Skip to main content

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

  • 972 Accesses

Abstract

The red-ox processes of biomacromolecules play an essential role in living systems: a series of electron-transfer reactions between donor and acceptor substances, immobilized in the membrane or dissolved in the aqueous phase, are involved in the conversion of solar energy in photosynthetic systems or in the cell respiration process. The catalytic role of proteins in signal transduction pathways mediating substrate metabolism in living process is well known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedja I, Kamat PV, Hotchandani S. Electrochemical induced fluorescence quenching and photocelectrochemical behavior of chlorophyll a-modified SnO2 films. J Appl Phys 1996; 80:4637–4643.

    Article  CAS  Google Scholar 

  2. Yang Y, Zhou R, Han Y et al. Electrochemical study of chlorophyll a adsorbed on SnO2. J Electroanal Chem 1994; 370:269–271.

    Article  CAS  Google Scholar 

  3. Naser NS, Planner A, Franckowiak D. Action spectra of the photopotential generation for pigment and dye solutions in nematic liquid crystals located in the electrochemical cell. J Photochem Photobiol A: Chemistry 1998; 113:279–282.

    Article  CAS  Google Scholar 

  4. Ptak A, Der A, Toth-Boconadi R et al. Photocurrent kinetics (in the microsecond time range) of chlorophyll a, chlorophyll b and stilbazolium merocyanine solutions in a nematic liquid crystal located in an electrochemical cell. J Photochem Photobiol A: Chemistry 1997; 104:133–139.

    Article  CAS  Google Scholar 

  5. Ptak A, Chrzumnicka E, Dudkowiak A et al. Electrochemical cell with bacteriochlorophyll c and chlorophylls a and b in nematic liquid crystal. J Photochem Photobiol A: Chemistry 1996; 98:159–163.

    Article  CAS  Google Scholar 

  6. Moncelli MR, Becucci L, Dolfi A et al. Monolayers and multilayers of chlorophyl a on a mercury electrode. Bioelectrochem 2002; 56:159–162.

    Article  CAS  Google Scholar 

  7. Tadini Buoninsegni F, Becucci L, Moncelli MR et al. Electrochemical and photoelectrochemical behavior of chlorophyll a films adsorbed on mercury. J Electroanal Chem 2003; 550–551:229–240.

    Article  CAS  Google Scholar 

  8. Guidelli R, Becucci L, Dolfi A et al. Some bioelectrochemical applications of self-assembled films on mercury. Solid State Ionics 2002; 150:13–26.

    Article  CAS  Google Scholar 

  9. Kalyasundaram K, Grätzel M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev 1998; 77:347–414.

    Article  Google Scholar 

  10. Moser JE, Bonnote P, Grätzel M. Molecular photovoltaics. Coord Chem Rev 1998; 171:245–250.

    Google Scholar 

  11. Hagfeldt A, Grätzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev 1995; 95:49–68.

    Article  CAS  Google Scholar 

  12. Curri ML, Petrella A, Striccoli M et al. Photochemical sensitisation process at photosynthetic pigments/Q-sized colloidal semiconductor hetero-junctions. Synth Met 2003; 139:593–596.

    Article  CAS  Google Scholar 

  13. Witt HT. Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods: The central role of the electric field. Biochim Biophys Acta 1979; 505:355–427.

    PubMed  CAS  Google Scholar 

  14. Volkov AG, Gugeshashvili MI, Zelent B et al. Light energy conversion with chlorophyll a and pheophytin a monolayers at the optically transparent SnO2 electrode: Artificial photosynthesis. Bioelectrochem Bioenerg 1995; 38:333–342.

    Article  CAS  Google Scholar 

  15. Kay A, Grätzel M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J Phys Chem 1993; 97:6272–6277.

    Article  CAS  Google Scholar 

  16. Hotchandani S, Kamat P. Modification of electrode surface with semiconductor colloids and its sensitization with chlorophyll a. Chem Phys Lett 1992; 191:320–326.

