Skip to main content

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Photosytem II (PSII) represents a multicomponent protein complex located in the thylakoid membrane of cyanobacteria, green algae and higher plants. Due to the ability to oxidize water, its development was responsible for the rise of oxygen atmosphere on Earth, which started about 3 billion years ago. The complex consists of more than 20 protein subunits; during its biogenesis, all these subunits—together with pigments, lipids and other prosthetic groups—are brought together in a highly coordinated process resulting in the functional complex. In addition, Photosystem II is intrinsically vulnerable to light-induced damage: this is mediated by reactive oxygen species and other strong oxidants. Both the latter are generated within the complex and may significantly influence its structure and function. To prevent oxidative damage, the complex frequently undergoes a repair cycle consisting in a selective replacement of its central protein subunit, which is accompanied by the partial disassembly and reassembly of the complex. All these features document the high structural variability and dynamics of the Photosystem II, which is the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Vitry C, Olive J, Drapier D et al. Posttranslational events leading to the assembly of photosystem II protein complex-a study using photosynthesis mutants from Chlamydomonas reinhardtii. J Cell Biol 1989; 109:991–16.

    PubMed  Google Scholar 

  2. Morais F, Barber J, Nixon PJ. The chloroplast-encoded alpha subunit of cytochrome b-559 is required for assembly of the photosystem two complex in both the light and the dark in Chlamydomonas reinhardtii. J Biol Chem 1998; 273:29315–20.

    PubMed  CAS  Google Scholar 

  3. Vermaas WFJ, Ikeuchi M, Inoue Y. Protein composition of the photosystem II core complex in genetically engineered mutants of the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 1988; 17:97–113.

    CAS  Google Scholar 

  4. Pakrasi HB, Diner BA, Williams JGK et al. Deletion mutagenesis of the cytochrome b559 protein inactivates the reaction center of photosystem II. Plant Cell 1989; 1:591–597.

    PubMed  CAS  Google Scholar 

  5. Yu J, Vermaas W. Transcript levels and synthesis of photosystem 2 components in cyanobacterial mutants with inactivated photosystem II genes. Plant Cell 1990; 2:315–322.

    PubMed  CAS  Google Scholar 

  6. Nilsson FJ, Andersson B, Jansson C. Photosystem-II characteristics of a constructed Synechocystis 6803 mutant lacking synthesis of the D1 polypeptide. Plant Mol Biol 1992; 14:1051–1054.

    Google Scholar 

  7. van Wijk KJ, Roobol-Boza M, Kettunen R et al. Synthesis and assembly of the D1 protein into photosystem II: Processing of the C-terminus and identification of the initial assembly partners and complexes during photosystem II repair. Biochemistry 1997; 36:6178–86.

    PubMed  Google Scholar 

  8. Müller B, Eichacker LA. Assembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts. Plant Cell 1999; 11:2365–2378.

    PubMed  Google Scholar 

  9. Eichacker LA, Soll J, Lauterbach P et al. In vitro synthesis of chlorophyll-A in the dark triggers accumulation of chlorophyll-a apoproteins in barley etioplasts. J Biol Chem 1990; 265:13566–13571.

    PubMed  CAS  Google Scholar 

  10. Kim J, Eichacker LA, Rudiger W et al. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins P700 and D1 by increasing apoprotein stability. Plant Physiol 1994; 104:907–916.

    PubMed  CAS  Google Scholar 

  11. Plücken HB, Muller B, Grohmann D et al. The HCF 136 protein is essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Lett 2002; 532:85–90.

    PubMed  Google Scholar 

  12. Marder JB, Goloubinoff P, Edelman M. Molecular architecture of the rapidly metabolized 32-kilodalton protein of photosystem II — indications for COOH-terminal processing of a chloroplast membrane polypeptide. J Biol Chem 1984; 259:3900–3908.

    PubMed  CAS  Google Scholar 

  13. Takahashi M, Shiraishi T, Asada K. COOH-terminal residues of D1 and the 44-kDa CPa-2 at spinach photosystem II core complex. FEBS Lett 1988; 240:6–8.

    PubMed  CAS  Google Scholar 

  14. Svensson B, Vass I, Styring S. Sequence analysis of the D1 and D2 reaction center proteins of photosystem II. Z Naturforsch 1991; 46c:765–776.

    Google Scholar 

  15. Taylor MA, Packer JCL, Bowyer JR. Processing of the D1 polypeptide of the photosystem-II reaction center and photoactivation of a low fluorescence mutant (LF-1) of Scenedesmus-obliquus. FEBS Lett 1998; 237:229–233.

