS  Google Scholar 

  • Cho, E.J., Takagi, T., Moore, C.R., and Buratowski, S. (1997). mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11, 3319–3326.

    PubMed  CAS  Google Scholar 

  • Christmann, J.L., and Dahmus, M.E. (1981). Monoclonal antibody specific for calf thymus RNA polymerases IIO and IIA. J. Biol. Chem. 256, 11798–11803.

    PubMed  CAS  Google Scholar 

  • Citterio, E., Van Den Boom, V., Schnitzler, G., Kanaar, R., Bonte, E., Kingston, R.E., Hoeijmakers, J.H., and Vermeulen, W. (2000). ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell. Biol. 20, 7643–7653.

    Article  PubMed  CAS  Google Scholar 

  • Conaway, R.C., and Conaway, J.W. (1993). General initiation factors for RNA polymerase II. Annu. Rev. Biochem. 62, 161–190.

    Article  PubMed  CAS  Google Scholar 

  • Conaway, R.C., Kong, S.E., and Conaway, J.W. (2003). TFIIS and GreB: Two like-minded transcription elongation factors with sticky fingers. Cell 114, 272–274.

    Article  PubMed  CAS  Google Scholar 

  • Conaway, J.W., Florens, L., Sato, S., Tomomori-Sato, C., Parmely, T.J., Yao, T., Swanson, S.K., Banks, C.A.S., Washburn, M.P., and Conaway, R.C. (2005). The mammalian Mediator complex. FEBS Letters 579, 904–908.

    Article  PubMed  CAS  Google Scholar 

  • Coppola, J.A., Field, A.S., and Luse, D.S. (1983). Promoter-proximal pausing by RNA polymerase II in vitro: transcripts shorter than 20 nucleotides are not capped. Proc. Natl. Acad. Sci. USA 80, 1251–1255.

    Article  PubMed  CAS  Google Scholar 

  • Corden, J.L., Cadena, D.L., Ahearn, J.M. Jr., and Dahmus, M.E. (1985). A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. Proc. Natl. Acad. Sci. USA 82, 7934–7938.

    Article  PubMed  CAS  Google Scholar 

  • Cormack, B., and Struhl, K. (1992). The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 69, 685–696.

    Article  PubMed  CAS  Google Scholar 

  • Costa, P.J., and A’Rndt, K.M. (2000). Synthetic lethal interactions suggest a role for the Sacharomyces cerevisiae Rtf1 protein in transcription elongation. Genetics 156, 535–547.

    PubMed  CAS  Google Scholar 

  • Cote, J., Quinn, J., Workman, J.L., and Peterson, C.L. (1994). Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Dahmus, M.E. (1981). Phosphorylation of eukaryotic DNA-dependent RNA polymerase. Identification of calf thymus RNA polymerase subunits phosphorylated by two purified protein kinases, correlation with in vivo sites of phosphorylation in HeLa cell RNA polymerase II. J. Biol, Chem. 256, 3332–3339.

    CAS  Google Scholar 

  • Dahmus, M.E. (1994). The role of multisite phosphorylation in the regulation of RNA polymerase II activity. Prog. Nucleic Acid Res. Mol. Biol. 48, 143–179.

    PubMed  CAS  Google Scholar 

  • Davie, J.K., and Kane, C.M. (2000). Genetic interactions between TFIIS and the Swi-Snf chromatin-remodeling complex. Mol. Cell. Biol. 20, 5960–5973.

    Article  PubMed  CAS  Google Scholar 

  • Denis, C.L., and Malvar, T. (1990). The CCR4 gene from Saccharomyces cerevisiae is required for both nonfermentative and spt-mediated gene expression. Genetics 124, 283–291.

    PubMed  CAS  Google Scholar 

  • Draper, M.P., Liu, H., Nelsbach, A.H., Mosley, S.P., and Denis, C.L. (1994). CCR4 is a glucose-regulated transcription factor whose leucine-rich repeat binds several proteins important for placing CCR4 in its proper promoter context. Mol. Cell. Biol. 14, 4522–4531.

    PubMed  CAS  Google Scholar 

  • Durrin, L.K., Mann, R.K., and Grunstein, M. (1992). Nucleosome loss activates CUP1 and HIS3 promoters to fully induced levels in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 1621–1629.

    PubMed  CAS  Google Scholar 

  • Dvir, A., Conaway R.C., and Conaway J.W. (1997). A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes. Proc. Natl. Acad. Sci. USA 94, 9006–9010.

    Article  PubMed  CAS  Google Scholar 

  • Dynact, B.D., Hoey, T. and Tjian, R. (1991). Isolation of coactivators associated with the TATA binding protein that mediate transcriptional activation. Cell 66, 563–566.

    Article  Google Scholar 

  • Edwards, A.M., Kane, C.M., Young, R. A., and Kornberg, R. D. (1991). Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. J. Biol. Chem. 266, 71–75

    PubMed  CAS  Google Scholar 

  • Eissenberg, J.C., Ma, J., Gerber, M.A., Christensen, A., Kennison, J.A., and Shilatifard, A. (2002). dELL is an essential RNA polymerase II elongation factor with a general role in development. Proc. Natl. Acad. Sci. USA 99, 9894–9899.

