Skip to main content

The Role of Hsps in Neuronal Differentiation and Development

  • Chapter
Book cover Heat Shock Proteins in Neural Cells

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Abstract

Heat shock proteins (Hsps) are expressed during development of the nervous system in a temporally and spatially controlled pattern that does not appear to be linked to activation of heat shock transcription factors. The distinct patterns of Hsp expression suggest that they perform unique roles during development and neuronal differentiation. Studies indicate that these proteins can inhibit programmed cell death, regulate cytoskeletal dynamics during neurite outgrowth and axon pathfinding, as well as interact with and regulate intracellular signaling molecules that are involved in neuronal differentiation. Overall, through their involvement in these various processes, expression of Hsps favours neuronal differentiation and survival and, as such, Hsps are emerging as important regulators of the delicate balance between cell death and survival/differentiation during development of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci 1991; 14:453–501.

    Article  CAS  PubMed  Google Scholar 

  2. D’Souza SM, Brown IR. Constitutive expression of heat shock proteins Hsp90, Hsc70, Hsp70 and Hsp60 in neural and nonneural tissues of the rat during postnatal development. Cell Stress Chaperones 1998; 3(3):188–199.

    Article  PubMed  Google Scholar 

  3. Loones MT, Chang Y, Morange M. The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggests a role in neuronal and nonneuronal differentiation. Cell Stress Chaperones 2000; 5(4):291–305.

    Article  CAS  PubMed  Google Scholar 

  4. Armstrong CL, Krueger-Naug AM, Currie RW et al. Constitutive expression of heat shock protein HSP25 in the central nervous system of the developing and adult mouse. J Comp Neurol 2001; 434(3):262–274.

    Article  CAS  PubMed  Google Scholar 

  5. Walsh DA, Li K, Speirs J et al. Regulation of the inducible heat shock 71 genes in early neural development of cultured rat embryos. Teratology 1989; 40(4):321–334.

    Article  CAS  PubMed  Google Scholar 

  6. Loones MT, Rallu M, Mezger V et al. HSP gene expression and HSF2 in mouse development. Cell Mol Life Sci 1997; 53(2):179–190.

    Article  CAS  PubMed  Google Scholar 

  7. Kato M, Mizuguchi M, Takashima S. Developmental changes of heat shock protein 73 in human brain. Brain Res Dev Brain Res 1995; 86(1–2):180–186.

    Article  CAS  PubMed  Google Scholar 

  8. Gernold M, Knauf U, Gaestel M et al. Development and tissue-specific distribution of mouse small heat shock protein hsp25. Dev Genet 1993; 14(2):103–111.

    Article  CAS  PubMed  Google Scholar 

  9. Aquino DA, Padin C, Perez JM et al. Analysis of glial fibrillary acidic protein, neurofilament protein, actin and heat shock proteins in human fetal brain during the second trimester. Brain Res Dev Brain Res 1996; 91(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  10. Pauli D, Tonka CH, Tissieres A et al. Tissue-specific expression of the heat shock protein HSP27 during Drosophila melanogaster development. J Cell Biol 1990; 111(3):817–828.

    Article  CAS  PubMed  Google Scholar 

  11. Plumier JC, Armstrong JN, Landry J et al. Expression of the 27,000 mol. wt heat shock protein following kainic acid-induced status epilepticus in the rat. Neuroscience 1996; 75(3):849–856.

    Article  CAS  PubMed  Google Scholar 

  12. Brown IR, Rush SJ. Expression of heat shock genes (hsp70) in the mammalian brain: Distinguishing constitutively expressed and hyperthermia-inducible mRNA species. J Neurosci Res 1990; 25(1):14–19.

    Article  CAS  PubMed  Google Scholar 

  13. Manzerra P, Rush SJ, Brown IR. Temporal and spatial distribution of heat shock mRNA and protein (hsp70) in the rabbit cerebellum in response to hyperthermia. J Neurosci Res 1993; 36(4):480–490.

    Article  CAS  PubMed  Google Scholar 

  14. Foster JA, Rush SJ, Brown IR. Localization of constitutive and hyperthermia-inducible heat shock mRNAs (hsc70 and hsp70) in the rabbit cerebellum and brainstem by nonradioactive in situ hybridization. J Neurosci Res 1995; 41(5):603–612.

    Article  CAS  PubMed  Google Scholar 

  15. Aquino DA, Klipfel AA, Brosnan CF et al. The 70-kDa heat shock cognate protein (HSC70) is a major constituent of the central nervous system and is up-regulated only at the mRNA level in acute experimental autoimmune encephalomyelitis. J Neurochem 1993; 61(4):1340–1348.

