Skip to main content

The Cellular “Networking” of Mammalian Hsp27 and Its Functions in the Control of Protein Folding, Redox State and Apoptosis

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 594))

Abstract

Cells possess effective mechanisms to cope with chronic or acute disturbance of homeo-stasis. Key roles in maintaining or restoring homeostasis are played by the various heat shock or stress proteins (Hsps). Among the Hsps, the group of proteins characterized by low molecular masses (between 20 to 30 kDa) and homology to α-crystallin are called small stress proteins (denoted sHsps). The present chapter summarizes the actual knowledge of the protective mechanisms generated by the expression of mammalian Hsp27 (also denoted HspB1 in human) against the cytotoxicity induced by heat shock and oxidative stress. It also describes the anti-apoptotic properties of Hsp27 and their putative consequences in different pathological conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tissieres A, Mitchell H, Tracy U. Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J Mol Biol 1974; 84:389–398.

    PubMed  CAS  Google Scholar 

  2. de Jong W, Leunissen J, Voorter C. Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol 1993; 10:103–126.

    PubMed  Google Scholar 

  3. de Jong WW, Caspers GJ, Leunissen JA. Genealogy of the alpha-crystallin—small heat-shock protein superfamily. Int J Biol Macromol 1998; 22:151–162.

    PubMed  Google Scholar 

  4. Kappe G, Verschuure P, Philipsen RL et al. Characterization of two novel human small heat shock proteins: Protein kinase-related HspB8 and testis-specific HspB9. Biochim Biophys Acta 2001; 1520:1–6.

    PubMed  CAS  Google Scholar 

  5. Kappe G, Leunissen JA, de Jong WW. Evolution and diversity of prokaryotic small heat shock proteins. Prog Mol Subcell Biol 2002; 28:1–17.

    PubMed  CAS  Google Scholar 

  6. Kappe G, Franck E, Verschuure P et al. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones 2003; 8:53–61.

    PubMed  CAS  Google Scholar 

  7. Arrigo AP, Landry J. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994:335–373.

    Google Scholar 

  8. Landry J, Chretien P, Lambert H et al. Heat shock resistance confered by expression of the human HSP 27 gene in rodent cells. J Cell Biol 1989; 109:7–15.

    PubMed  CAS  Google Scholar 

  9. Arrigo AP. Small stress proteins: Chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 1998; 379:19–26.

    PubMed  CAS  Google Scholar 

  10. Arrigo AP, Préville X. In: Latchman DS, ed. Stress Proteins, Vol. 136, Handbook of Experimental Pharmacology. Springer, 1999:101–132.

    Google Scholar 

  11. Arrigo AP. Hsp27: Novel regulator of intracellular redox state. IUBMB Life 2001; 52:303–307.

    PubMed  CAS  Google Scholar 

  12. Arrigo AP, Paul C, Ducasse C et al. Small stress proteins: Modulation of intracellular redox state and protection against oxidative stress. Prog Mol Subcell Biol 2002; 28:171–184.

    PubMed  CAS  Google Scholar 

  13. Huot J, Roy G, Lambert H et al. Increased survival after treatments with anticancer agents of Chinese hamster cells expressing the human Mr 27,000 heat shock protein. Cancer Res 1991; 51:5245–5252.

    PubMed  CAS  Google Scholar 

  14. Fuqua SA, Oesterreich S, Hilsenbeck SG et al. Heat shock proteins and drug resistance. Breast Cancer Res Treat 1994; 32:67–71.

    PubMed  CAS  Google Scholar 

  15. Arrigo AP. sHsp as novel regulators of programmed cell death and tumorigenicity. Pathol Biol (Paris) 2000; 48:280–288.

    PubMed  CAS  Google Scholar 

  16. Garrido C, Gurbuxani S, Ravagnan L et al. Heat shock proteins: Endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 2001; 286:433–442.

    PubMed  CAS  Google Scholar 

  17. Arrigo AP, Paul C, Ducasse C et al. Small stress proteins: Novel negative modulators of apoptosis induced independently of reactive oxygen species. Prog Mol Subcell Biol 2002; 28:185–204.

    PubMed  CAS  Google Scholar 

  18. Concannon CG, Gorman AM, Samali A. On the role of Hsp27 in regulating apoptosis. Apoptosis 2003; 8:61–70.

    PubMed  CAS  Google Scholar 

  19. Latchman DS. HSP27 and cell survival in neurones. Int J Hyperthermia 2005; 21:393–402.

    PubMed  CAS  Google Scholar 

  20. Jakob U, Gaestel M, Engels K et al. Small heat shock proteins are molecular chaperones. J Biol Chem 1993; 268:1517–1520.

