Skip to main content

Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics

  • Chapter
Frontiers of Ferroelectricity

Abstract

In this paper, we review recent advances in piezoresponse force microscopy (PFM) with respect to nanoscale ferroelectric research, summarize the basic principles of PFM, illustrate what information can be obtained from PFM experiments and delineate the limitations of PFM signal interpretation relevant to quantitative imaging of a broad range of piezoelectrically active materials. Particular attention is given to orientational PFM imaging and data interpretation as well as to electromechanics and kinetics of nanoscale ferroelectric switching in PFM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. SARID, Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces, Oxford Series in Optical and Imaging Sciences (University Press, Oxford, 1991).

    Google Scholar 

  2. R. WIESENDANGER, Scanning Probe Microscopy and Spectroscopy: Methods and Applications (University Press, Cambridge, 1994).

    Google Scholar 

  3. D. A. BONNELL, Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications (John Wiley & Sons, October 2000).

    Google Scholar 

  4. V. TSUKRUK, Advances in Scanning Probe Microscopy (Macromolecular Symposia 167), (John Wiley & Sons, July 2001).

    Google Scholar 

  5. A. DE STEFANIS and A. A. G. TOMLINSON, Scanning Probe Microscopies: From Surfaces Structure to Nano-Scale Engineering, Trans Tech Publications, Ltd.; April 2001.

    Google Scholar 

  6. T. TYBELL, P. PARUCH, T. GIAMARCHI and J.-M. TRISCONE, Phys. Rev. Lett. 89 (2002) 097601.

    Article  CAS  Google Scholar 

  7. K. TERABE, M. NAKAMURA, S. TAKEKAWA, K. KITAMURA, S. HIGUCHI, Y. GOTOH and Y. CHO, Appl. Phys. Lett. 82 (2003) 433.

    Article  CAS  Google Scholar 

  8. S. V. KALININ, D. A. BONNELL, T. ALVAREZ, X. LEI, Z. HU, J. H. FERRIS, Q. ZHANG and S. DUNN, Nano Letters 2 (2002) 589.

    Article  CAS  Google Scholar 

  9. S. V. KALININ, D. A. BONNELL, T. ALVAREZ, X. LEI, Z. HU, R. SHAO and J. H. FERRIS, Adv. Mat. 16 (2004) 795.

    Article  CAS  Google Scholar 

  10. See, for example, references in A. Gruverman, in “Encyclopedia of Nanoscience and Nanotechnology”, edited by H.S. Nalwa, (American Scientific Publishers, Los Angeles, Vol. 3, 2004) pp. 359–375.

    Google Scholar 

  11. W. G. CADY, Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals (Dover Publications, New York, 1964).

    Google Scholar 

  12. A. F. DEVONSHIRE, Philos. Mag. 40 (1949) 1040.

    CAS  Google Scholar 

  13. A. F. DEVONSHIRE, Adv. Phys. 3 (1954) 85.

    Article  Google Scholar 

  14. P. GUTHNER and K. DRANSFELD, Appl. Phys. Lett. 61 (1992) 1137.

    Article  Google Scholar 

  15. K. FRANKE, J. BESOLD, W. HAESSLE and C. SEEGEBARTH, Surf. Sci. Lett. 302 (1994) L283.

    Article  CAS  Google Scholar 

  16. A. GRUVERMAN, H. TOKUMOTO, S. A. PRAKASH, S. AGGARWAL, B. YANG, M. WUTTIG, R. RAMESH, O. AUCIELLO and V. VENKATESAN, Appl. Phys. Lett. 71 (1997) 3492.

    Article  CAS  Google Scholar 

  17. T. HIDAKA, T. MARUYAMA, M. SAITOH, N. MIKOSHIBA, M. SHIMIZU, T. SHIOSAKI, L. A. WILLS, R. HISKES, S. A. DICAROLIS and J. AMANO, Appl. Phys. Lett. 68 (1996) 2358.

    Article  CAS  Google Scholar 

  18. S. V. KALININ, E. KARAPETIAN and M. KACHANOV, Phys. Rev. B 70 (2004) 184101.

    Article  Google Scholar 

  19. E. KARAPETIAN, M. KACHANOV and S. V. KALININ, Phil. Mag., in print

    Google Scholar 

  20. S. V. KALININ and D. A. BONNELL, Phys. Rev. B 65 (2002) 125408.

    Google Scholar 

  21. Nanoscale Characterization of Ferroelectric Materials, edited by M. Alexe and A. Gruverman (Springer-Verlag, Berlin, 2004).

    Google Scholar 

  22. L. M. ENG, H.-J. GÜNTHERODT, G. ROSENMAN, A. SKLIAR, M. ORON, M. KATZ and D. EGER, J. Appl. Phys. 83 (1998) 5973.

    Article  CAS  Google Scholar 

  23. L. M. ENG, H.-J. GUNTHERODT, G. A. SCHNEIDER, U. KOPKE and J. M. SALDANA, Appl. Phys. Lett. 74 (1999) 233.

    Article  CAS  Google Scholar 

  24. A. ROELOFS, U. BÖTTGER, R. WASER, F. SCHLAPHOF, S. TROGISCH and L. M. ENG, Appl. Phys. Lett. 77 (2000) 3444.

    Article  CAS  Google Scholar 

  25. B. J. RODRIGUEZ, A. GRUVERMAN, A. I. KINGON, R. J. NEMANICH and J. S. CROSS, J. Appl. Phys. 95 (2004) 1958.

    Article  CAS  Google Scholar 

  26. Mathematika 5.0, Wolfram Research.

    Google Scholar 

  27. S. V. KALININ, B. J. RODRIGUEZ, S. JESSE, J. SHIN, A. P. BADDORF, P. GUPTA, H. JAIN, D.B. WILLIAMS and A. GRUVERMAN, unpublished.