    Article  CAS  PubMed  Google Scholar 

  16. Pavlik A, Aneja IS, Lexa J et al. Identification of cerebral neurons and glial cell types inducing heat shock protein Hsp70 following heat stress in the rat. Brain Res 2003; 973(2):179–189.

    Article  CAS  PubMed  Google Scholar 

  17. Quraishi H, Brown IR. Expression of heat shock protein 90 (hsp90) in neural and nonneural tissues of the control and hyperthermic rabbit. Exp Cell Res 1995; 219(2):358–363.

    Article  CAS  PubMed  Google Scholar 

  18. Ahn SG, Liu PC, Klyachko K et al. The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress. Genes Dev 2001; 15(16):2134–2145.

    Article  CAS  PubMed  Google Scholar 

  19. Morimoto RI. Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 1998; 12(24):3788–3796.

    Article  CAS  PubMed  Google Scholar 

  20. Calabrese V, Scapagnini G, Ravagna A et al. Molecular chaperones and their roles in neural cell differentiation. Dev Neurosci 2002; 24(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  21. Pirkkala L, Nykanen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 2001; 15(7):1118–1131.

    Article  CAS  PubMed  Google Scholar 

  22. Brown IR, Rush SJ. Cellular localization of the heat shock transcription factors HSF1 and HSF2 in the rat brain during postnatal development and following hyperthermia. Brain Res 1999; 821(2):333–340.

    Article  CAS  PubMed  Google Scholar 

  23. Rallu M, Loones M, Lallemand Y et al. Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc Nad Acad Sci USA 1997; 94(6):2392–2397.

    Article  CAS  Google Scholar 

  24. Walsh D, Li Z, Wu Y et al. Heat shock and the role of the HSPs during neural plate induction in early mammalian CNS and brain development. Cell Mol Life Sci 1997; 53(2):198–211.

    Article  CAS  PubMed  Google Scholar 

  25. McMillan DR, Christians E, Forster M et al. Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function in mice. Mol Cell Biol 2002; 22(22):8005–8014.

    Article  CAS  PubMed  Google Scholar 

  26. Xiao X, Zuo X, Davis AA et al. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 1999; 18(21):5943–5952.

    Article  CAS  PubMed  Google Scholar 

  27. Farooqui-Kabir SR, Budhram-Mahadeo V, Lewis H et al. Regulation of Hsp27 expression and cell survival by the POU transcription factor Brn3a. Cell Death Differ 2004; 11(11):1242–1244.

    Article  CAS  PubMed  Google Scholar 

  28. Liu W, Khare SL, Liang X et al. All Brn3 genes can promote retinal ganglion cell differentiation in the chick. Development 2000; 127(15):3237–3247.

    CAS  PubMed  Google Scholar 

  29. Eng SR, Gratwick K, Rhee JM et al. Defects in sensory axon growth precede neuronal death in Brn3a-deficient mice. J Neurosci 2001; 21(2):541–549.

    CAS  PubMed  Google Scholar 

  30. Huang EJ, Liu W, Fritzsch B et al. Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development 2001; 128(13):2421–2432.

    CAS  PubMed  Google Scholar 

  31. Xiang M, Gan L, Zhou L et al. Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc Natl Acad Sci USA 1996; 93(21):11950–11955.

    Article  CAS  PubMed  Google Scholar 

  32. Vyas S, Juin P, Hancock D et al. Differentiation-dependent sensitivity to apoptogenic factors in PC12 cells. J Biol Chem 2004; 279(30):30983–30993.

    Article  CAS  PubMed  Google Scholar 

  33. Wright KM, Linhoff MW, Potts PR et al. Decreased apoptosome activity with neuronal differentiation sets the threshold for strict IAP regulation of apoptosis. J Cell Biol 2004; 167(2):303–313.

    Article  CAS  PubMed  Google Scholar 

  34. Benn SC, Woolf CJ. Adult neuron survival strategies—slamming on the brakes. Nat Rev Neurosci 2004; 5(9):686–700.

    Article  CAS  PubMed  Google Scholar 

  35. Samali A, Cotter TG. Heat shock proteins increase resistance to apoptosis. Exp Cell Res 1996; 223(1):163–170.

    Article  CAS  PubMed  Google Scholar 

  36. Samali A, Orrenius S. Heat shock proteins: Regulators of stress response and apoptosis. Cell Stress Chaperones 1998; 3(4):228–236.