    Article  PubMed  CAS  Google Scholar 

  • Fan, H-Y., Chang, K.K., and Klein, H.L. (1996). Mutations in the RNA polymerase II transcription machinery suppress the hyperrecombination mutant hpr1 of Saccharomyces cerevisiae. Genetics 142, 749–759.

    PubMed  CAS  Google Scholar 

  • Fish, R.N., and Kane, C.M. (2002). Promoting elongation with transcript cleavage stimulatory factors. Biochim. Biophys. Acta 1577, 287–307.

    PubMed  CAS  Google Scholar 

  • Flanagan, P M., Kelleher R. J. III, Sayre, M. H., Tschochner, H., and Kornberg, R. D. (1991). A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350, 436–438.

    Article  PubMed  CAS  Google Scholar 

  • Formosa, T., Ruone, S., Adams, M.D., Olsen, A.E., Eriksson, P., Yu, Y., Rhoades, A.R., Kaufman, P.D., and Stillman, D.J. (2002). Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics 162, 1447–1471.

    Google Scholar 

  • Garrett, K.P., Aso, T., Bradsher, J.N., Foundling, S.I., Lane, W.S., Conaway, R.C., and Conaway, J.W. (1995). Positive regulation of general transcription factor SIII by a tailed ubiquitin homolog. Proc. Natl. Acad. Sci. USA 92, 7172–7176

    Article  PubMed  CAS  Google Scholar 

  • Gerber, H-P., Hagmann, M., Seipel, K., Georgiev, O., West, M.A., Liting Tong, Y., Schaffner, W., and Corden, J.L. (1995). RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 374, 660–662.

    Article  PubMed  CAS  Google Scholar 

  • Gerber, M., Ma, J., Dean, K., Eissenberg, J.C., and Shilatifard, A. (2001). Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo. EMBO J. 20, 6104–6114.

    Article  PubMed  CAS  Google Scholar 

  • Gerber, M., and Shilatifard, A. (2003). Transcriptional elongation by RNA polymerase II and histone methylation. J. Biol. Chem. 278, 26303–26306.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, C., Kristjuhan, A., Winkler, G., and Svejstrup, J.Q. (2004). Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation. Mol. Cell 14, 457–464.

    Article  PubMed  CAS  Google Scholar 

  • Goodrich, J.A., and Tjian, R. (1994a). TBP-TAF complexes: selectivity factors for eukaryotic transcription. Curr. Opin. Cell Biol. 6, 403–409.

    Article  PubMed  CAS  Google Scholar 

  • Goodrich, J.A., and Tjian, R. (1994b). Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77, 145–156.

    Article  PubMed  CAS  Google Scholar 

  • Grunstein, M. (1990). Histone function in transcription. Annu. Rev. Cell Biol. 6, 643–678.

    Article  PubMed  CAS  Google Scholar 

  • Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature 389,349–52.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Z., and Sherman, F. (1996). 3′-end-forming signals of yeast mRNA. Trends Biochem. Sci. 21, 477–481.

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson, C.M., Myers, L.C., Beve, J., Spahr, H., Lui, M., Erdjument-Bromage, P., Tempst, P., and Kornberg, R.D. (1998). Identification of new mediator subunits in the RNA polymerase II holoenzyme from Saccharomyces cerevisieae. J. Biol. Chem. 273, 30851–30854.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, S., Buratowski, S., Sharp, P., and Guarente, L. (1989). Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences. Proc. Natl. Acad. Sci. USA 86, 5718–5722.

    Article  PubMed  CAS  Google Scholar 

  • Hamspey, M. (1998). Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol. And Mol. Biol. Rev. 465–503.

    Google Scholar 

  • Hampsey, M., and Reinberg, D. (2003). Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell 113, 429–432.

    Article  PubMed  CAS  Google Scholar 

  • Han, M., and Grunstein, M. (1988). Nucleosome loss activates yeast downstream promoters in vivo. Cell 55, 1137–1145.

    Article  PubMed  CAS  Google Scholar 

  • Han, M., Kim, U.J., Kayne, P., and Grunstein, M. (1988). Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae. EMBO J. 7, 2221–2228.

    PubMed  CAS  Google Scholar 

  • Han, S.J., Lee, Y.C., Gim, B.S., Ryu, G-H., Park, S.J., Lane, W.S., and Kim, Y-J. (1999). Activator specific requirement of yeast mediator proteins for RNA polymerase II transcriptional activation. Mol. Cell. Biol. 19, 979–988.

    PubMed  CAS  Google Scholar 

  • Hartzog, G.A., Wada, T., Handa, H., and Winston, F. (1998). Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12, 357–369.

    PubMed  CAS  Google Scholar 

  • Hekmatpanah, D.S., and Young, R.A. (1991). Mutations in a conserved region of RNA polymerase II influence the accuracy of mRNA start site selection. Mol. Cell. Biol. 11, 5781–5791.

    PubMed  CAS  Google Scholar 

  • Hengartner, C.J., Thompson, C.M., Zhang, J., Chao, D.M., Liao, S.M., Koleske, A.J., Okamura, S., and Young, R.A. (1995). Association of an activator with an RNA polyemrae II holenzyme. Genes Dev. 9, 897–910.

    Article  PubMed  CAS  Google Scholar 

  • Ho, C.K., Schwer, B., and Shuman S. (1998). Genetic, physical, and functional interactions between the triphosphatase and guanylyltransferase components of the yeast mRNA capping apparatus. Mol. Cell. Biol. 18, 5189–5198.