    Article  CAS  Google Scholar 

  17. Grätzel M. Photoelectrochemical cells. Nature 2001; 414:338–344.

    Article  PubMed  Google Scholar 

  18. Gao FG, Bard AJ, Kispert LD. Photocurrent generated on a carotenoid-sensitized TiO2 nanocrystalline mesoporous electrode. J Photochem Photobiol A 2000; 130:49–56.

    Article  CAS  Google Scholar 

  19. Pan J, Benko G, Xu Y et al. Photoinduced electron transfer between a carotenoid and TiO2 nanoparticle. J Am Chem Soc 2002; 124:13949–13957.

    Article  PubMed  CAS  Google Scholar 

  20. Konovalova TA, Kispert LD, Konovalov VV. Surface modification of TiO2 nanoparticles with carotenoids. EPR study. J Phys Chem B 1999; 103:4672–4677.

    Article  CAS  Google Scholar 

  21. Allen JP, Feher G, Yeats TO et al. Structure of the reaction center from rhodobacter sphaeroides. In: Breton J, Vermeglio A, eds. The Photosynthetic Bacterial Reaction Center, Structure and Dynamics. New York: Plenum, 1988:5–12.

    Google Scholar 

  22. Tiede DM, Budil DE, Tang J et al. Symmetry breaking structures involved in the docking of cytochrome c and primary electron transfer in reaction centers of rhodobacter sphaeroides. In: Breton J, Vermeglio A, eds. The Photosynthetic Bacterial Reaction Center, Structure and Dynamics. New York: Plenum, 1988:13–20.

    Google Scholar 

  23. Munge B, Pendon Z, Frank HA et al. Electrochemical reactions of redox cofactors in Rhodobacter sphaeroides reaction center proteins in lipid films. Bioelectrochem 2001; 54:145–150.

    Article  CAS  Google Scholar 

  24. Kong J, Lu Z, Lvov Y et al. Direct electrochemistry of cofactor redox sites in a bacterial photosynthetic reaction center protein. J Am Chem Soc 1998; 120:7371–7372.

    Article  CAS  Google Scholar 

  25. Zou Y, Zhao J, Chen Z et al. Influence of pigment substitution on the electrochemical properties of Rhodobacter sphaeroides 601 reaction centers. Series C: Life Science 2001; 44:524–532.

    Article  CAS  Google Scholar 

  26. Alegria G, PL, Dutton I. Langmuir-blodgett monolayer films of bacterial photosynthetic membranes and isolated reaction centers: Preparation, spectrophotometric and electrochemical characterization. Biochim Biophys Acta 1991; 1057:239–257.

    Article  PubMed  CAS  Google Scholar 

  27. Munge B, Das SK, Ilagan R et al. Electron transfer reactions of redox cofactors in spinach photosystem I reaction center protein in lipid films on electrodes. J Am Chem Soc 2003; 125:12457–12463.

    Article  PubMed  CAS  Google Scholar 

  28. Carpentier R. A photosynthetic electrochemical micro-cell. Curr Top in Electrochem 1997; 4:173–181.

    CAS  Google Scholar 

  29. Mimeault M, Carpentier R. Electrochemical monitoring of electron transfer in thylakoid membranes. Enz Microb Technol 1988; 10:691–694.

    Article  CAS  Google Scholar 

  30. Lemieux S, Carpentier R. Properties of a photosystem II preparation in a photoelectrochemical cell. J Photochem Phobiol B: Biology 1988; 2:221–231.

    Article  CAS  Google Scholar 

  31. Agostiano A, Goetze DC, Carpentier R. Photoelectrochemistry of thylakoid and sub-thylakoid membrane preparations: Cyclic voltammetry and action spectra Electrochim. Acta 1993; 38:757–762.

    CAS  Google Scholar 

  32. Agostiano A, Goetze DC, Carpentier R. Cyclic voltammetry measurements of the photoelectrogenic reactions of thylakoid membranes. Photochem Photobiol 1992; 55:449–455.