    Article  CAS  PubMed  Google Scholar 

  37. Concannon CG, Gorman AM, Samali A. On the role of Hsp27 in regulating apoptosis. Apoptosis 2003; 8(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  38. Yoshida H, Kong YY, Yoshida R et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 1998; 94(6):739–750.

    Article  CAS  PubMed  Google Scholar 

  39. Kuida K, Haydar TF, Kuan CY et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998; 94(3):325–337.

    Article  CAS  PubMed  Google Scholar 

  40. Kuida K, Zheng TS, Na S et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996; 384(6607):368–372.

    Article  CAS  PubMed  Google Scholar 

  41. Yuen EC, Howe CL, Li Y et al. Nerve growth factor and the neurotrophic factor hypothesis. Brain Dev 1996; 18(5):362–368.

    Article  CAS  PubMed  Google Scholar 

  42. Mearow KM, Dodge ME, Rahimtula M et al. Stress-mediated signaling in PC12 cells-the role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal. J Neurochem 2002; 83(2):452–462.

    Article  CAS  PubMed  Google Scholar 

  43. Caviness Jr VS, Takahashi T, Nowakowski RS. Numbers, time and neocortical neuronogenesis: A general developmental and evolutionary model. Trends Neurosci 1995; 18(9):379–383.

    Article  CAS  PubMed  Google Scholar 

  44. de la Rosa EJ, de Pablo F. Cell death in early neural development: Beyond the neurotrophic theory. Trends Neurosci 2000; 23(10):454–458.

    Article  PubMed  Google Scholar 

  45. Morales AV, Hadjiargyrou M, Diaz B et al. Heat shock proteins in retinal neurogenesis: Identification of the PM1 antigen as the chick Hsc70 and its expression in comparison to that of other chaperones. Eur J Neurosci 1998; 10(10):3237–3245.

    Article  CAS  PubMed  Google Scholar 

  46. de la Rosa EJ, Vega-Nunez E, Morales AV et al. Modulation of the chaperone heat shock cognate 70 by embryonic (pro)insulin correlates with prevention of apoptosis. Proc Natl Acad Sci USA 1998; 95(17):9950–9955.

    Article  PubMed  Google Scholar 

  47. Rubio E, Valenciano AI, Segundo C et al. Programmed cell death in the neurulating embryo is prevented by the chaperone heat shock cognate 70. Eur J Neurosci 2002; 15(10):1646–1654.

    Article  PubMed  Google Scholar 

  48. Mehlen P, Coronas V, Ljubic-Thibal V et al. Small stress protein Hsp27 accumulation during dopamine-mediated differentiation of rat olfactory neurons counteracts apoptosis. Cell Death Differ 1999; 6(3):227–233.

    Article  CAS  PubMed  Google Scholar 

  49. Liang P, MacRae TH. Molecular chaperones and the cytoskeleton. J Cell Sci 1997; 110 (Pt 13):1431–1440.

    CAS  PubMed  Google Scholar 

  50. da Silva JS, Dotti CG. Breaking the neuronal sphere: Regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 2002; 3(9):694–704.

    Article  PubMed  Google Scholar 

  51. Lariviere RC, Julien JP. Functions of intermediate filaments in neuronal development and disease. J Neurobiol 2004; 58(1):131–148.

    Article  CAS  PubMed  Google Scholar 

  52. Pekny M, Pekna M. Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 2004; 204(4):428–437.

    Article  CAS  PubMed  Google Scholar 

  53. Lavoie JN, Lambert H, Hickey E et al. Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 1995; 15(1):505–516.

    CAS  PubMed  Google Scholar 

  54. Guay J, Lambert H, Gingras-Breton G et al. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997; 110 (Pt 3):357–368.

    CAS  PubMed  Google Scholar 

  55. Miron T, Vancompernolle K, Vandekerckhove J et al. A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J Cell Biol 1991; 114(2):255–261.

    Article  CAS  PubMed  Google Scholar 

  56. Lavoie JN, Hickey E, Weber LA et al. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 1993; 268(32):24210–24214.

    CAS  PubMed  Google Scholar 

  57. Benndorf R, Hayess K, Ryazantsev S et al. Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 1994; 269(32):20780–20784.

    CAS  PubMed  Google Scholar 

  58. Minowada G, Welch W. Variation in the expression and/or phosphorylation of the human low molecular weight stress protein during in vitro cell differentiation. J Biol Chem 1995; 270(13):7047–7054.