    PubMed  CAS  Google Scholar 

  • Ho, C.K., and Shuman, S. (1999). Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell 3, 405–411.

    Article  PubMed  CAS  Google Scholar 

  • Holstege, F.C.P., Jennings, E.J., Wyrick, J.J., Lee, T.I., Hengartner, C.J., Green, M.R., Golub, T.R., Lander, E.S., and Young, R.A. (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728.

    Article  PubMed  CAS  Google Scholar 

  • Ivanov, D., Kwak, Y.T., Guo, J., and Gaynor, R.B. (2000). Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Mol. Cell. Biol. 20, 2970–2983.

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein, R., and Allis, C.D. (2001). Translating the histone code. Science 293, 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J.S., Kim, S.H., Hwang, M.S., Han, S.J., Lee, Y.C., and Kim, Y.J. (2001). The structural and functional organization of the yeast mediator complex. J. Biol. Chem. 276, 42003–42010.

    Article  PubMed  CAS  Google Scholar 

  • Keller, W., and Minvielle-Sebastia, L. (1997). A comparison of mammalian and yeast pre-mRNA 3′-end processing. Curr. Opin. Cell Biol. 9, 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, D.E., Stokes, D.G., and Perry, R.P. (1999). CHD1 Interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin. Chromosoma 108, 10–25.

    Article  PubMed  CAS  Google Scholar 

  • Kettenberger, H., Armache, K-J., and Cramer, P. (2004). Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955–965.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.L., Nikolov, D.B., and Burley, S.K. (1993a). Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520–527.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y., Geiger, J H., Hahn, S., and Sigler, P.B. (1993b). Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.J., Bjorklund, S., Li, S., Sayre, M.H., and Kornberg, R D. (1994). A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.B., and Sharp, P.A. (2001). Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase. J. Biol. Chem. 276, 12317–12323.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M., Ahn, S. H., Krogan, N. J., Greenblatt, J. F., Buratowski, S. (2004) Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J. 23, 354–364.

    Article  PubMed  CAS  Google Scholar 

  • Kireeva, M.L., Komissarova, N., Waugh, D.S., and Kashlev, M. (2000). The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J. Biol. Chem. 275, 6530–6536.

    Article  PubMed  CAS  Google Scholar 

  • Koch, C., Wollmann, P., Dahl, M., and Lottspeich, F. (1999). A role for Ctr9p and Paf1p in the regulation of G1 cyclin expression in yeast. Nucleic Acids Res. 27, 2126–2134.

    Article  PubMed  CAS  Google Scholar 

  • Koh, S.S., Ansari, A.Z., Ptashne, M., and Young, R.A. (1998). An activator target in the RNA polymerase II holoenzyme. Mol. Cell 1, 895–904.

    Article  PubMed  CAS  Google Scholar 

  • Komarnitsky, P., Cho, E.J., and Buratowski, S. (2000). Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460.

    Article  PubMed  CAS  Google Scholar 

  • Kornberg, R.D., and Lorch, Y. (1991). Irresistible force meets immovable object: Transcription and the nucleosome. Cell 67, 833–836.

    Article  PubMed  CAS  Google Scholar 

  • Krogan, N.J., and Greenblatt, J.F. (2001). Characterization of a six-subunit holo-elongator required for the regulated expression of a group of genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 8203–8212.

    Article  PubMed  CAS  Google Scholar 

  • Krogan, N.J., Dover, J., Khorrami, S., Greenblatt, J.F., Schneider, J., Johnston, M., and Shilatifard (2002a). COMPASS, a histone H3 (lysine 4) methyltransferase required for telomeric silencing of gene expression. J. Biol. Chem., 277, 10753–10755.

    Article  PubMed  CAS  Google Scholar 

  • Krogan, N.J., Kim, M., Ahn, S.H., Zhong, G., Kobor, M.S., Cagney, G., Emili, A., Shilatifard, A., Buratowski, S., and Greenblatt, J.F. (2002b). RNA polymerase II elongation factors of S. cerevisiae: a targeted proteomics approach. Mol. Cell. Biol. 22, 6979–6992.

    Article  PubMed  CAS  Google Scholar 

  • Krogan, N.J., Dover, J., Wood, A., Schneider, J., Heidt, J., Boateng, M.A., Dean, K., Ryan, O.W., Golshani, A., Johnston, M., Greenblat, J.F., and Shilatifard, A. (2003a). The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell 11, 721–729.

    Article  PubMed  CAS  Google Scholar 

  • Krogan, N.J., Kim, M., Tong, A., Golshani, A., Cagney, G., Canadien, V., Richards, D.P., Beattie, B.K., Emili, A., Boone, C., Shilatifard, A., Buratowski, S., and Greenblatt J.F. (2003b). Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207–4218.

    Article  PubMed  CAS  Google Scholar 

  • Kulish, D., and Struhl, K. (2001). TFIIS enhances transcriptional elongation through an artificial arrest site in vivo. Mol. Cell. Biol. 21, 4162–4168.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, K.P., Akoulitchev S., and Reinberg, D. (1998). Promoter-proximal stalling results from the inability to recruit transcription factor IIH to the transcription complex and is a regulated event. Proc. Natl. Acad. Sci. USA 95, 9767–9772.