    PubMed  CAS  Google Scholar 

  21. Jakob U, Buchner J. Assisting spontaneity: The role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem Sci 1994; 19:205–211.

    PubMed  CAS  Google Scholar 

  22. Mehlen P, Mehlen A, Godet J et al. hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem 1997; 272:31657–31665.

    PubMed  CAS  Google Scholar 

  23. Garrido C, Fromentin A, Bonnotte B et al. Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 1998; 58:5495–5499.

    PubMed  CAS  Google Scholar 

  24. Stokoe D, Engel K, Campbell D et al. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 1992; 313:307–313.

    PubMed  CAS  Google Scholar 

  25. Ciocca DR, Luque EH. Immunological evidence for the identity between the hsp27 estrogen-regulated heat shock protein and the p29 estrogen receptor-associated protein in breast and endometrial cancer. Breast Cancer Res Treat 1991; 20:33–42.

    PubMed  CAS  Google Scholar 

  26. Morimoto RI. Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 1998; 12:3788–3796.

    PubMed  CAS  Google Scholar 

  27. Rouse J et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 1994; 78:1027–1037.

    PubMed  CAS  Google Scholar 

  28. Arrigo AP, Welch W. Characterization and purification of the small 28,000-dalton mammalian heat shock protein. J Biol Chem 1987; 262:15359–15369.

    PubMed  CAS  Google Scholar 

  29. Arrigo AP, Suhan JP, Welch WJ. Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 1988; 8:5059–5071.

    PubMed  CAS  Google Scholar 

  30. Kato K, Hasegawa K, Goto S et al. Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem 1994; 269:11274–11278.

    PubMed  CAS  Google Scholar 

  31. Trautinger F, Kokesch C, Herbacek I et al. Overexpression of the small heat shock protein, hsp27, confers resistance to hyperthermia, but not to oxidative stress and UV-induced cell death, in a stably transfected squamous cell carcinoma cell line. J Photochem Photobiol 1997; 39:90–95.

    CAS  Google Scholar 

  32. Rollet E, Lavoie J, Landry J et al. Expression of Drosophila’s 27 kDa heat shock protein into rodent cells confers thermal resistance. Biochem Biophys Res Commun 1992; 185:116–120.

    PubMed  CAS  Google Scholar 

  33. Carra S, Sivilotti M, Chavez Zobel AT et al. HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet 2005; 14:1659–1669.

    PubMed  CAS  Google Scholar 

  34. Kampinga HH, Brunsting JF, Stege GJ et al. Cells overexpressing Hsp27 show accelerated recovery from heat-induced nuclear protein aggregation. Biochem Biophys Res Commun 1994; 204:1170–1177.

    PubMed  CAS  Google Scholar 

  35. Cuesta R, Laroia G, Schneider RJ. Chaperone Hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev 2000; 14:1460–1470.

    PubMed  CAS  Google Scholar 

  36. Carper SW, Rocheleau TA, Cimino D et al. Heat shock protein 27 stimulates recovery of RNA and protein synthesis following a heat shock. J Cell Biochem 1997; 66:153–164.

    PubMed  CAS  Google Scholar 

  37. Marin-Vinader L, Shin C, Onnekink C et al. Hsp27 enhances recovery of splicing as well as rephosphorylation of SRp38 after heat shock. Mol Biol Cell 2005; 7:7–17.

    Google Scholar 

  38. Huot J, Houle F, Spitz DR et al. HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res 1996; 56:273–279.

    PubMed  CAS  Google Scholar 

  39. Lavoie JN, Lambert H, Hickey E et al. Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 1995; 15:505–516.

    PubMed  CAS  Google Scholar 

  40. Ehrnsperger M, Lilie H, Gaestel M et al. The dynamics of hsp25 quaternary structure. Structure and function of different oligomeric species. J Biol Chem 1999; 274:14867–14874.

    PubMed  CAS  Google Scholar 

  41. Ehrnsperger M, Graber S, Gaestel M et al. Binding of nonnative protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 1997; 16:221–229.

    PubMed  CAS  Google Scholar 

  42. Lee GJ, Roseman AM, Saibil HR et al. Small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 1997; 16:659–671.

    PubMed  CAS  Google Scholar 

  43. Stromer T, Ehrnsperger M, Gaestel M et al. Analysis of the interaction of small heat shock proteins with unfolding proteins. J Biol Chem 2003; 278:18015–18021.