    Google Scholar 

  16. Nixon JP, Trost JT, Diner BA. Role of the carboxy terminus of polypeptide D1 in the assembly of a functional water-oxidizing managanese cluster in photosystem I1 of the cyanobacterium Synechocystis sp. PCC 6803: Assembly requires a free carboxyl group at C-terminal position 3447. Biochemistry 1992; 31:10859–10871.

    PubMed  CAS  Google Scholar 

  17. Lers A, Heifetz PB, Boynton JE et al. The carboxyl-terminal extension of the D1 protein of photosystem II is not required for optimal photosynthetic performance under CO2-and light-saturated growth conditions. J Biol Chem 1992; 267:17494–17497.

    PubMed  CAS  Google Scholar 

  18. Ivleva NB, Shestakov SV, Pakrasi HB. The carboxyl-terminal extension of the precursor D1 protein of photosystem II is required for optimal photosynthetic performance of the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 2000; 124:1403–1411.

    PubMed  CAS  Google Scholar 

  19. Anbudurai PR, Mor TS, Ohad I et al. The CtpA gene encodes the C-terminal processing protease for the D1 protein of the photosystem-II reaction-center complex. Proc Natl Acad Sci USA 1994; 91:8082–8086.

    PubMed  CAS  Google Scholar 

  20. Inagaki N, Yamamoto Y, Mori H et al. Carboxyl-terminal processing protease for the D1 precursor protein: Cloning and sequencing of the spinach cDNA. Plant Mol Biol 1996; 30:39–50.

    PubMed  CAS  Google Scholar 

  21. Keiler KC, Waller PRH, Sauer RT. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 1996; 271:990–993.

    PubMed  CAS  Google Scholar 

  22. Michel H, Hunt DF, Shabanowitz J et al. Tandem mass spectrometry reveals that three photosystem II proteins of spinach chloroplasts contain N-acetyl-O-phosphothreonine at their N-termini. J Biol Chem 1988; 263:1123–1130.

    PubMed  CAS  Google Scholar 

  23. Mattoo AK, Edelman M. Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32-kDa herbicide-binding protein. Proc Natl Acad Sci USA 1987; 78:1572–1576.

    Google Scholar 

  24. Elich TE, Edelman M, Mattoo AK. Identification, characterization, and resolution of the in vivo phosphorylated form of the D1 photosystem II reaction center protein. J. Biol Chem 1992; 267:3523–3529.

    PubMed  CAS  Google Scholar 

  25. Giardi MT, Cona A, Geiken B. Photosystem II core phosphorylation heterogeneity and the regulation of electron transfer in higher plants: A review. Biolectrochem Bioenergetics 1995; 38:67–75.

    CAS  Google Scholar 

  26. Giardi MT, Komenda J, Masojídek J. Involvement of protein phosphorylation in the sensitivity of photosystem II to strong illumination. Physiol Plant 1994; 92:181–187.

    CAS  Google Scholar 

  27. Rintamäki E, Kettunen R, Tyystjärvi E et al. Light-dependent phosphorylation of D1 reaction center protein of Photosystem II: Hypothesis for the functional role in vivo. Physiol Plant 1995; 93:191–195.

    Google Scholar 

  28. Prasil O, Adir N, Ohad I. The Photosystems: Structure, function and molecular biology. In: Barber J, ed. Topics in Photosynthesis. Elsevier 1992:295–348.

    Google Scholar 

  29. Aro E-M, Virgin I, Andersson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1993; 1143:113–134.

    PubMed  CAS  Google Scholar 

  30. Barber J. Molecular-basis of the vulnerability of photosystem-II to damage by light. Aust J Plant Physiol 1994; 22:201–208.

    Google Scholar 

  31. Mattoo AK, Giardi MT, Raskind A et al. Dynamic metabolism of photosystem II reaction center proteins and pigments. Physiol Plant 1999; 107:454–461.

    CAS  Google Scholar 

  32. Osmond CB, Grace SC. Perspectives on photoinhibition and photorespiration in the field: Quintessential inefficiencies of the light and dark reactions of photosynthesis? J Experiment Botany 1995; 46:351–1362.

    Google Scholar 

  33. Geiken B, Masojidek J, Rizzuto M et al. Incorporation of [S-35] methionine in higher plants reveals that stimulation of the D1 reaction centre II protein turnover accompanies tolerance to heavy metal stress. Plant Cell Environment 1998; 21:1265–1273.

    CAS  Google Scholar 

  34. Giardi MT, Masojidek J, Godde D. Effects of abiotic stresses on the turnover of the D1 reaction center II protein. Physiol Plant 1997; 101:635–642.