    CAS  Google Scholar 

  33. Laberge D, Rouillon R, Carpentier R. Comparative study of thylakoid membranes sensitivity for herbicide detection after physical or chemical immobilization. Enz Microb Technol 2000; 26:332–336.

    Article  CAS  Google Scholar 

  34. Croisetiere L, Rouillon R, Carpentier R. A simple mediatorless amperometric method using the cyanobacterium Synechococcus leopoliensis for the detection of phytotoxic pollutants. Appl Microbiol Biotechnol 2001; 56:261–264.

    Article  PubMed  CAS  Google Scholar 

  35. Ptak A, Dudkowiak A, Franckowiak D. Photoelectrical properties of green bacteria cells and cell fragments located in electrochemical cell. J Photochem Photobiol A: Chemistry 1998; 115:63–68.

    Article  CAS  Google Scholar 

  36. Allen MJ, Crane AE. Null potential voltammetry-an approach to the study of Plant photosystems. Bioelectrochem Bioenerg 1976; 3:84–91.

    Article  CAS  Google Scholar 

  37. Moss DA, Leonhard M, Bauscher M et al. Electrochemical redox titration of cofactors in the reaction center from Rhodobacter sphaeroides. FEBS Lett 1991; 283:33–36.

    Article  PubMed  CAS  Google Scholar 

  38. Katz EY, Solov’ev AA, Photobioelectrodes on the basis of photosynthetic reaction centers. Study of exogenous quinones as possible electron transfer mediators. Anal Chim Acta 1992; 266:97–106.

    Article  Google Scholar 

  39. Katz EY, Shkuropatov AY, Shuvalov VA. Electrochemical approach to the development of a photoelectrode on the basis of photosynthetic reaction centers. Bioelectrochem Bioenerg 1990; 23:239–247.

    Article  CAS  Google Scholar 

  40. Solov’ev AA, Katz EY, Shuvalov VA et al. Improving the electrochemical reversibility of quinones on a platinum surface to enhance the characteristics of photobioelectrodes based on photosynthetic reaction centers. Elektrokhimiya (USSR) 1992; 28:1762–1771.

    CAS  Google Scholar 

  41. Parker VD, Roddik A, Seefeld LC et al. Determination of rate and equilibrium constants for the reactions between electron transfer mediators and proteins by linear sweep voltammetry. Anal Biochem 1997; 249:212–218.

    Article  PubMed  CAS  Google Scholar 

  42. Parker VD, Seefeld LC. A Mediated thin-layer voltammetry method for the study of redox protein electrochemistry. Anal Biochem 1997; 247:152–157.

    Article  PubMed  CAS  Google Scholar 

  43. Yokoyama Y, Kayanuma K. Cyclic voltammetric simulation for electrochemically mediated enzyme reaction and determination of enzyme kinetic constants. Anal Chem 1998; 70:3368–3376.

    Article  PubMed  CAS  Google Scholar 

  44. Liu Y, Seefeld LC, Parker VD. Entropies of redox reactions between proteins and mediators: The temperature dependence of reversible electrode potentials in aqueous buffers. Anal Biochem 1997; 250:196–202.

    Article  PubMed  CAS  Google Scholar 

  45. Cai C, Liu B, Mirkin MV et al. Scanning electrochemical microscopy of living cells. 3. Rhodobacter sphaeroides. Anal Chem 2002; 74:114–119.

    Article  PubMed  CAS  Google Scholar 

  46. Agostiano A, Caselli M, Cosma P et al. Electrochemical investigation of the intercation of different mediators with the photosynthetic reaction center from rhodobacter sphaeroides. Electrochim Acta 2000; 45:1821–1828.

    Article  CAS  Google Scholar 

  47. Hamacher E, Kruip J, Roegner M et al. Characterization of the primary electron donor of photosystem I, P700, by electrochemistry and Fourier transform infrared (FTIR) difference spectroscopy. Spectroch. Acta Part A: Molecular and Biomolecular Spectroscopy 1996; 52A:107–121.