    PubMed  CAS  Google Scholar 

  44. Haslbeck M, Franzmann T, Weinfurtner D et al. Some like it hot: The structure and function of small heat-shock proteins. Nat Struct Mol Biol 2005; 12:842–846.

    PubMed  CAS  Google Scholar 

  45. Ehrnsperger M, Gaestel M, Buchner J. Analysis of chaperone properties of small Hsp’s. Methods Mol Biol 2000; 99:421–429.

    PubMed  CAS  Google Scholar 

  46. Rogalla T, Ehrnsperger M, Preville X et al. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 1999; 274:18947–18956.

    PubMed  CAS  Google Scholar 

  47. Benndorf R, Hayess K, Ryazantsev S et al. Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 1994; 269:20780–20784.

    PubMed  CAS  Google Scholar 

  48. Guay J, Lambert H, GingrasBreton G et al. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997; 110:357–368.

    PubMed  Google Scholar 

  49. Mounier N, Arrigo AP. Actin cytoskeleton and small heat shock proteins: How do they interact? Cell Stress Chaperones 2002; 7:167–176.

    PubMed  CAS  Google Scholar 

  50. Pivovarova AV, Mikhailova VV, Chernik IS et al. Effects of small heat shock proteins on the thermal denaturation and aggregation of F-actin. Biochem Biophys Res Commun 2005; 331:1548–1553.

    PubMed  CAS  Google Scholar 

  51. Vayssier M, Banzet N, Francois D et al. Tobacco smoke induces both apoptosis and necrosis in mammalian cells: Differential effects of HSP70. Am J Physiol 1998; 275:771–779.

    Google Scholar 

  52. Zucker B, Hanusch J, Bauer G. Glutathione depletion in fibroblasts is the basis for apoptosis-induction by endogenous reactive oxygen species. Cell Death and Diff 1997; 4:388–395.

    CAS  Google Scholar 

  53. Samali A, Nordgren H, Zhivotovsky B et al. A comparative study of apoptosis and necrosis in HepG2 cells: Oxidant-induced caspase inactivation leads to necrosis. Biochem Biophys Res Commun 1999; 255:6–11.

    PubMed  CAS  Google Scholar 

  54. Jacobson MD. Reactive oxygen species and programmed cell death. Trends Biochem Sci 1996; 21:83–86.

    PubMed  CAS  Google Scholar 

  55. Powis G, Briehl M, Oblong J. Redox signalling and the control of cell growth and death. Pharmacol Ther 1995; 68:149–173.

    PubMed  CAS  Google Scholar 

  56. Hockenbery DM, Oltvai ZN, Yin XM et al. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75:241–251.

    PubMed  CAS  Google Scholar 

  57. Kane DJ, Sarafian TA, Anton R et al. Bcl-2 inhibition of neural death: Decreased generation of reactive oxygen species. Science 1993; 262:1274–1277.

    PubMed  CAS  Google Scholar 

  58. Mehlen P, Briolay J, Smith L et al. Analysis of the resistance to heat and hydrogen peroxide stresses in COS cells transiently expressing wid type or deletion mutants of the Drosophila 27-kDa heat-shock protein. Eur J Biochem 1993; 215:277–284.

    PubMed  CAS  Google Scholar 

  59. Mehlen P, Préville X, Kretz-Remy C et al. Human hsp27, Drosophila hsp27 and human aB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these protein against TNFα-induced cell death. EMBO J 1996; 15:2695–2706.

    PubMed  CAS  Google Scholar 

  60. Preville X, Salvemin F, Giraud S et al. Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp Cell Res 1999; 247:61–78.

    PubMed  CAS  Google Scholar 

  61. Mehlen P, Préville X, Chareyron P et al. Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF-and oxidative stress-induced cyto-toxicity in stably transfected murine L929 fibroblasts. J Immunol 1995; 154:363–374.

    PubMed  CAS  Google Scholar 

  62. Wang G, Klostergaard J, Khodadadian M et al. Murine cells transfected with human Hsp27 cDNA resist TNF-induced cytotoxicity. J Immunother Emphasis Tumor Immunol 1996; 19:9–20.

    PubMed  CAS  Google Scholar 

  63. Park YM, Han MY, Blackburn RV et al. Overexpression of HSP25 reduces the level of TNF alpha-induced oxidative DNA damage biomarker, 8-hydroxy-2′-deoxyguanosine, in L929 cells. J Cell Physiol 1998; 174:27–34.