    Article  PubMed  CAS  Google Scholar 

  • Lachner, M., O’Sullivan, R.J., and Jenuwein, T. (2003). An epigenetic road map for histone lysine methylation. J. Cell. Sci. 116, 2117–2124.

    Article  PubMed  CAS  Google Scholar 

  • Lagrange, T., Kapanidis, A.N., Tang, H., Reinberg, D., and Ebright, R.H. (1998). New core promoter element in RNA polymerase II-dependent transcription: Sequence-specific DNA binding by transcription factor IIB. Genes Dev. 12, 34–44.

    PubMed  CAS  Google Scholar 

  • Laybourn, P.J., and Dahmus, M.E. (1989). Transcription-dependent structural changes in the C-terminal doman of mammalian RNA polymerase subunit IIa/o J. Biol. Chem. 264, 6693–6698.

    CAS  Google Scholar 

  • Laybourn, P.J., and Dahmus, M.E. (1990). Phosphorylation of RNA polymerase IIA occurs subsequent to interaction with the promoter and before the initiation of transcription. J. Biol. Chem. 265, 13165–13173.

    PubMed  CAS  Google Scholar 

  • Lee, C.L., and Kim, Y.J. (1998). Requirement for a functional interaction between Mediator components Med6 and Srb4 in RNA polymerase II transcription. Mol. Cell Biol. 18, 5364–5370.

    PubMed  CAS  Google Scholar 

  • Lee, I.L., and Young, R.A. (2000). Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J.D., Gunderson, S.I., and Mattaj, I.W. (1995). The influence of 5′-end and 3′-end structures on pre-messenger-RNA metabolism. J. Cell Sci. 19, 13–19.

    CAS  Google Scholar 

  • Li, B., Howe, L., Anderson, S., Yates, J.R. III, and Workman, J.L. (2003). The Ser 2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 278, 897–8903.

    Google Scholar 

  • Li, Y., Bjorklund, S., Hiang, Y.W., Kim, Y.J., Lane, W.S., Stillman, D.J., and Kornberg, R.D. (1995). Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 92, 10864–10868.

    Article  PubMed  CAS  Google Scholar 

  • Licatalosi, D.D., Geiger, G., Minet, M., Schroeder, S., Cilli, K., McNeil, J.B., and Bentley, D.L. (2002). Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9, 1101–1111.

    Article  PubMed  CAS  Google Scholar 

  • Licht, C.L., Stevnsner, T., and Bohr, V.A. (2003). Cockayne syndrome group B cellular and biochemical functions. Am. J. Hum. Genet. 73, 1217–1239.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, D.L., Squazzo, S.L., Muster, N., Burckin, T.A., Wachter, K.C., Emigh, C.A., McCleery, J.A., Yates, J.R. III, and Hartzog, G.A. (2003). Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol. Cell. Biol. 23, 1368–1378.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H.Y., Badarinarayana, V., Audino, D.C., Rappsilber, J., Mann, M., and Denis, C.L. (1998). The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively. EMBO J. 17, 1096–1106

    Article  PubMed  CAS  Google Scholar 

  • Lorch, Y., Beve, J., Gustafsson, C.M., Myers, L.C., and Kornberg, R.D. (2000). Mediator-nucleosome interaction. Mol. Cell 6, 197–201.

    Article  PubMed  CAS  Google Scholar 

  • Lu, H., Flores, O., Weinmann R., and Reinberg, D. (1991). The nonphosphoryylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc. Natl. Acad. Sci. USA 88, 10004–10008.

    Article  PubMed  CAS  Google Scholar 

  • Malik, S., and Roeder, R.G. (2000). Transcriptional regulation through mediator-like coactivators in yeast and metazoan cells. TIBs 25, 277–283.

    PubMed  CAS  Google Scholar 

  • Maniatis, T., and Reed, R. (2002). An extensive network of coupling among gene expression machines. Nature 416, 499–506.

    Article  PubMed  CAS  Google Scholar 

  • McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G.H., Greenblatt, J., Patterson, S.D., Wickens, M., and Bentley, D.L. (1997a). The C-terminal domain of RNA polymerase II couples messenger RNA processing to transcription. Nature 385, 357–361.

    Article  PubMed  CAS  Google Scholar 

  • McCracken, S., Fong, N., Rosonina, R., Yankulov, K., Brothers, G., Siderovski, D., Hessel, A., Foster, S., Shuman, S., and Bentley, D.L. (1997b). 5′-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 11, 3306–3318.

    PubMed  CAS  Google Scholar 

  • McKine, K., Moore, P.A., Hull, M.W., and Woychik, N.A. (1995). Six human RNA polymerase subunits functionally substitute for their yeast counterparts. Mol. Cell. Biol. 15, 6895–6900.

    Google Scholar 

  • Miller, T., Williams, K., Johnstone, R.W., and Shilatifard, A. (2000). Identification, cloning, expression, and biochemical characterization of the testis-specific RNA polymerase II elongation factor ELL3 J. Biol. Chem. 275, 32052–32056.

    Article  CAS  Google Scholar 

  • Miller, T., Krogan, N.J., Dover, J., Erdjument-Bromage, H., Tempst, P., Johnston, M., Greenblatt, J.F., and Shilatifard, A. (2001). COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc. Natl. Acad. Sci. 98, 12902–12907.

