Skip to main content

Introduction

  • Chapter
Solder Joint Technology

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 117))

Abstract

Solder has been used to join copper pipes for plumbing in every modern house and to join copper wires for circuitry connection in every electrical product. Solder joints are ubiquitous. The essential process in solder joining is the chemical reaction between copper and tin to form intermetallic compounds having a strong metallic bonding. After the iron–carbon (Fe-C) binary system, copper–tin (Cu-Sn) may be the second most important metallurgical binary system that has impacted human civilization, as suggested by the bronze (Cu-Sn alloy) age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • K. Puttlitz and P. Totta, “Area Array Technology Handbook for Microelectronic Packaging,” Kluwer Academic, Norwell, MA (2001).

    Google Scholar 

  • J. H. Lau, “Flip Chip Technologies,” McGraw–Hill, New York (1996).

    Google Scholar 

  • I. Amato, “Tin whiskers: The next Y2K problem?” Fortune Magazine, Vol. 151, Issue 1, p. 27 (2005).

    Google Scholar 

  • B. Spiegel, “Threat of tin whiskers haunts rush to lead-free,” Electronic News, 03/17/2005.

    Google Scholar 

  • http://www.nemi.org/projects/ese/tin_whisker.html

  • Y. Kariya, C. Gagg, and W. J. Plumbridge, “Tin pest in lead-free solders,” Sold. Surf. Mount Technol., 13, 39–40 (2001).

    Article  CAS  Google Scholar 

  • K. N. Tu and D. Turnbull, “Direct observation of twinning in tin lamellae,” Acta Metall., 18, 915 (1970).

    Article  CAS  Google Scholar 

  • C. M. Miller, I. E. Anderson, and J. F. Smith, “A viable Sn-Pb solder substitute: Sn-Ag-Cu,” J. Electron. Mater. 23, 595–601 (1994).

    Article  CAS  Google Scholar 

  • M. E. Loomans and M. E. Fine, “Tin-silver-copper eutectic temperature and composition,” Metall. Mater. Trans., 31A, 1155–1162 (2000).

    Article  CAS  Google Scholar 

  • K.-W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, “Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys,” J. Electron. Mater., 29, 1122–1136 (2000).

    Article  CAS  Google Scholar 

  • Z. Kovac and K.N. Tu, “Immersion tin: its chemistry, metallurgy and application in electronic packaging technology,” IBM J. Res. Dev. 28, 726–734 (1984).

    Article  Google Scholar 

  • “1999 International Roadmap for Semiconductor Technology,” Semiconductor Industry Association, San Jose, CA (1999). See Website http://public.itrs.net

  • L. F. Miller, “Controlled collapse reflow chip joining,” IBM J. Res. Dev., 13, 239–250 (1969).

    CAS  Google Scholar 

  • P. A. Totta and R. P. Sopher, “SLT device metallurgy and its monolithic extensions,” IBM J. Res. Dev., 13, 226–238 (1969).

    CAS  Google Scholar 

  • B. S. Berry and I. Ames, “Studies of SLT chip terminal metallurgy,” IBM J. Res. Dev., 13, 286–296 (1969).

    CAS  Google Scholar 

  • A. A. Liu, H. K. Kim, K. N. Tu, and P. A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films,” J. Appl. Phys., 80, 2774–2780 (1996).

    Article  CAS  Google Scholar 

  • H. K. Kim, K. N. Tu, and P. A. Totta, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joints on Si wafers,” Appl. Phys. Lett., 68, 2204–2206 (1996).

    Article  CAS  Google Scholar 

  • C. Y. Liu, C. Chih, A. K. Mal, and K. N. Tu, “Direct correlation between mechanical failure and metallurgical reaction in flip chip solder joints,” J. Appl. Phys., 85, 3882–3886 (1999).

    Article  CAS  Google Scholar 

  • J. W. Jang, C. Y. Liu, P. G. Kim, K. N. Tu, A. K. Mal, and D. R. Frear, “Interfacial morphology and shear deformation of flip chip solder joints,” J. Mater. Res., 15, 1679–1687 (2000).

    Article  CAS  Google Scholar 

  • M. Date, T. Shoji, M. Fujiyoshi, K. Sato, and K. N. Tu, “Ductile-to-brittle transition in Sn-Zn solder joints measured by impact test,” Scr. Mater. 51, 641–645 (2004).

    Article  CAS  Google Scholar 

  • S. Brandenburg and S. Yeh, “Electromigration studies of flip chip bump solder joints,” in Proc. Surface Mount International Conference and Exposition, SMTA, Edina, MN, 1998, p. 337–344.

    Google Scholar 

  • S.-W. Chen, C.-M. Chen, and W.-C. Liu, “Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions,” J. Electron. Mater., 27, 1193–1197 (1998).

    Article  CAS  Google Scholar 

  • C. Y. Liu, C. Chih, C. N. Liao, and K. N. Tu, “Microstructure–electromigration correlation in a thin stripe of eutectic SnPb solder stressed between Cu electrodes,” Appl. Phys. Lett., 75, 58–60 (1999).

    Article  CAS  Google Scholar 

  • T. Y. Lee, K. N. Tu, S. M. Kuo, and D. R. Frear, “Electromigration of eutectic SnPb solder interconnects for flip chip technology,” J. Appl. Phys., 89, 3189–3194 (2001).

    Article  CAS  Google Scholar 

  • E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, and H. Balkan, “Current crowding induced electromigration failure in flip chip technology,” Appl. Phys. Lett., 80, 580–582 (2002).

    Article  CAS  Google Scholar 

  • A. T. Huang, A. M. Gusak, K. N. Tu, and Y.-S. Lai, “Thermomigration in SnPb composite flip chip solder joints,” Appl. Phys. Lett., 88, 141911 (2006).

    Article  CAS  Google Scholar 

  • Y. C. Hu, Y. L. Lin, C. R. Kao, and K. N. Tu, “Electromigration failure in flip chip solder joints due to rapid dissolution of Cu,” J. Mater. Res., 18, 2544–2548 (2003).

    CAS  Google Scholar 

  • Y. H. Lin, C. M. Tsai, Y. C. Hu, Y. L. Lin, and C. R. Kao, “Electromigration induced failure in flip chip solder joints,” J. Electron. Mater., 34, 27–33 (2005).

    Article  CAS  Google Scholar 

  • H. Gan and K. N. Tu, “Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder v-groove samples,” J. Appl. Phys., 97, 063514-1 to -10 (2005).

    Google Scholar 

  • P. G. Shewmon, “Transformations in Metals,” Indo American Books, Delhi (2006).

    Google Scholar 

  • D. A. Porter and K. E. Easterling, “Phase Transformation in Metals and Alloys,” Chapman & Hall, London (1992).

    Google Scholar 

  • J. W. Christian, “The Theory of Transformations in Metals and Alloys; Part 1 Equilibrium and General Kinetic Theory,” 2nd ed., Pergamon Press, Oxford (1975).

    Google Scholar 

  • Chin C. Lee and Ricky Chuang, “Fluxless non-eutectic joints Fabricated using Au-In multilayer composites,” IEEE Trans. Components and Packaging Technology, 26, 416–422 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Tu, KN. (2007). Introduction. In: Solder Joint Technology. Springer Series in Materials Science, vol 117. Springer, New York, NY. https://doi.org/10.1007/978-0-387-38892-2_1

Download citation

Publish with us

Policies and ethics