    CAS  Google Scholar 

  35. Franco E, Alessandrelli S, Masojidek J et al. Modulation of D1 protein turnover under cadmium and heat stresses monitored by [S-35] methionine incorporation. Plant Sci 1999; 144:53–61.

    CAS  Google Scholar 

  36. Komenda J, Masojídek J. Oxygen retards recovery from photoinhibition due to a secondary damage to the PSII complex. In: Mathis P, ed. Photosynthesis: From Light to Biosphere. Kluwer: Academic Publishers, 1995:203–206.

    Google Scholar 

  37. Komenda J, Koblízek M, Prásil O. Characterization of processes responsible for the distinct effects of herbicides DCMU and BNT on Photosystem II photoinactivation in cells of the cyanobacterium Synechococcus PCC 7942. Photosynth Res 2000b; 63:135–144.

    PubMed  CAS  Google Scholar 

  38. Nishiyama Y, Yamamoto H, Allakhverdiev SI et al. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 2001; 20:5587–5594.

    PubMed  CAS  Google Scholar 

  39. Allakhverdiev SI, Nishiyama Y, Miyairi S et al. Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol 2002; 130:1443–1453.

    PubMed  CAS  Google Scholar 

  40. Melis A. Photosystem II damage and repair cycle in chloroplasts: What modulates the rate of photodamage in vivo? Trends Plant Sci 1999; 4:130–135.

    PubMed  Google Scholar 

  41. Setlík I, Allakhverdiev SI, Nedbal L et al. Three types of photosystem II photoinactivation. 1.Damaging processes on the acceptor side. Photosynth Res 1990; 23:39–48.

    Google Scholar 

  42. Vass I, Styring S, Hundal T et al. Reversible and irreversible intermediates during photoinhibition of photosystem II: Stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci USA 1992; 89:1408–1412.

    PubMed  CAS  Google Scholar 

  43. Durrant JR, Giorgi LB, Barber J et al. Characterization of triplets states in isolated photosystem II reaction centers: Oxygen quenching as a mechanism for photodamage. Biochim Biophys Acta 1990; 1017:167–175.

    CAS  Google Scholar 

  44. Telfer A, Bishop SM, Phillips O et al. The isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen: Detection and quantum yield determination using a chemical trapping technique. J Biol Chem 1994; 269:13244–13253.

    PubMed  CAS  Google Scholar 

  45. Hideg É, Kálai T, Hideg K et al. Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 1998; 37:11405–11411.

    PubMed  CAS  Google Scholar 

  46. Hideg É, Spetea C, Vass I. Singlet oxygen and free radical production during acceptor-and donor-induced photoinhibition. Studies with spin trapping EPR spectroscopy. Biochim Biophys Acta 1994; 1186:143–152.

    CAS  Google Scholar 

  47. Macpherson AN, Telfer A, Barber J et al. Direct detection of singlet oxygen from isolated photosystem II reaction centers. Biochim Biophys Acta 1993; 143:301–309.

    Google Scholar 

  48. Theg SM, Filar LJ, Dilley RA. Photoinactivation of chloroplasts already inhibited on the oxidizing side of photosystem II. Biochim Biophys Acta 1986; 49:104–111.

    Google Scholar 

  49. Jegerschöld C, Virgin I, Styring S. Light dependent degradation of the D1 proetin in photosystem II is accelerated after inhibition of the water splitting reaction. Biochemistry 1990; 29:6179–6186.

    PubMed  Google Scholar 

  50. Chen GX, Blubaugh DJ, Homann PH et al. Superoxide contributes to the rapid inactivation of specific secondary donors of the photosystem II reaction center during photodamage of manganese-depleted photosystem II membranes. Biochemistry 1995; 34:2317–2332.

    PubMed  CAS  Google Scholar 

  51. Komenda J, Hassan HAG, Diner BA et al. Degradation of the Photosystem II D1 and D2 proteins in different strains of the cyanobacterium Synechocystis PCC 6803 varying with respect to the type and level of psbA transcript. Plant Mol Biol 2000; 2:635–645.

    Google Scholar 

  52. Keren N, Berg A, van Kann PJM et al. Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: The role of back electron flow. Proc Natl Acad Sci USA 1997; 94:1579–1584.

    PubMed  CAS  Google Scholar 

  53. Greenberg BM, Gaba V, Mattoo AK et al. Identification of a primary in vivo degradation product of the rapidly turning-over 32 KDa protein of photosystem II. EMBO J 1987; 6:2865–2869.

