Skip to main content

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

  • 953 Accesses

Abstract

Many chromophore molecules, such as bacteriochlorophylls, bacteriopheophytins and quinones, are arranged in Reaction Centers with a relevant distance and energy status such as to ensure unidirectional electron transfer. Therefore even a single Reaction Center is a sophisticated molecular device suitable for technological approaches.

The structures and functions of the photosynthetic proteins differ in photosynthetic organisms at various evolutionary stages, allowing their exploitation in various technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ke B. Photosynthesis: Photobiochemistry and photobiophysics. Kluwer Academic Publishers, 2001:1–41.

    Google Scholar 

  2. Turner PE, Chao L. Sex and the evolution of intrahost competition in RNA virus phi6. Genetics 1998; 50:523–532.

    Google Scholar 

  3. Woese C. The universal ancestor. Proc Natl Acad Sci USA 1998; 95:6854–6868.

    Article  PubMed  CAS  Google Scholar 

  4. Allen JP, Williams JC. A review. Photosynthetic reaction centers. FEBS Lett 1998; 438:5–9.

    Article  PubMed  CAS  Google Scholar 

  5. Hoganson CW, Babcock GT. A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 1997; 277(5334):1953–1956.

    Article  PubMed  CAS  Google Scholar 

  6. Blankenship RE, Hartman H. The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 1998; 23:94–97.

    Article  PubMed  CAS  Google Scholar 

  7. Giovannoni SJ, Turner S, Olsen GJ et al. Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 1988; 170(8):3584–3592.

    PubMed  CAS  Google Scholar 

  8. Giardi MT, Masojidek J, Godde D. Effects of abiotic stresses on the turnover of the D1 reaction centre II protein. Physiol Plant 1997; 101:635–642.

    Article  CAS  Google Scholar 

  9. Giardi MT. Phosphorylation and disassembly of photosystem II as an early stage of photoinhibition. Planta 1993; 190:107–113.

    Article  CAS  Google Scholar 

  10. Mattoo A, Giardi MT, Raskind A et al. Dynamic metabolism of photosystem II reaction center proteins and pigments. A review. Physiol Plant 1999; 107:454–461.

    Article  CAS  Google Scholar 

  11. Madigan M, Martiko J, Parker J. Brock biology of microorganisms. 9th ed. Prentice-Hall Inc. New Jersey: Upper Saddle River, 2000.

    Google Scholar 

  12. Blankenship RE. A review. Origin and early evolution of photosynthesis. Photosynth Res 1992; 33:91–111.

    Article  PubMed  CAS  Google Scholar 

  13. Deisenhofer J, Michel H. Nobel Lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. EMBO J 1989; 8:2149–2170.

    PubMed  CAS  Google Scholar 

  14. Feher G, Allen JP, Okamura MY et al. Structure and function of bacterial photosynthetic reaction centres. Nature 1989; 339:111–116.

    Article  CAS  Google Scholar 

  15. Lancaster RD, Ermler U, Michel H. In: Blankenship RE, Madigan MT, Bauer CE, eds. Anoxygenic Photosynthetic Bacteria. Dordrecht: Kluwer, 1995:503–526.

    Google Scholar 

  16. Koblizek M, Masojidek J, Komenda J et al. A sensitive photosystemII-based biosensor for detection of a class of herbicides. Biotechnol Bioeng 1998; 60:664–669.

    Article  PubMed  CAS  Google Scholar 

  17. Johanningmeier U, Sopp G, Brauner M et al. Herbicide resistance and super-sensitivity in Ala (250) or Ala (251) mutants of the D1 protein in Chlamydomonas reinhardtii. Pesticide Biochem Physiol 2000; 66:9–19.

    Article  CAS  Google Scholar 

  18. Blodgett KB, Langmuir I. Built-up films of barium stearate and their optical properties. Phys rev 1937; 51:964–982.

    Article  CAS  Google Scholar 

  19. Hara M, Majima T, Ajiki SI et al. Multilayer preparation of bacterial photosynthetic membrane with a certain orientation immobilized on the solid surface by avidin-biotin interaction. Bioelectrochem Bioenerg 1996; 41:127–129.

    Article  CAS  Google Scholar 

  20. Tiede DM, Mueller P, Dutton PL. Spectrophotometric and voltage clamp characterization of monolayers of bacterial photosynthetic reaction centers. Biochim Biophys Acta 1982; 681:191–201.

    Article  CAS  Google Scholar 

  21. Alegria G, Dutton PL. Langmuir-Blodgett monolayer films of bacterial photosynthetic membranes and isolated reaction centers: Preparation, spectrophotometric and electrochemical characterization. Biochim Biophys Acta 1991; 1057:239–257.