    Article  CAS  Google Scholar 

  48. Hamacher E, Kruip J, Roegner M et al. Characterization of the primary electron donor of photosystem I, P700, by electrochemistry and Fourier transform infrared (FTIR) difference spectroscopy. In: Mathis P, ed. Photosynthesis: From Light to Biosphere, 10th Proc. Int. Phosynthesis Congr., Montpellier, Vol. 2. Dordrecht: Kluwer, 1995:95–98.

    Google Scholar 

  49. Gourovskaya KN, Mamedov MD, Vassiliev IR et al. Electrogenic reduction of the primary electron donor P700+ in photosystem I by redox dyes. FEBS Lett 1997; 414:193–196.

    Article  PubMed  CAS  Google Scholar 

  50. Tsionsky M, Cardon ZG, Bard AJ et al. Photosynthetic electron transport in single guard cells as measured by scanning electrochemical microscopy. Plant Physiol 1997; 113:895.

    PubMed  CAS  Google Scholar 

  51. Bard AJ, Faulkner LR. Controlled potential microelectrode techniques. Potential Sweep Methods. In Electrochemical Methods: Fundamentals and Applications. New York: Wiley and Sons, 1980:213–248.

    Google Scholar 

  52. Forti G. Energy conversion in higher plants and algae. In: Ametz J, ed. Photosynthesis. Amsterdam: Elsevier, 1987:1–20.

    Google Scholar 

  53. Saveant SM, Vianello E. Potential-sweep chronoamperometry theory of kinetic currents in the case of a first order chemical reaction preceding the electron-transfer process. Electrochim Acta 1967; 8:629–646.

    Article  Google Scholar 

  54. Nicholson RS, Shain I. Theory of stationary electrode polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Anal Chem 1964; 37:706–723.

    Article  Google Scholar 

  55. Agostiano A, Fong FK. In vitro photoelectrochemical model of the Z scheme in green plant photosynthesis. Bioelectrochem Bioenerg 1987; 17:325–337.

    Article  CAS  Google Scholar 

  56. Glaser EG, Crofts AR. A new electrogenic step in the ubiquinol: Cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 1984; 766:322–333.

    Article  PubMed  CAS  Google Scholar 

  57. Pan RL, Fan I-Ji, Bhardwaj R et al. A photosynthetic photoelectrochemical cell using flavin mononucleotide as the electron acceptor. Photochem Photobiol 1982; 35:655–664.

    CAS  Google Scholar 

  58. Gross EL, Youngman DR, Winemiller SL. An FMN-photosystem I photovoltaic cell. Photochem Photobiol 1978; 28:249–256.

    CAS  Google Scholar 

  59. Agostiano A, Caselli M. Photoelectrochemistry of thylakoid membranes. Bioelectrochem Bioenerg 1997; 42:255–262.

    Article  CAS  Google Scholar 

  60. Dutton PL. Redox potentiometry: Determination of midpoint potentials of oxidation-reduction components. In Biological Electron Transfer Systems. In Methods in Enzymology, Biomembranes. Academic Press, 1978:411–435.

    Google Scholar 

  61. Kropacheva TN, Hoff AJ. Electrochemical oxidation of bacteriochlorophyll a in reaction centers and antenna complexes of photosynthetic bacteria. J Phys Chem B 2001; 105:5536–5545.

    Article  CAS  Google Scholar 

  62. Kievit O, Brudvig GW. Direct electrochemistry of photosystem I. J Electroanal Chem 2001; 497:139–149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Agostiano .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience

About this chapter

Cite this chapter

Cosma, P., Longobardi, F., Agostiano, A. (2006). Signal Transduction Techniques for Photosynthetic Proteins. In: Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices. Biotechnology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36672-2_9

Download citation

Publish with us

Policies and ethics