    PubMed  CAS  Google Scholar 

  54. Cánovas PM, Barber J. Detection of a 10 kDa breakdown product containing the C-terminus of the D1 protein in photoinhibited wheat leaves suggests an acceptor side mechanism. FEBS Lett 1993; 324:341–344.

    PubMed  Google Scholar 

  55. Shipton CA, Barber J. In vivo and in vitro photoinhibition gives rise to similar degradation fragments of D1 and D2 photosystem-II reaction-center proteins. Eur J Biochem 1994; 20:801–808.

    Google Scholar 

  56. Kettunen R, Tyystjärvi E, Aro E-M. Degradation pattern of photosystem II reaction center protein D1 in intact leaves. Plant Physiol 1996; 111:1183–1190.

    PubMed  CAS  Google Scholar 

  57. Tyystjärvi E, Aro E-M. The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci USA 1996; 93:2213–2218.

    PubMed  Google Scholar 

  58. Anderson JM, Park Y-I, Chow WS. Unifying model for the photoinactivation of photosystem II in vivo under steady-state photosynthesis. Photosynth Res 1998; 56:1–13.

    CAS  Google Scholar 

  59. Ohad I, Kyle DJ, Arntzen CJ. Membrane protein damage and repair: Removal and replacement of inactivated 32-kD polypeptides in chloroplast membranes. J Cell Biol 1984; 99:481–485.

    PubMed  CAS  Google Scholar 

  60. Hundal T, Virgin I, Styring S et al. Changes in the organization of photosystem-II following light-induced D1-protein degradation. Biochim Biophys Acta 1990; 1017:235–241.

    CAS  Google Scholar 

  61. Mattoo AK, Hoffman-Falk H, Marder JB et al. Regulation of protein metabolism; coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32-kDa protein of chloroplast membranes. Proc Natl Acad Sci USA 1984; 81:1380–1384.

    PubMed  CAS  Google Scholar 

  62. Kyle DJ, Ohad I, Arntzen CJ. Membrane-protein damage and repair — selective loss of a quinone-protein function in chloroplast membranes. Proc Natl Acad Sci USA 1984; 81:4070–4074.

    PubMed  CAS  Google Scholar 

  63. Komenda J, Barber J. Comparison of psbO and psbH deletion mutants of Synechocystis PCC 6803 indicates that degradation of the D1 protein is regulated by the Q(B) site and dependent on protein synthesis. Biochemistry 1995; 32:1454–1465.

    Google Scholar 

  64. Baroli I, Melis A. Photoinhibition and repair in Dunaliella salina acclimated to different growth irradiances. Planta 1996; 98:640–646.

    Google Scholar 

  65. Goloubinoff P, Brusslan J, Golden SS et al. Characterization of the photosystem II 32 kDa protein in Synechococcus PCC 7942. Plant Mol Biol 1988; 11:441–447.

    CAS  Google Scholar 

  66. Komenda J, Masojídek J. Functional and structural changes of the photosystem II complex induced by high irradiance in cyanobacterial cells. Eur J Biochem 1995a; 233:677–682.

    PubMed  CAS  Google Scholar 

  67. Kirilovsky D, Vernotte C, Astier C et al. Reversible and irreversible photoinhibition in herbicide-resistant mutants of Synechocystis 6714. Biochim Biophys Acta 1988; 933:124–131.

    CAS  Google Scholar 

  68. Ohad I, Koike H, Shochat S et al. Changes in the properties of reaction center-II during the initial-stages of photoinhibition as revealed by thermo-luminescence measurements. Biochim Biophys Acta 1988; 933:288–298.

    CAS  Google Scholar 

  69. Gong H, Ohad I. The PQ/PQHB2B ratio and occupancy of photosystem II QBBB site by plastoquinone control the degradation of the D1 protein during photoinhibition in vivo. J Biol Chem 1991; 266:21293–21252.

    PubMed  CAS  Google Scholar 

  70. Nixon PJ, Komenda J, Barber J et al. Deletion of the PEST-like region of photosystem two modifies the QBBB-binding pocket but does not prevent rapid turnover of D1. J Biol Chem 1995; 270:14919–14927.

    PubMed  CAS  Google Scholar 

  71. Mulo P, Laakso S, Mäenpää P et al. Stepwise photoinhibition of photosystem II. Studies with Synechocystis species PCC 6803 mutants with a modified D-E loop of the reaction center polypeptide D1. Plant Physiol 1998; 17:483–490.

    Google Scholar 

  72. Kirilovsky D, Rutherford AW, Etienne A-L. Influence of DCMU and ferricyanide on photodamage in photosystem-II. Biochemistry 1994; 33:3087–3095.