    Article  PubMed  CAS  Google Scholar 

  • Moteki, S., and Price, D. (2002). Functional coupling of capping and transcription of mRNA. Mol. Cell 10, 599–609.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, C.L., and Jaehning, J.A. (2002). Ctr9, Rtf1, and Leo1 are components of the Paf1/RNApolymerase II complex. Mol. Cell. Biol. 22, 1971–1980.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, C.L., Porter, S.E., Hoffman, M.G., and Jaehning, J.A. (2004). The Paf1 complex has functions independent of actively transcribing RNA polymerase II. Mol. Cell 14, 447–456.

    Article  PubMed  CAS  Google Scholar 

  • Myer, V.E., and Young, R.A. (1998). RNA polymerase II holoenzymes and subcomplexes. J. Biol. Chem. 273, 27757–27760.

    Article  PubMed  CAS  Google Scholar 

  • Myers, L.C., Leuther, K., Bushnell, D.A., Gustafsson, C. M., and Kornberg, R.D. (1997). Yeast RNA polymerase II transcription reconstituted with purified proteins. Methods in Enzymol. 12, 212–216.

    Article  CAS  Google Scholar 

  • Myers, L.C., Gustafsson, C.M., Bushnell, D.A., Lui, M., Erdjument-Bromage, H., Tempst, P. and Kornberg, R.D. (1998). The Med proteins of yeast and their function through the RNA polymerse II carboxy-terminal domain. Genes Dev. 12, 45–54.

    PubMed  CAS  Google Scholar 

  • Myers, L.C., Gustafsson, C.M., Hayashibara, K.C., Brown, P.O., and Kornberg, R.D. (1999). Mediator protein mutations that selectively abolish activated transcription. Proc. Natl. Acad. Sci. USA 96, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Myers, L.C., Lacomis, L., Erdjument-Bromage, H., and Tempst, P. (2002). The yeast capping enzyme represses RNA polymerase II transcription. Mol. Cell 10, 883–894.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, P.L., Griesenbeck, J., Kornberg, R.D., and Cleary, M.L. (2002). A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc. Natl. Acad. Sci. USA 99, 90–94.

    Article  PubMed  CAS  Google Scholar 

  • Natori, S., Takeuchi, K., Takahashi, K., and Mizuno, D. (1973). DNA dependent RNA polymerase from Ehrlich ascites tumor cells. II. Factors stimulating the activity of RNA polymerase II. J. Biochem. (Tokyo) 73, 879–888.

    PubMed  CAS  Google Scholar 

  • Ng, H.H., Robert, F., Young, R.A., and Struhl, K. (2003). Targeted recruitment of Set1 histone methylase by elongating pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell. 11, 709–719.

    Article  PubMed  CAS  Google Scholar 

  • Noma, K., and Grewal, S.I. (2002). Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc. Natl. Acad. Sci. USA 99, 16438–16445.

    Article  PubMed  CAS  Google Scholar 

  • Nonet, M., Sweetser, D., and Young, R.A. (1987). Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell 50, 909–915.

    Article  PubMed  CAS  Google Scholar 

  • Nonet, M.L., and Young, R.A. (1989). Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123, 715–724.

    PubMed  CAS  Google Scholar 

  • O’Brien, T., Hardin, S., Greenleaf, A., and Lis, J.T. (1994) Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 370, 75–77.

    Article  PubMed  CAS  Google Scholar 

  • Orphanides, G., Lagrange, T., and Reinberg, D. (1996). The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657–2683.

    Article  PubMed  CAS  Google Scholar 

  • Orphanides, G., LeRoy, G., Chang, C.J., Luse, D.S., and Reinberg, D. (1998). FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92, 105–116.

    Article  PubMed  CAS  Google Scholar 

  • Orphanides, G., Wu, W.H., Lane, W.S., Hampsey, M., and Reinberg, D. (1999). The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400, 284–288.

    Article  PubMed  CAS  Google Scholar 

  • Orphanides, G., and Reinberg, D. (2002). A unified theory of gene expression. Cell 108, 439–451.

    Article  PubMed  CAS  Google Scholar 

  • Otero, G., Fellows, J., Li, Y., de Bizemont, T., Dirac, A.M.G., Gustafsson, C.M., Erdjument-Bromage, H., Tempst, P., and Svejstrup, J.Q. (1999). Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol. Cell 3, 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Pal, M., and Luse, D.S. (2002). Strong natural pausing by RNA polymerase II within 10 bases of transcription start may result in repeated slippage and reextension of the nascent RNA. Mol. Cell. Biol. 22, 30–40.

    Article  PubMed  CAS  Google Scholar 

  • Pal, M., and Luse, D.S. (2003). The initiation-elongation transition: Lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23. Proc. Natl. Acad. Sci. USA 100, 5700–5705.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, C.L., and Tamkun, J.W. (1995). The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20, 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Pokholok, D.K., Hannett, N.M., and Young, R.A. (2002). Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol. Cell 9, 799–809.

    Article  PubMed  CAS  Google Scholar 

  • Poon, D., and Weil, P.A. (1993). Immunopurification of yeast TATA-binding protein and associated factors: presence of transcription factor IIB transcription activity. J. Biol. Chem. 268, 15325–15328.

    PubMed  CAS  Google Scholar 

  • Porter, S.E., Washburn, T.M., Chang, M., and Jaehning, J.A. (2002). The yeast Paf1-RNA polymerase II complex is required for full expression of a subset of cell cycle-regulated genes. Eukaryot. Cell 1, 830–842.