    PubMed  CAS  Google Scholar 

  64. Mehlen P, Hickey E, Weber L et al. Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNFα in NIH-3T3-ras cells. Biochem Biophys Res Comm 1997; 241:187–192.

    PubMed  CAS  Google Scholar 

  65. Garrido C, Ottavi P, Fromentin A et al. HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res 1997; 57:2661–2667.

    PubMed  CAS  Google Scholar 

  66. Huot J, Houle F, Marceau F et al. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 1997; 80:383–392.

    PubMed  CAS  Google Scholar 

  67. Préville X, Gaestel M, Arrigo AP. Phosphorylation is not essential for protection of L929 cells by Hsp25 against H2O2-mediated disruption actin cytoskeleton, a protection which appears related to the redox change mediated by Hsp25. Cell Stress Chaperones 1998; 3:177–187.

    PubMed  Google Scholar 

  68. Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983; 52:711–760.

    PubMed  CAS  Google Scholar 

  69. Baek SH, Min JN, Park EM et al. Role of small heat shock protein HSP25 in radioresistance and glutathione-redox cycle. J Cell Physiol 2000; 183:100–107.

    PubMed  CAS  Google Scholar 

  70. Paul C, Arrigo AP. Comparison of the protective activities generated by two survival proteins: Bcl-2 and Hsp27 in L929 murine fibroblasts exposed to menadione or staurosporine. Exp Gerontol 2000; 35:757–766.

    PubMed  CAS  Google Scholar 

  71. Arrigo AP, Firdaus WJ, Mellier G et al. Cytotoxic effects induced by oxidative stress in cultured mammalian cells and protection provided by Hsp27 expression. Methods 2005; 35:126–138.

    PubMed  CAS  Google Scholar 

  72. Diaz-Latoud C, Buache E, Javouhey E et al. Substitution of the unique cysteine residue of murine hsp25 interferes with the protective activity of this stress protein through inhibition of dimer formation. Antioxid Redox Signal 2005; 7:436–445.

    PubMed  CAS  Google Scholar 

  73. Mehlen P, Mehlen A, Guillet D et al. Tumor necrosis factor-a induces changes in the phosphorylation, cellular localization, and oligomerization of human hsp27, a stress protein that confers cellular resistance to this cytokine. J Cell Biochem 1995; 58:248–259.

    PubMed  CAS  Google Scholar 

  74. Mehlen P, Kretz-Remy C, Briolay J et al. Intracellular reactive oxygen species as apparent modulators of heat-shock protein 27 (hsp27) structural organization and phosphorylation in basal and tumour necrosis factor alpha-treated T47D human carcinoma cells. Biochem J 1995; 312:367–375.

    PubMed  CAS  Google Scholar 

  75. Sitte N, Merker K, Grune T. Proteasome-dependent degradation of oxidized proteins in MRC-5 fibroblasts. FEBS Lett 1998; 440:399–402.

    PubMed  CAS  Google Scholar 

  76. Arata S, Hamaguchi S, Nose K. Effects of the overexpression of the small heat shock protein, Hsp27, on the sensitivity of human fibroblast cells exposed to oxidative stress. J Cell Physiol 1995; 163:458–465.

    PubMed  CAS  Google Scholar 

  77. Mairesse N, Bernaert D, Del Bino G et al. Expression of HSP27 results in increased sensitivity to tumor necrosis factor, etoposide, and H2O2 in an oxidative stress-resistant cell line. J Cell Physiol 1998; 177:606–617.

    PubMed  CAS  Google Scholar 

  78. Nicholson DW, Thornberry NA. Caspases: Killer proteases. Trends Biochem Sci 1997; 22:299–306.

    PubMed  CAS  Google Scholar 

  79. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998; 281:1312–1316.

    PubMed  CAS  Google Scholar 

  80. Scaffidi C, Fulda S, Srinivasan A et al. Two CD95 (APO-1/Fas) signaling pathways. Embo J 1998; 17:1675–1687.

    PubMed  CAS  Google Scholar 

  81. Reed JC. Cytochrome c: Can’t live with it—can’t live without it. Cell 1997; 91:559–562.

    PubMed  CAS  Google Scholar 

  82. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281:1309–1312.

    PubMed  CAS  Google Scholar 

  83. Samali A, Robertson JD, Peterson E et al. Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli. Cell Stress Chaperones 2001; 6:49–58.