    Article  CAS  PubMed  Google Scholar 

  59. Costigan M, Mannion RJ, Kendall G et al. Heat shock protein 27: Developmental regulation and expression after peripheral nerve injury. J Neurosci 1998; 18(15):5891–5900.

    CAS  PubMed  Google Scholar 

  60. Williams KL, Rahimtula M, Mearow KM. Hsp27 and axonal growth in adult sensory neurons in vitro. BMC Neurosci 2005; 6(1):24.

    Article  PubMed  Google Scholar 

  61. Davidson SM, Morange M. Hsp25 and the p38 MAPK pathway are involved in differentiation of cardiomyocytes. Dev Biol 2000; 218(2):146–160.

    Article  CAS  PubMed  Google Scholar 

  62. Hino M, Kurogi K, Okubo MA et al. Small heat shock protein 27 (HSP27) associates with tubulin/microtubules in HeLa cells. Biochem Biophys Res Commun 2000; 271(1):164–169.

    Article  CAS  PubMed  Google Scholar 

  63. Ahmad S, Ahuja R, Venner TJ et al. Identification of a protein altered in mutants resistant to microtubule inhibitors as a member of the major heat shock protein (hsp70) family. Mol Cell Biol 1990; 10(10):5160–5165.

    CAS  PubMed  Google Scholar 

  64. Sanchez C, Padilla R, Paciucci R et al. Binding of heat-shock protein 70 (hsp70) to tubulin. Arch Biochem Biophys 1994; 310(2):428–432.

    Article  CAS  PubMed  Google Scholar 

  65. Sanchez ER, Redmond T, Scherrer LC et al. Evidence that the 90-kilodalton heat shock protein is associated with tubulin-containing complexes in L cell cytosol and in intact PtK cells. Mol Endocrinol 1988; 2(8):756–760.

    Article  CAS  PubMed  Google Scholar 

  66. Kirby BA, Merril CR, Ghanbari H et al. Heat shock proteins protect against stress-related phosphorylation of tau in neuronal PC12 cells that have acquired thermotolerance. J Neurosci 1994; 14(9):5687–5693.

    CAS  PubMed  Google Scholar 

  67. Dou F, Netzer WJ, Tanemura K et al. Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci USA 2003; 100(2):721–726.

    Article  CAS  PubMed  Google Scholar 

  68. Perng MD, Cairns L, van den I P et al. Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci 1999; 112 (Pt 13):2099–2112.

    CAS  PubMed  Google Scholar 

  69. Cleveland DW, Hoffman PN. Slow axonal transport models come full circle: Evidence that microtubule sliding mediates axon elongation and tubulin transport. Cell 1991; 67(3):453–456.

    Article  CAS  PubMed  Google Scholar 

  70. Green LA, Liem RK. Beta-internexin is a microtubule-associated protein identical to the 70-kDa heat-shock cognate protein and the clathrin uncoating ATPase. J Biol Chem 1989; 264(26):15210–15215.

    CAS  PubMed  Google Scholar 

  71. Napolitano EW, Pachter JS, Chin SS et al. beta-Internexin, a ubiquitous intermediate filament-associated protein. J Cell Biol 1985; 101(4):1323–1331.

    Article  CAS  PubMed  Google Scholar 

  72. Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 2000; 10(3):381–391.

    Article  CAS  PubMed  Google Scholar 

  73. Konishi H, Matsuzaki H, Tanaka M et al. Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lett 1997; 410(2–3):493–498.

    Article  CAS  PubMed  Google Scholar 

  74. Murashov AK, Ul Haq I, Hill C et al. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury. Brain Res Mol Brain Res 2001; 93(2):199–208.

    Article  CAS  PubMed  Google Scholar 

  75. Rane MJ, Coxon PY, Powell DW et al. p38 Kinase-dependent MAPKAPK-2 activation functions as 3-phosphoinositide-dependent kinase-2 for Akt in human neutrophils. J Biol Chem 2001; 276(5):3517–3523.

    Article  CAS  PubMed  Google Scholar 

  76. Stokoe D, Engel K, Campbell DG et al. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 1992; 313(3):307–313.

    Article  CAS  PubMed  Google Scholar 

  77. Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 2000; 97(20):10832–10837.

    Article  CAS  PubMed  Google Scholar 

  78. Rane MJ, Pan Y, Singh S et al. Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 2003; 278(30):27828–27835.

    Article  CAS  PubMed  Google Scholar 

  79. Yao R, Cooper GM. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 1995; 267(5206):2003–2006.

    Article  CAS  PubMed  Google Scholar 

  80. Dudek H, Datta SR, Franke TF et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997; 275(5300):661–665.

    Article  CAS  PubMed  Google Scholar 

  81. Philpott KL, McCarthy MJ, Klippel A et al. Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J Cell Biol 1997; 139(3):809–815.