    PubMed  CAS  Google Scholar 

  73. Jansen MAK, Depka B, Trebst A et al. Engagement of specific sites in the plastoquinone niche regulates degradation of the D1 protein in photosystem II. J Biol Chem 1993; 268:21246–21252.

    PubMed  CAS  Google Scholar 

  74. Nakajima Y, Yoshida S, Inoue Y et al. Occupation of the QB-binding pocket by a photosystem II inhibitor triggers dark cleavage of the D1 protein subjected to brief preillumination. J Biol Chem 1996; 71:17383–17389.

    Google Scholar 

  75. Spetea C, Keren N, Hundal T et al. GTP enhances the degradation of the photosystem II D1 protein irrespective of its conformational heterogeneity at the QB site. J Biol Chem 2000; 275:7205–7211.

    PubMed  CAS  Google Scholar 

  76. Fufezan C, Rutherford AW, Krieger-Liszkay A. Singlet oxygen production in herbicide-treated photosystem II. FEBS Lett 2002; 532:407–410.

    PubMed  CAS  Google Scholar 

  77. Rutherford AW, Krieger-Liszkay A. Herbicide-induced oxidative stress in photosystem II. Trends Biochem Sci 2001; 26:648–653.

    PubMed  CAS  Google Scholar 

  78. Komenda J, Koblízek M, Masojídek J. The regulatory role of photosystem II photoinactivation and de novo protein synthesis in the degradation and exchange of two forms of the D1 protein in the cyanobacterium Synechococcus PCC 7942. J Photochem Photobiol B: Biology 1999; 48:114–119.

    CAS  Google Scholar 

  79. Schnettger B, Leitsch J, Krause GH. Photoinhibition of photosystem 2 in vivo occurring without net D1 protein degradation. Photosynthetica 1992; 27:261–265.

    CAS  Google Scholar 

  80. Barbato R, Friso G, Rigoni F et al. Structural changes and lateral redistribution of photosystem II during donor side photoinhibition of thylakoids. J Cell Biol 1992c; 119:325–335.

    PubMed  CAS  Google Scholar 

  81. Adir N, Shochat S, Ohad I. Light-dependent D1 protein synthesis and translocation is regulated by reaction center II. Reaction center II serves as an acceptor for the D1 precursor. J Biol Chem 1990; 265:12563–12568.

    PubMed  CAS  Google Scholar 

  82. Zhang L, Paakkarinen V, van Wijk KJ et al. Biogenesis of the chloroplast-encoded D1 protein: Regulation of translation elongation, insertion, and assembly into photosystem II. Plant Cell 2000; 12:1769–1781.

    PubMed  CAS  Google Scholar 

  83. Tyystjärvi T, Herranen M, Aro EM. Regulation of translation elongation in cyanobacteria: Membrane targeting of the ribosome nascent-chain complexes controls the synthesis of D1 protein. Mol Microbiol 2001; 40:76–484.

    Google Scholar 

  84. Tyystjärvi T, Maanpaa P, Mulo P et al. D1 Polypeptide degradation may regulate psbA gene-expression at transcriptional and translational levels in Synechocystis sp PCC-6803. Photosynth Res 1996; 47:111–120.

    Google Scholar 

  85. Mühlbauer SK, Eichacker LA. Light-dependent formation of the photosynthetic proton gradient regulates translation elongation in chloroplasts. J Biol Chem 1998; 273:20935–20940.

    PubMed  Google Scholar 

  86. Kuroda H, Kobashi K, Kaseyama H et al. Possible involvement of a low redox potential component(s) downstream of photosystem I in the translational regulation of the D1 subunit of the photosystem II reaction center in isolated pea chloroplasts. Plant Cell Physiol 1996; 37:754–761.

    CAS  Google Scholar 

  87. Rintamäki E, Kettunen R, Aro EM. Differential D1 dephosphorylation in functional and photodamaged Photosystem II centers. J Biol Chem. 1996; 71:14870–14875.

    Google Scholar 

  88. Andersson B, Anderson JM. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 1980; 593:472–440.

    Google Scholar 

  89. Stanier G, Cohen-Bazire. Fine structure of cyanobacteria. Methods Enzymol 1988; 167:157–172.

    Google Scholar 

  90. Kanervo E, Mäenpää P, Aro EM. D1 protein degradation and psbA transcript levels in Synechocystis PCC 6803 during photoinhibition in vivo. J Plant Physiol 1993; 42:669–675.