    Article  PubMed  CAS  Google Scholar 

  • Powell, W., and Reines, D. (1996). Mutations in the second largest subunit of RNA polymerase II cause 6-azauracil sensitivity in yeast and increased transcriptional arrest in vitro. J. Biol. Chem. 271, 6866–6873.

    Article  PubMed  CAS  Google Scholar 

  • Price, D.H., Sluder, A.E., and Greenleaf, A.I. (1989). Dynamic interaction between a Drosophila transcription factor and RNA polymerase II. Mol. Cell. Biol. 9, 1465–1475.

    PubMed  CAS  Google Scholar 

  • Reed, S.I., Ferguson, J., and Jahng, K.Y. (1988). Isolation and characterization of two genes encoding yeast mating pheromone elements: CDC72 and CDC73. Cold Spring Harbor Symp. on Quant. Biol. 53, 621–627.

    CAS  Google Scholar 

  • Roeder, R. (1996). The role of general initiation factors in transcription by RNA polymerase II. TIBs 21, 327–333.

    PubMed  CAS  Google Scholar 

  • Roguev, A., Schaft, D., Shevchenko, A., Pijnappel, W.W.M.P., Wilm, M., Aasland, R., and Stewart, A.F. (2001). The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J. 20, 7137–7148.

    Article  PubMed  CAS  Google Scholar 

  • Rondón, A.G., Garcia-Rubio, M., Gonzaalez-Barrera, S., and Aguilera, A. (2003). Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J. 22, 612–620.

    Article  PubMed  Google Scholar 

  • Santos-Rosa, H., Schneider, R., Bannister, A., Sherriff, J., Bernstein, B.E., Emre, N.C.T., Schreiber, S.L., Mellor, J., and Kouzarides, T. (2002). Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, A., Werner, J., Andrulis, E.D., Nakayama, T., Hirose, S., Reinberg, D., and Lis, J.T. (2003). Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science 301, 1094–1096.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, S., Schwer, B., Shuman, D., and Bentley, D.L. (2000). Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14, 2435–2440.

    Article  PubMed  CAS  Google Scholar 

  • Sekimizu, K., Kobayashi, N., Mizuno, D., Natori, S. (1976). Purification of a factor from Ehrlich ascites tumor cells specifically stimulating RNA polymerase II. Biochemistry 15, 5064–5070.

    Article  PubMed  CAS  Google Scholar 

  • Selby, C.P., and Sancar, A. (1997). Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl. Acad. Sci. USA 94, 11205–11209.

    Article  PubMed  CAS  Google Scholar 

  • Shi, S., Finkelstein, A., Wolf, A.J., Wade, P.A., Burton, Z.F., and Jaehning, J.A. (1996). Paf1p, an RNA polymerase II-associated factor in yeast, may have both positive and negative roles in transcription. Mol. Cell. Biol. 16, 669–676.

    PubMed  CAS  Google Scholar 

  • Shi, X., Chang, M., Wolf, A.J., Chang, C-H., Frazer-Abel, A., Wade, P.A., Burton, Z.F., and Jaehning, J.A., (1997). Cdc73p and Paf1p are found in a novel RNA polymerase II-containing complex distinct from the Srbp-containing holoenzyme. Mol. Cell. Biol. 17, 11160–1169.

    Google Scholar 

  • Shilatifard, A., Lane, W.S., Jackson, K.W., Conaway, R.C., and Conaway, J.W. (1996). An RNA polymerase II elongation factor encoded by the human ELL gene. Science 271, 1873–1876.

    Article  PubMed  CAS  Google Scholar 

  • Shilatifard, A., Duan, D.R., Haque, D., Florence, C., Schubach, W.H., Conaway, J.W., and Conaway, R.C. (1997). ELL2, a new member of an ELL family of RNA polymerase II elongation factors. Proc. Natl. Acad. Sci. 94, 3639–3643.

    Article  PubMed  CAS  Google Scholar 

  • Shilatifard, A., Conaway, R.C., and Conaway, J.W. (2003). The RNA polymerase II elongation complex. Annu. Rev. Biochem. 72, 693–715.

    Article  PubMed  CAS  Google Scholar 

  • Shuman, S. (2001). Structure, mechanism, and evolution of the mRNA capping apparatus. Prog. Nucleic Acid Res. Mol. Biol. 66, 1–40.

    Article  PubMed  CAS  Google Scholar 

  • Simic, R., Lindstrom, D.L., Tran, H.G., Roinick, K.L., Costa, P.J., Johnson, A.D., Hartzog, G.A, and A’Rndt, K.M. (2003). Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 22, 1846–1856.

    Article  PubMed  CAS  Google Scholar 

  • Sims, R.J. III, Nishioka, K., and Reinberg, D. (2003). Histone lysine methylation: a signature for chromatin function. Trends Genet. 19, 629–639.

    Article  PubMed  CAS  Google Scholar 

  • Sims, R.J. III, Belotserkovskaya, R., and Reinberg, D. (2004). Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468.

    Article  PubMed  CAS  Google Scholar 

  • Smale, S.T., and Kadonaga, J.T. (2003). The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449–479.