    Article  CAS  PubMed  Google Scholar 

  82. Crowder RJ, Freeman RS. Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J Neurosci 1998; 18(8):2933–2943.

    CAS  PubMed  Google Scholar 

  83. Eves EM, Xiong W, Bellacosa A et al. Akt, a target of phosphatidylinositol 3-kinase, inhibits apoptosis in a differentiating neuronal cell line. Mol Cell Biol 1998; 18(4):2143–2152.

    CAS  PubMed  Google Scholar 

  84. Kim Y, Seger R, Suresh Babu CV et al. A positive role of the PI3-K/Akt signaling pathway in PC12 cell differentiation. Mol Cells 2004; 18(3):353–359.

    CAS  PubMed  Google Scholar 

  85. Higuchi M, Onishi K, Masuyama N et al. The phosphatidylinositol-3 kinase (PI3K)-Akt pathway suppresses neurite branch formation in NGF-treated PC12 cells. Genes Cells 2003; 8(8):657–669.

    Article  CAS  PubMed  Google Scholar 

  86. Gao T, Newton AC. The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. J Biol Chem 2002; 277(35):31585–31592.

    Article  CAS  PubMed  Google Scholar 

  87. Patapoutian A, Reichardt LF. Trk receptors: Mediators of neurotrophin action. Curr Opin Neurobiol 2001; 11(3):272–280.

    Article  CAS  PubMed  Google Scholar 

  88. Pang L, Sawada T, Decker SJ et al. Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J Biol Chem 1995; 270(23):13585–13588.

    Article  CAS  PubMed  Google Scholar 

  89. Nobes CD, Tolkovsky AM. Neutralizing anti-p21ras Fabs suppress rat sympathetic neuron survival induced by NGF, LIF, CNTF and cAMP. Eur J Neurosci 1995; 7(2):344–350.

    Article  CAS  PubMed  Google Scholar 

  90. Cowley S, Paterson H, Kemp P et al. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 1994; 77(6):841–852.

    Article  CAS  PubMed  Google Scholar 

  91. Bijur GN, Jope RS. Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3beta in the regulation of HSF-1 activity. J Neurochem 2000; 75(6):2401–2408.

    Article  CAS  PubMed  Google Scholar 

  92. Xavier IJ, Mercier PA, McLoughlin CM et al. Glycogen synthase kinase 3beta negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1. J Biol Chem 2000; 275(37):29147–29152.

    Article  CAS  PubMed  Google Scholar 

  93. Goldstein JL, Anderson RG, Brown MS. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 1979; 279(5715):679–685.

    Article  CAS  PubMed  Google Scholar 

  94. Chappell TG, Welch WJ, Schlossman DM et al. Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell 1986; 45(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  95. de Waegh S, Brady ST. Axonal transport of a clathrin uncoating ATPase (HSC70): A role for HSC70 in the modulation of coated vesicle assembly in vivo. J Neurosci Res 1989; 23(4):433–440.

    Article  PubMed  Google Scholar 

  96. Black MM, Chestnut MH, Pleasure IT et al. Stable clathrin: Uncoating protein (hsc70) complexes in intact neurons and their axonal transport. J Neurosci 1991; 11(5):1163–1172.

    CAS  PubMed  Google Scholar 

  97. Tsang TC. New model for 70 kDa heat-shock proteins’ potential mechanisms of function. FEBS Lett 1993; 323(1–2):1–3.

    Article  CAS  PubMed  Google Scholar 

  98. Giuffrida AM, Gadaleta MN, Serra I et al. Mitochondrial DNA, RNA, and protein synthesis in different regions of developing rat brain. Neurochem Res 1979; 4(1):37–52.

    Article  CAS  PubMed  Google Scholar 

  99. Renis M, Cantatore P, Loguercio Polosa P et al. Content of mitochondrial DNA and of three mitochondrial RNAs in developing and adult rat cerebellum. J Neurochem 1989; 52(3):750–754.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne Gorman .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Herbert, K.R., Samali, A., Gorman, A. (2009). The Role of Hsps in Neuronal Differentiation and Development. In: Heat Shock Proteins in Neural Cells. Neuroscience Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39954-6_3

Download citation

Publish with us

Policies and ethics