    Google Scholar 

  91. Allen JF. Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1995; 1098:275–335.

    Google Scholar 

  92. Komenda J, Lupínková L, Kopecky J. Absence of the psbH gene product destabilizes photosystem II complex and bicarbonate binding on its acceptor side in Synechocystis PCC 6803. Eur J Biochem 2002; 269:610–619.

    PubMed  CAS  Google Scholar 

  93. Jansson C, Mäenpää P. Site-directed mutagenesis is for structure-function analysis of the Photosystem II reaction center protein D1. In: Esser K, ed. Progress in Botany. 58. Heidelberg: Springer-Verlag, 1997:352–367.

    Google Scholar 

  94. Mohamed A, Eriksson J, Osiewacz MD et al. Differential expression of the psbA genes in cyanobacterium Synechocystis 6803. Mol Gen Genet 1993; 238:161–168.

    PubMed  CAS  Google Scholar 

  95. Mate Z, Sass L, Szekeres M et al. UV-B-induced differential transcription of psbA genes encoding the D1 protein of photosystem II in the cyanobacterium Synechocystis 6803. J Biol Chem 1998; 273:17439–17444.

    PubMed  CAS  Google Scholar 

  96. Golden SS, Brusslan J, Haselkorn R. Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystis nidulans R2. EMBO J 1986; 5:2789–2798.

    PubMed  CAS  Google Scholar 

  97. Schaefer MR, Golden SS. Light availability influences the ratio of two forms of D1 in cyanobacterial thylakoids. J Biol Chem 1998; 264:7412–7417.

    Google Scholar 

  98. Clarke AK, Soitamo A, Gustafsson P et al. Rapid interchange between two distinct forms of cyanobacterial photosystem II reaction center protein D1 in response to photoinhibition. Proc Natl Acad Sci USA 1993; 90:9973–9977.

    PubMed  CAS  Google Scholar 

  99. Komenda J. Role of two forms of the D1 protein in the recovery from photoinhibition of photosystem II in the cyanobacterium Synechococcus PCC 7942. Biochim Biophys Acta 2000; 1457:243–252.

    PubMed  CAS  Google Scholar 

  100. Soitamo A, Zhou G, Clarke AK et al. Over-production of the D1:2 protein makes Synechococcus cells more tolerant to photoinhibition of Photosystem II. Plant Mol Biol 1996; 30:467–478.

    PubMed  CAS  Google Scholar 

  101. Campbell D, Eriksson MT, Öquist G et al. The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. Proc Natl Acad Sci USA 1998; 95:364–369.

    PubMed  CAS  Google Scholar 

  102. Shipton CA, Barber J. Photoinduced degradation of the D1-polypeptide in isolated reaction centers of photosystem-II evidence for an autoproteolytic process triggered by the oxidizing side of the Photosystem. Proc Natl Acad Sci USA 1991; 88:6691–6695.

    PubMed  CAS  Google Scholar 

  103. Salter AH, Virgin I, Hagman A et al. On the molecular mechanism of light-induced D1 protein degradation in PSII core particles. Biochemistry 1992; 31:3990–3998.

    PubMed  CAS  Google Scholar 

  104. Adam Z. Protein stability and degradation in chloroplasts. Plant Mol Biol 1996; 32(5):773–783.

    PubMed  CAS  Google Scholar 

  105. Gong H. Light-dependent degradation of the photosystem II D1 protein is retarded by inhibitors of chloroplast transcription and translation: A possible involvement of a chloroplast-encoded proteinase. Biochim Biophys Acta 1994; 1188:422–426.

    Google Scholar 

  106. Trebst A, Soll-Bracht E. Cycloheximide retards high light driven D1 protein degradation in Chlamydomonas reinhardtii. Plant Sci 1996; 155:191–197.

    Google Scholar 

  107. Haussühl K, Andersson B, Adamska I. A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J 2001; 20:713–722.

    PubMed  Google Scholar 

  108. Lindahl M, Spetea C, Hundal T et al. The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell 2000; 12:419–432.

    PubMed  CAS  Google Scholar 

  109. Bailey S, Thompson E, Nixon PJ et al. A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J Biol Chem 2002; 277:2006–2011.

    PubMed  CAS  Google Scholar 

  110. Gottesman S. Proteases and their targets in Escherichia coli. Annu Rev Genet 1996; 30:465–506.

    PubMed  CAS  Google Scholar 

  111. Spiess C, Beil A, Ehrmann N. A temperaturedependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 1999; 97:339–347.

    PubMed  CAS  Google Scholar 

  112. Itzhaki H, Naveh L, Lindahl M et al. Identification and characterization of DegP, a serine protease associated with the lumenal side of the thylakoid membrane. J Biol Chem 1998; 273:7094–7098.