    Article  PubMed  CAS  Google Scholar 

  • Sopta, M., Carthew, R.W., and Greenblatt, J.F. (1985). Isolation of three proteins that bind to mammalian RNA polymerase II. J. Biol. Chem. 260, 10353–10360.

    PubMed  CAS  Google Scholar 

  • Squazzo, S.L., Costa, P.J., Lindstrom, D.L., Kumer, K.E., Simic, R., Jennings, J.L., Link, A.J., A’Rndt, K.M., and Hartzog, G.A. (2002). The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. EMBO J. 21, 1764–1774.

    Article  PubMed  CAS  Google Scholar 

  • Stolinski, L.A., Eisenmann, D.M., and A’Rndt, K.M. (1997). Identification of RTF1, a novel gene important for TATA site selection by TATA box-binding protein in S. cerevisiae. Mol. Cell. Biol. 17, 4490–4500.

    PubMed  CAS  Google Scholar 

  • Stokes, D.G., Tartof, K.D., and Perry, R.P. (1996). CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. USA 93, 7137–7142.

    Article  PubMed  CAS  Google Scholar 

  • Strahl, B.D., Grant, P.A., Briggs, S.D., Sun, Z-W., Bone, J.R., Caldwell, J.A., Mollah, S., Cook, R.G., Shabanowitz, J., Hunt, D.F., and Allis, C.D. (2002). Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell. Biol. 22, 1298–1306.

    Article  PubMed  CAS  Google Scholar 

  • Strahl, B., and Allis, C.D. (2002). The language of covalent histone modifications. Nature 403, 41–45.

    Google Scholar 

  • Studitsky, V.S., Walter, W., Kireeva, M., Kashlev, M., and Felsenfeld, G. (2004). Chromatin remodeling by RNA polymerases. Trends Biochem. Sci. 29, 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, E.K., Weirich, C.S., Guyon, J.R., Sif, S., and Kingston, R.E. (2001). Transcriptional activation domains of human heat shock factor 1 recruit human SWI-SNF. Mol. Cell. Biol. 21, 5826–5837.

    Article  PubMed  CAS  Google Scholar 

  • Svejstrup, J.Q. (2002). Chromatin elongation factors. Curr. Opin. Genet. Dev. 12, 156–161.

    Article  PubMed  CAS  Google Scholar 

  • Svetlov, V.V., and Cooper, T.G. (1995). Review: compilation and characterization of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 11, 1439–1484.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, Y., Conaway, J.W., and Conaway, R.C. (1995). A novel activity associated with RNA polymerase II elongation factor SIII. SIII directs promoter-independent transcription initiation by RNA polymerase II in the absence of initiation factors. J. Biol. Chem. 270, 24300–24305.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, Y., Conaway, J.W., and Conaway, R.C. (1996). Characterization of elongin C functional domains required for interaction with elongin B and activation of elongin A. J. Biol. Chem. 271, 25562–25568.

    Article  PubMed  CAS  Google Scholar 

  • Tan, S., Aso, T., Conaway, R.C., and Conaway, J.W. (1994). Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II. J. Biol. Chem. 269, 25684–25691.

    PubMed  CAS  Google Scholar 

  • Tantin D., Kansal, A., and Carey, M. (1997). Recruitment of the putative transcription-repair coupling factor CSM/ERCC6 to RNA polymerase II elongation complexes. Mol. Cell. Biol. 17, 6803–6814.

    PubMed  CAS  Google Scholar 

  • Thirman, M.J., Levitan, D.A., Kobayashi, H., Simon, M.C., and Rowley, J.D. (1994). Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 91, 12110–12114.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, C.M., Koleske, A.J., Chao, D.M., and Young, R.A. (1993). A multisubunit complex associated with the RNA polymerase II CTD and TATA-bnding protein in yeast. Cell 73, 1361–1375.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, C.M., and Young, R.A. (1995). General requirement for RNA polymerase II holoenzymes in vivo. Proc. Natl. Acad. Sci. USA 92, 4587–4590.

    Article  PubMed  CAS  Google Scholar 

  • Tran, H.G., Steger, D.J., Iyer, V.R., and Johnson, A.D. (2000). The chromo domain protein Chd1p from budding yeast is an ATP-dependent chromatin-modifying factor. EMBO J. 29, 2323–2331.

    Article  Google Scholar 

  • Treich, I., Cairns, B.R., de los Santos, T., Brewster, E., and Carlson, M. (1995). SNF11, a new component of the yeast SNF-SWI complex that interacts with a conserved region of SNF2. Mol. Cell. Biol. 15, 5240–4248.

    Google Scholar 

  • Tsukiyama, T., Palmer, J., Landel, C.C., Shiloach, J., and Wu, C. (1999). Characterization of the imitation switch subfamily of ATP—dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev. 13, 686–697.

    PubMed  CAS  Google Scholar 

  • Verrijzer, C.P., and Tjian, R. (1996). TAFs mediate transcriptional activation and promoter selectivity. TIBs 21, 338–341.

    PubMed  CAS  Google Scholar 

  • Wada, T., Takagi, T., Yamaguchi, Y., Ferdous, A., Imai, T., Hirose, S., Sugimoto, S., Yano, K., Hartzog, G.A., Winston, F., Buratowski, S., and Handa, H. (1998). DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356.

    PubMed  CAS  Google Scholar 

  • Wade, P.A., and Jaehning, J.A. (1996). Transcriptional corepression in vitro: a Mot1p-associated form of TATA-binding protein is required for repression by Leu3p. Mol. Cell. Biol. 16, 1641–1648.