    PubMed  CAS  Google Scholar 

  84. Samali A, Cotter TG. Heat shock proteins increase resistance to apoptosis. Exp Cell Res 1996; 223:163–170.

    PubMed  CAS  Google Scholar 

  85. Samali A, Orrenius S. Heat shock proteins: Regulators of stress response and apoptosis. Cell Stress Chaperones 1998; 3:228–236.

    PubMed  CAS  Google Scholar 

  86. Tu S, McStay GP, Boucher LM et al. In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nat Cell Biol 2006; 8:72–77.

    PubMed  CAS  Google Scholar 

  87. Pagliari LJ, Kuwana T, Bonzon C et al. The multidomain proapoptotic molecules Bax and Bak are directly activated by heat. Proc Natl Acad Sci USA 2005; 102:17975–17980.

    PubMed  CAS  Google Scholar 

  88. Mehlen P, Schulze-Osthoff K, Arrigo AP. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1-and staurosporine-induced cell death. The J Biol Chem 1996; 271:16510–16514.

    CAS  Google Scholar 

  89. Garrido C, Bruey JM, Fromentin A et al. HSP27 inhibits cytochrome c-dependent activation of procaspase-9. Faseb J 1999; 13:2061–2070.

    PubMed  CAS  Google Scholar 

  90. Garrido C, Mehlen P, Fromentin A et al. Inconstant association between 27-kDa heat-shock protein (Hsp27) content and doxorubicin resistance in human colon cancer cells. The doxorubicin-protecting effect of Hsp27. Eur J Biochem 1996; 237:653–659.

    PubMed  CAS  Google Scholar 

  91. Hansen RK, Parra I, Lemieux P et al. Hsp27 overexpression inhibits doxorubicin-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat 1999; 56:187–196.

    PubMed  CAS  Google Scholar 

  92. Guenal I, Sidoti-de Fraisse C, Gaumer S et al. Bcl-2 and Hsp27 act at different levels to suppress programmed cell death. Oncogene 1997; 15:347–360.

    PubMed  CAS  Google Scholar 

  93. Beresford PJ, Jaju M, Friedman RS et al. A role for heat shock protein 27 in CTL-mediated cell death. J Immunol 1998; 161:161–167.

    PubMed  CAS  Google Scholar 

  94. Andley UP, Song Z, Wawrousek EF et al. Differential protective activity of αA-and {alpha}B-crystallin in lens epithelial cells. J Biol Chem 2000; 30:30–40.

    Google Scholar 

  95. Charette SJ, Lavoie JN, Lambert H et al. Inhibition of daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 2000; 20:7602–7612.

    PubMed  CAS  Google Scholar 

  96. Paul C, Manero F, Gonin S et al. Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 2002; 22:816–834.

    PubMed  CAS  Google Scholar 

  97. Chauhan D, Li G, Hideshima T et al. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 2003; 102:3379–3386.

    PubMed  CAS  Google Scholar 

  98. Bruey JM, Ducasse C, Bonniaud P et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000; 2:645–652.

    PubMed  CAS  Google Scholar 

  99. Arrigo AP, Virot S, Chaufour S et al. Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 2005; 7:414–422.

    PubMed  CAS  Google Scholar 

  100. Pandey P, Farber R, Nakazawa A et al. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 2000; 19:1975–1981.

    PubMed  CAS  Google Scholar 

  101. Arrigo AP. Expression of stress genes during development. Neuropathol and Applied Neurobiol 1995; 21:488–491.

    CAS  Google Scholar 

  102. Arrigo AP. In search of the molecular mechanism by which small stress proteins counteract apoptosis during cellular differentiation. J Cell Biochem 2005; 94:241–246.

    PubMed  CAS  Google Scholar 

  103. Chaufour S, Mehlen P, Arrigo AP. Transient accumulation, phosphorylation and changes in the oligomerization of Hsp27 during retinoic acid-induced differentiation of HL-60 cells: Possible role in the control of cellular growth and differentiation. Cell Stress Chaperones 1996; 1:225–235.

    PubMed  CAS  Google Scholar 

  104. Davidson SM, Loones MT, Duverger O et al. The developmental expression of small HSP. Prog Mol Subcell Biol 2002; 28:103–128.

    PubMed  CAS  Google Scholar 

  105. Mehlen P, Coronas V, Ljubic-Thibal V et al. Small stress protein Hsp27 accumulation during dopamine-mediated differentiation of rat olfactory neurons counteracts apoptosis. Cell Death Differ 1999; 6:227–233.