    PubMed  CAS  Google Scholar 

  113. Preiss S, Schrader S. Johanningmeier U. Rapid, ATP-dependent degradation of a truncated D1 protein in the chloroplast. Eur J Biochem 2000; 268:4562–4569.

    Google Scholar 

  114. Estelle M. Proteases and cellular regulation in plants. Curr Opin Plant Biol 2001; 4:254–260.

    PubMed  CAS  Google Scholar 

  115. Tomoyasu T, Yamanaka K, Murata K et al. Topology and subcellular localization of FtsH protein in Escherichia coli. J Bacteriol 1993; 175:1352–1357.

    PubMed  CAS  Google Scholar 

  116. Langer T. AAA proteases: Cellular machines for degrading membrane proteins. Trends Biochem Sci 2000; 25:247–251.

    PubMed  CAS  Google Scholar 

  117. Silva P, Thompson E, Bailey S et al. FtsH is involved in the early stages of repair of Photosystem II in Synechocystis sp PCC 6803. Plant Cell 2003; 15:2152–2164.

    PubMed  CAS  Google Scholar 

  118. Shipton CA, Barber J. Characterization of photoinduced breakdown of the D1-polypeptide in isolated reaction centers of photosystem II. Biochim Biophys Acta 1992; 1099:85–90.

    PubMed  CAS  Google Scholar 

  119. Allakhverdiev SI, Komenda J, Feyzijev YM et al. Photoinactivation of Isolated D1/D2/cytochrome b-559 complex under aerobic and anaerobic conditions. Photosynthetica 1993; 28:281–288.

    CAS  Google Scholar 

  120. He WZ, Newell WR, Haris PI et al. Protein secondary structure of the isolated photosystem II reaction center and conformational changes studies by Fourier transform infrared spectroscopy. Biochemistry 1991; 30:4552–4559.

    PubMed  CAS  Google Scholar 

  121. Xiang R, Xu Q, Mao HB et al. Strong-light photoinhibition treatment accelerates the changes of protein secondary structures in triton-treated photosystem I and photosystem II complexes. J Prot Chem 2001; 20:247–254.

    Google Scholar 

  122. Yamamoto Y. Quality control of photosystem II. Plant Cell Physiol 2001; 42:121–128.

    PubMed  CAS  Google Scholar 

  123. Dalla Chiesa M, Friso G, Deak Z et al. Reduced turnover of the D1 polypeptide and photoactivation of electron transfer in novel herbicide mutants of Synechocystis sp. PCC 6803. Eur J Biochem 1997; 248:731–740.

    PubMed  Google Scholar 

  124. Mizusawa N, Tomo T, Satoh K et al. Degradation of the D1 protein of Photosystem II under illumination in vivo. Two different pathways involving cleavage or intermolecular cross-linking. Biochemistry 2003; 33:9722–9730.

    Google Scholar 

  125. Barbato R, Friso G, Rigoni F et al. Characterization of a 41 kDa photoinhibition adduct in isolated photosystem II reaction centers. FEBS Lett 1992b; 309:165–169.

    PubMed  CAS  Google Scholar 

  126. De Las Rivas J, Andersson B, Barber J. Two sites of primary degradation of the D1-protein induced by acceptor or donor side photoinhibition in PSII core complexes. FEBS Lett 1992; 301:246–252.

    Google Scholar 

  127. Miyao M. Involvement of active oxygen species in degradation of the D1 protein under strong illumination in isolated subcomplexes of Photosystem-II. Biochemistry 1984; 3:9722–9730.

    Google Scholar 

  128. Barbato R, Friso G, Ponticos M et al. Characterization of the light-induced cross-linking of the α-subunit of cytochrome b-559 and the D1 protein in isolated photosystem II reaction centers. J Biol Chem 1995; 270:24032–24037.

    PubMed  CAS  Google Scholar 

  129. Lupínková L, Metz JG, Diner BA et al. Histidine residue 252 of the Photosystem II D1 polypeptide is involved in a light-induced cross-linking of the polypeptide with the α-subunit of cytochrome b-559: Study of a site-directed mutant of Synechocystis PCC 6803. Biochim Biophys Acta 2002; 1554:192–201.

    PubMed  Google Scholar 

  130. Mori H, Yamamoto Y. Deletion of antenna chlorophyll-a-binding proteins CP43 and CP47 by Tris-treatment of PSII membranes in weak light: Evidence for a photodegradative effect on the PSII components other than the reaction center-binding proteins. Biochim Biophys Acta 1992; 100:293–298.