    PubMed  CAS  Google Scholar 

  • Wade, P.A., Werel, W., Fentzke, R.C., Thompson, N.E., Leykam, J.F., Burgess, R.R., Jaehning, J.A., and Burton, Z.F. (1996). A novel collection of accessory factors associated with yeast RNA polymerase II. Protein Expr. Purif. 8, 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, T., Hayashi, K., Tanaka, A., Furmoto, T., Hanaoka, F., and Ohkuma, Y. (2003). The carboxy terminus of the small subunit of TFIIE regulates the transition from transcription initiation to elongation by RNA polymerase II. Mol. Cell. Biol. 23, 2914–2926.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C.J., Chao, D.M., Imbalzano, A.N., Schnitzler, G.R., Kingston, R.E., and Young, R.A. (1996). RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84, 235–244.

    Article  PubMed  CAS  Google Scholar 

  • Wind, M., and Reines, D. (2000). Transcription elongation factor SII. BioEssays 22, 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Wind-Rotolo, M., and Reines, D. (2001). Analysis of gene induction and arrest site transcription in yeast with mutations in the transcription elongation machinery. J. Biol. Chem. 276, 11531–11538.

    Article  PubMed  CAS  Google Scholar 

  • Winkler, S.G., Petrakis, T.G., Ethelberg, S., Tokunaga, M., Erdjument-Bromage, H., Tempst, P., and Svejstrup J.Q. (2001). RNA polymerase II Elongator holoenzyme is composed of two discrete subcomplexes. J. Biol. Chem. 276, 32743–32749.

    Article  PubMed  CAS  Google Scholar 

  • Winston, F., and Carlson, M. (1992). Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8, 387–391.

    PubMed  CAS  Google Scholar 

  • Wittschieben, B.O., Otero, G., de Bizemont, T., Fellows, J., Erdjument-Bromage, H., Ohba, Y., Li, Y., Allis, C.D., Tempst, P., and Svejstrup, J.Q. (1999). A novel histone actyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Wittschieben, B.O., Fellows, J., Du, W., Stillman, D.J., and Svejstrup, J.Q. (2000). Overlapping roles for the histone actyltransferase activities of SAGA and Elongator in vivo. EMBO J. 19, 3060–3068.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.H., Yamaguchi, Y., Benjamin, L.R., Horvat-Gordan, M., Washinsky, J., Enerly, E., Larsson, J., Lambertsson, A., Handa, H., and Gilmour, D. (2003). NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev. 17, 1402–1414.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., Takagi, T., Wada, T., Yano, K., Furuya, A., Sugimot, S., Hasegawa, J., and Handa, H. (1999). NELF, ia multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., Inukai, N., Narita, T., Wada, T., and Handa, H. (2002). Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA. Mol. Cell. Biol. 22, 2918–2927.

    Article  PubMed  CAS  Google Scholar 

  • Yamamato, S., Watanabe, P.J., van der Speck, P.J., Watanabe, T., Fujimoto, H., Hanaoaka, F., and Ohkuma, Y. (2001). Studies of nematode TFIIE function reveal a link between Ser-5 phosphorylation of RNA polymerse II and the transition from transcription initiation to elongation. Mol. Cell. Biol. 21, 1–15.

    Article  Google Scholar 

  • Yan, Q., Moreland, R.J., Conaway, J.W., and Conaway, R.C. (1999). Dual roles for transcription factor IIF in promoter escape by RNA polymerase II. J. Biol. Chem. 274, 35668–35675.

    Article  PubMed  CAS  Google Scholar 

  • Yue, Z., Maldonado, E., Pillutla, R., Cho, H., Reinberg, D., and Shatkin A.J. (1997). Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Proc. Natl. Acad, Sci. USA 94, 12898–12903.

    Article  CAS  Google Scholar 

  • Zawel, L., and Reinberg, D. (1993). Initiation if transcription by RNA polymerase II: a multistep process. Prog. Nucleic Acid Res. Mol. Bio.l. 44, 67–108.

    CAS  Google Scholar 

  • Zawel, L., Kumar, K.P., and Reinberg, D. (1995). Recycling of the general transcription factors during RNA polymeradse II transcription. Genes Dev. 9, 1479–1490.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Hymann, L., and Moore, C. (1999). Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63, 405–445.

    PubMed  CAS  Google Scholar 

  • Zhou, Q., Lieberman, P.M., Boyer, T G., and Berk, A.J. (1992). Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev. 6, 1964–1974.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Peterson, C.L., and Christman, M.F. (1995). HPR1 encodes a global positive regulator of transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 1698–1708.

    PubMed  CAS  Google Scholar 

  • Zorio, D.A.R., and Bentley, D.L. (2004). The link between mRNA processing and transcription: communication works both ways. Exper. Cell Res. 296, 91–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Higher Education Press

About this chapter

Cite this chapter

Penheiter, K.L., Jaehning, J.A. (2006). The Dynamic Association of RNA Polymerase II with Initiation, Elongation, and RNA Processing Factors during the Transcription Cycle. In: Ma, J. (eds) Gene Expression and Regulation. Springer, New York, NY. https://doi.org/10.1007/978-0-387-40049-5_3

Download citation

Publish with us

Policies and ethics