    Google Scholar 

  28. R. E. NEWNHAM, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford University Press, 2005).

    Google Scholar 

  29. M. ABPLANALP, PhD thesis, Swiss Federal Institute of Technology, Zurich (2001).

    Google Scholar 

  30. M. ABPLANALP, J. FOUSEK and P. GUNTER, Phys. Rev. Lett. 86 (2001) 5799.

    Article  CAS  Google Scholar 

  31. Equation 10 is valid only for l d > r d. To avoid this limitation, used here was the expression for the demagnetization factor for prolate ellipsoid from J. A. OSBORN, Phys. Rev. 67 (1945) 351.

    Article  Google Scholar 

  32. F. JONA and G. SHIRANE, Ferroelectric Crystals, (Dover Publications, New York, 1993).

    Google Scholar 

  33. M. MOLOTSKII, J. Appl. Phys. 93 (2003) 6234.

    Article  CAS  Google Scholar 

  34. M. MOLOTSKII, A. AGRONIN, P. URENSKI, M. SHVEBELMAN, G. ROSENMAN and Y. ROSENWAKS, Phys. Rev. Lett. 90 (2003) 107601.

    Article  Google Scholar 

  35. S. V. KALININ, A. GRUVERMAN, B. J. RODRIGUEZ, J. SHIN, A. P. BADDORF, E. KARAPETIAN and M. KACHANOV, J. Appl. Phys. 97, 074305 (2005).

    Article  Google Scholar 

  36. B. D. HUEY, in “Nanoscale Phenomena in Ferroelectric Thin Films,” edited by S. Hong (Kluwer Academic Publishers, 2004).

    Google Scholar 

  37. M. ALEXE, A. GRUVERMAN, C. HARNAGEA, N. D. ZAKHAROV, A. PIGNOLET, D. HESSE and J. F. SCOTT, Appl. Phys. Lett. 75 (1999) 1158.

    Article  CAS  Google Scholar 

  38. S. HONG, J. WOO, H. SHIN, J. U. JEON, Y. E. PAK, E. L. COLLA, N. SETTER, E. KIM and K. NO, J. Appl. Phys. 89 (2001) 1377.

    Article  CAS  Google Scholar 

  39. C. HARNAGEA, A. PIGNOLET, M. ALEXE and D. HESSE, Integrated Ferroelectrics 38 (2001) 23.

    Article  CAS  Google Scholar 

  40. C. HARNAGEA, PhD thesis, Martin-Luther-Universität Halle Wittenberg, Halle, 2001.

    Google Scholar 

  41. S. V. KALININ, A. GRUVERMAN and D. A. BONNELL, Appl. Phys. Lett. 85 (2004) 795.

    Article  CAS  Google Scholar 

  42. Shown here are PFM images representing the A cos θ signal, where A is piezoresponse amplitude and θ is phase.

    Google Scholar 

  43. A. GRUVERMAN, A. PIGNOLET, K. M. SATYALAKSHMI, M. ALEXE, N. D. ZAKHAROV and D. HESSE, Appl. Phys. Lett. 76 (2000) 106.

    Article  CAS  Google Scholar 

  44. C. S. GANPULE, V. NAGARJAN, H. LI, A. S. OGALE, D. E. STEINHAUER, S. AGGARWAL, E. WILLIAMS, R. RAMESH and P. DE WOLF, Appl. Phys. Lett. 77 (2000) 292.

    Article  CAS  Google Scholar 

  45. E. FATUZZO and W. J. MERZ, Ferroelectricity (North-Holland, Amsterdam, 1967).

    Google Scholar 

  46. O. LOHSE, S. TIEDKE, M. GROSSMANN and R. WASER, Integrated Ferroelectrics 22 (1998) 123.

    Article  CAS  Google Scholar 

  47. B. J. RODRIGUEZ, R. J. NEMANICH, A. KINGON, A. GRUVERMAN, S. V. KALININ, K. TERABE, X. Y. LIU and K. KITAMURA, Appl. Phys. Lett. 86 (2005) 012906.

    Article  Google Scholar 

  48. A. AGRONIN, Y. ROSENWAKS and G. ROSENMAN, Appl. Phys. Lett. 85 (2004) 452.

    Article  CAS  Google Scholar 

  49. For pulse duration of 10 ms this linear behavior holds at least up to 250 V.

    Google Scholar 

  50. S. V. KALININ, A. GRUVERMAN, J. SHIN, A. P. BADDORF, E. KARAPETIAN and M. KACHANOV, condmat/0406383.

    Google Scholar 

  51. E. J. MELE, Am. J. Phys. 69 (2001) 557.

    Article  CAS  Google Scholar 

  52. R. C. MILLER and G. WEINREICH, Phys. Rev. 117 (1960) 1460.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Gruverman, A., Kalinin, S.V. (2006). Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. In: Frontiers of Ferroelectricity. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-38039-1_10

Download citation

Publish with us

Policies and ethics