    Google Scholar 

  131. Mori H, Yamashita Y, Akasaka T et al. Further characterization of the loss of antenna chlorophyll-binding protein CP43 from photosystem II during donor-side photoinhibition. Biochim Biophys Acta 1995; 1228:37–42.

    Google Scholar 

  132. Henmi T, Yamasaki H, Sakuma S et al. Dynamic interaction between the D1 protein, CP43 and OEC33 at the lumenal side of photosystem II in spinach chloroplasts: Evidence from light-induced cross-linking of the proteins in the donor-side photoinhibition. Plant Cell Physiol 2003; 44(4):451–456.

    PubMed  CAS  Google Scholar 

  133. Lupínková L, Komenda J. Oxidative modifications of the Photosystem II D1 protein by reactive oxygen species: From isolated protein to cyanobacterial cells. Photochem Photobiol 2004; 79:152–162.

    PubMed  Google Scholar 

  134. Miyao M, Ikeuchi M, Yamamoto N et al. Specific degradation of the D1 protein of photosystem II by treatment with hydrogen peroxide in darkness: Implications for the mechanism of degradation of the D1 protein under illumination. Biochemistry 1995; 34:10019–10026.

    PubMed  CAS  Google Scholar 

  135. Mishra NP, Ghanotakis DF. Exposure of a photosystem-II complex to chemically generated singlet oxygen results in D1 fragments similar to the ones observed during aerobic photoinhibition. Biochim Biophys Acta 1994; 87:296–300.

    Google Scholar 

  136. Sopory SK, Greenberg BM, Mehta RA et al. Free radical scavengers inhibit light-dependent degradation of the 32 kDa Photosystem II reaction center protein. Z Naturfors C-A Journal of Biosciences 1990; 45:412–417.

    CAS  Google Scholar 

  137. Barbato R, Frizzo A, Rigoni F et al. Photoinduced degradation of the D1 protein in isolated thylakoids and various photosystem II particles after donor-side inactivations. Detection of a C-terminal 16 kDa fragment. FEBS Lett 1992d; 304:136–140.

    PubMed  CAS  Google Scholar 

  138. Jansen MAK, Mattoo AK, Edelman M. D1-D2 protein degradation in the chloroplast. Complex light saturation kinetics. Eur J Biochem 1999; 260:527–532.

    PubMed  CAS  Google Scholar 

  139. Sharma J, Panico M, Shipton CA et al. Primary structure characterization of the photosystem II D1 and D2 subunits. J Biol Chem 1997a; 272:33158–33166.

    PubMed  CAS  Google Scholar 

  140. Barbato R, Friso G, de Laureto PP et al. Light-induced degradation of D2 protein in isolated photosystem II reaction center complex. FEBS Lett 1992a; 311:33–36.

    PubMed  CAS  Google Scholar 

  141. Schuster G, Timberg T, Ohad I. Turnover of thylakoid photosystem II proteins during photoinhibition of Chlamydomonas reinhardtii. Eur J Biochem 1988; 177:403–410.

    PubMed  CAS  Google Scholar 

  142. Sharma J, Panico M, Barber J et al. Characterization of the low molecular weight Photosystem II reaction center subunits and their light-induced modifications by mass spectrometry. J. Biol Chem 1997; 272:3935–3943.

    PubMed  CAS  Google Scholar 

  143. Zer H, Ohad I. Photoinactivation of photosystem II induces changes in the photochemical reaction center II abolishing the regulatory role of the QB site in the D1 protein degradation. Eur J Biochem 1995; 231:448–453.

    PubMed  CAS  Google Scholar 

  144. Zouni A, Witt HT, Kern J et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 2001; 409:739–742.

    PubMed  CAS  Google Scholar 

  145. Hashimoto A, Yamamoto Y, Theg SM. Unassembled subunits of the photosynthetic oxygen-evolving complex present in the thylakoid lumen are long-lived and assembly-competent. FEBS Lett 1996; 391:29–34.

    PubMed  CAS  Google Scholar 

  146. Eisenberg-Domovich Y, Oelmuller R, Herrmann RG et al. Role of the RCII-D1 protein in the reversible association of the oxygen-evolving complex proteins with the lumenal side of Photosystem-II. J Biol Chem 1995; 270:30181–30186.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Komenda .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience

About this chapter

Cite this chapter

Komenda, J., Kuviková, S., Lupínková, L., Masojídek, J. (2006). Biogenesis and Structural Dynamics of the Photosystem II Complex. In: Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices. Biotechnology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36672-2_4

Download citation

Publish with us

Policies and ethics