    Article  PubMed  CAS  Google Scholar 

  22. Miyake J, Hara M. Protein-based nanotechnology: Molecular contruction of proteins. Material Science and Engeneering 1997; C4:213–219.

    Article  CAS  Google Scholar 

  23. Nicolini C, Erokhin V, Antolini F et al. thermal stability of protein secondary structure in Langmuir-Blodgett films. Biochim Biophys Acta 1993; 1158:273–278.

    PubMed  CAS  Google Scholar 

  24. Miyake J, Hara M, Goc J et al. Deactivation of excitation energy in bacterial photosynthetic reaction centres in Langmuir-Blodgett films. Spectrochimica Acta Part A 1997; 53:1485–1493.

    Article  Google Scholar 

  25. Clayton RK. Effects of dehydration on reaction centers from Rhodospeudomonas sphaeroides. Biochim Biophys Acta 1978; 504:255–264.

    Article  PubMed  CAS  Google Scholar 

  26. Hara M, Asada Y, Miyake J. Photoreaction unit sheet of Rhodopseudomonas viridis. Biosci Biotech Biochem 1993; 57(6):871–874.

    Article  CAS  Google Scholar 

  27. Kong J, Sun W, Wu X et al. Fast reversible electron transfer for photosynthetic reaction center from wild type Rhodobacter sphaeroides reconstituted in polycation sandwiched monolayer film. Bioelectrochem Bioenerg 1999; 48:101–107.

    Article  PubMed  CAS  Google Scholar 

  28. Keller S, Riou Y, Laval JM et al. Fusion of chromatophores from photosynthetic bacteria with a supported lipid layer: Characterization of the electric units. FEBS Letters 2000; 478:213–218.

    Article  Google Scholar 

  29. Hara M, Ajiki S, Miyake J. Topological characterization and immobilization of a chromatophore membrane from Rhodopseudomonas viridis or application as a photoelectrical device. Supramolecular Science 1998; 5:717–721.

    Article  CAS  Google Scholar 

  30. Tamura T, Sato A, Ajiki SI et al. A photocell based on a high concentration of chromatophore. Bioelectrochem Bioenerg 1991; 26:117–122.

    Article  CAS  Google Scholar 

  31. Miyake J, Majima T, Namba K et al. Thermal stability of dried photosynthetic membrane film for photoelectrodes. Materials Science and Engineering 1994; Cl:63–67.

    Google Scholar 

  32. Majima T, Miyake J, Hara M et al. Light-induced electrical responses of dried chromatophore film: Effect of the addition of cytochrome c. Thin Solid Films 1989; 180:85–88.

    Article  CAS  Google Scholar 

  33. Yasuda Y, Sugino H, Toyotama H et al. Control of protein orientation in molecular photoelectric devices using Langmuir-Blodgett films of photosynthetic reaction centers from Rhodopseudomonas viridis. Bioelectrochem Bioenerg 1994; 34:135–139.

    Article  CAS  Google Scholar 

  34. Rao KK, Gratzel M, Evans MCW et al. Photocurrent generation from water via PSII membranes immobilized on dye-derivatized TiO2 electrodes. In: Baltscheffsky M, ed. Current Research in Photosynthesis, Vol. I. 1990:619–622.

    Google Scholar 

  35. Brown LS, Váró G, Hatanaka M et al. The complex extracellular domain regulates the transient deprotonation and reprotonation of the retinal Schiff base during the bacteriorhodopsin photocycle. Biochemistry 1995; 34:12903–12911.

    Article  PubMed  CAS  Google Scholar 

  36. Yamazaki Y, Tuzi S, Saitô H et al. Hydrogen-bonds of water and C = O groups coordinate long-range structural changes in the L photointermediate of Bacteriorhodopsin. Biochemistry 1996; 35:4063–4068.

    Article  PubMed  CAS  Google Scholar 

  37. Zhou F, Windemuth A, Schulten K. Molecular dynamics investigation of the proton pump cycle of Bacteriorhodopsin. Biochemistry 1993; 32(9):2291–2306.

    Article  PubMed  CAS  Google Scholar 

  38. Birge RR. Protein based computers. Scientific American 1995; 272(3):90–95.

    Article  CAS  Google Scholar 

  39. American Chemical Society. In: Birge RR, ed. Molecular and Biomolecular Electronics. Washington DC: 1994:131–133, (491–510).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Giardi .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience

About this chapter

Cite this chapter

Giardi, M.T., Esposito, D., Torzillo, G. (2006). Comparison of Photosynthetic Organisms at Various Evolutionary Stages for Protein Biochips. In: Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices. Biotechnology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36672-2_8

Download citation

Publish with us

Policies and ethics