    PubMed  CAS  Google Scholar 

  106. Brar BK, Stephanou A, Wagstaff MJ et al. Heat shock proteins delivered with a virus vector can protect cardiac cells against apoptosis as well as against thermal or hypoxic stress. J Mol Cell Cardiol 1999; 31:135–146.

    PubMed  CAS  Google Scholar 

  107. Têtu B, Têtu BB, Lacasse HL et al. Prognostic influence of HSP-27 expression in malignant fibrous histiocytoma: A clinicopathological and immunohistochemical study. Cancer Res 1992; 52:2325–2328.

    PubMed  Google Scholar 

  108. Ciocca DR, Oesterreich S, Chamnes GC et al. Biological and clinical implications of heat shock proteins 27000 (Hsp27): A review. J Natl Cancer Inst 1993; 85:1558–1570.

    PubMed  CAS  Google Scholar 

  109. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 2005; 10:86–103.

    PubMed  CAS  Google Scholar 

  110. Rocchi P, Beraldi E, Ettinger S et al. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res 2005; 65:11083–11093.

    PubMed  CAS  Google Scholar 

  111. Sakamoto H, Mashima T, Yamamoto K et al. Modulation of heat-shock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal modification. J Biol Chem 2002; 277:45770–45775.

    PubMed  CAS  Google Scholar 

  112. Heijst JW, Niessen HW, Musters RJ et al. Argpyrimidine-modified Heat Shock Protein 27 in human nonsmall cell lung cancer: A possible mechanism for evasion of apoptosis. Cancer Lett 2005; 5:5–15.

    Google Scholar 

  113. Conroy SE, Sasieni PD, Amin V et al. Antibodies to heat-shock protein 27 are associated with improved survival in patients with breast cancer. Br J Cancer 1998; 77:1875–1879.

    PubMed  CAS  Google Scholar 

  114. Tezel G, Wax MB. The mechanisms of hsp27 antibody-mediated apoptosis in retinal neuronal cells. J Neurosci 2000; 20:3552–3562.

    PubMed  CAS  Google Scholar 

  115. Berrieman HK, Cawkwell L, O’Kane SL et al. Hsp27 may allow prediction of the response to single-agent vinorelbine chemotherapy in nonsmall cell lung cancer. Oncol Rep 2006; 15:283–286.

    PubMed  Google Scholar 

  116. Feng JT, Liu YK, Song HY et al. Heat-shock protein 27: A potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics 2005; 5:4581–4588.

    PubMed  CAS  Google Scholar 

  117. Shin KD, Lee MY, Shin DS et al. Blocking tumor cell migration and invasion with biphenyl isoxazole derivative KRIBB3, a synthetic molecule that inhibits Hsp27 phosphorylation. J Biol Chem 2005; 280:41439–41448.

    PubMed  CAS  Google Scholar 

  118. Mineva I, Gartne W, Hauser P et al. Differential expression of alphaB-crystallin and Hsp27-1 in anaplastic thyroid carcinomas because of tumor-specific alphaB-crystallin gene (CRYAB) silencing. Cell Stress Chaperones 2005; 10:171–184.

    PubMed  CAS  Google Scholar 

  119. Thanner F, Sutterlin MW, Kapp M et al. Heat shock protein 27 is associated with decreased survival in node-negative breast cancer patients. Anticancer Res 2005; 25:1649–1653.

    PubMed  CAS  Google Scholar 

  120. Federico A, Tuccillo C, Terracciano F et al. Heat shock protein 27 expression in patients with chronic liver damage. Immunobiology 2005; 209:729–735.

    PubMed  CAS  Google Scholar 

  121. Merendino AM, Paul C, Costa MA et al. Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress-mediated apoptosis: Possible implication in asthma. Cell Stress Chaperones 2002; 7:269–280.

    PubMed  CAS  Google Scholar 

  122. Dierick I, Irobi J, De Jonghe P et al. Small heat shock proteins in inherited peripheral neuropathies. Ann Med 2005; 37:413–422.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Arrigo, AP. (2007). The Cellular “Networking” of Mammalian Hsp27 and Its Functions in the Control of Protein Folding, Redox State and Apoptosis. In: Csermely, P., Vígh, L. (eds) Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. Advances in Experimental Medicine and Biology, vol 594. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39975-1_2

Download citation

Publish with us

Policies and ethics