Skip to main content

α-Synuclein Aggregation and Parkinson’s Disease

  • Chapter

Part of the book series: Protein Reviews ((PRON,volume 6))

Abstract

Parkinson’s disease (PD) is a multifactorial movement disorder in which both genetic and especially environmental factors play important roles. Substantial evidence implicates the aggregation of α-synuclein, an abundant and conservative presynaptic brain protein with unknown function, as a critical factor in PD. Rare familial cases of PD are associated with the mutations A30P (Ala to Pro substitution at position 30), E46K (Glu to Lys substitution at position 46), and A53T (Ala to Thr substitution at position 53) in α-synuclein. The primary structure of α-synuclein is characterized by several unusual motifs, and this protein was shown to have two closely related homologues, β-synuclein and γ-synuclein. Under the physiologic conditions in vitro, α-synuclein is characterized by the lack of rigid well-defined 3-D structure (i.e., it belongs to the class of natively unfolded proteins). Intriguingly, α-synuclein is known to possess remarkable conformational plasticity. The structure of this protein depends dramatically on the environment, and a number of absolutely unrelated conformations have been observed, including a partially folded intermediate that is a key intermediate in aggregation and fibrillation, several oligomeric species, and fibrillar and amorphous aggregates. A number of factors that either accelerate or inhibit the rate of fibrillation in vitro have been described. Accelerators include environmental factors such as certain pesticides and metals, molecular crowding, and various natural and synthetic charged polymers. Inhibitors include high concentrations of stabilizers such as trimethylamine N-oxide (TMAO), certain catechols, rifampicin, baicalein, acidic lipid vesicles, and protein homologues (β- and γ-synucleins). Oxidation of the four methionine residues in α-synuclein leads to the abolishment of fibrillation, as does the nitration of tyrosine residues. There is a strong correlation between the conformation of α-synuclein (induced by various factors) and its rate of fibrillation. The aggregation process appears to be branched, with one pathway leading to fibrils and another to oligomeric intermediates that may ultimately form amorphous deposits. The molecular basis of Parkinson’s disease appears to be tightly coupled to the aggregation of α-synuclein and the factors that affect its conformation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alim, M. A., Hossain, M. S., Arima, K., Takeda, K., Izumiyama, Y., Nakamura, M., Kaji, H., Shinoda, T., Hisanaga, S., and Ueda, K. (2002). Tubulin seeds alpha-synuclein fibril formation. J Biol Chem 277: 2112–2117.

    PubMed  CAS  Google Scholar 

  • Altschuler, E. (1999). Aluminum-containing antacids as a cause of idiopathic Parkinson’s disease. Med Hypotheses 53: 22–23.

    PubMed  CAS  Google Scholar 

  • Arawaka, S., Saito, Y., Murayama, S., and Mori, H. (1998). Lewy body in neurodegeneration with brain iron accumulation type 1 is immunoreactive for alpha-synuclein. Neurology 51: 887–889.

    PubMed  CAS  Google Scholar 

  • Arima, K., Ueda, K., Sunohara, N., Hirai, S., Izumiyama, Y., Tonozuka-Uehara, H., and Kawai, M. (1998) Immunoelectronmicroscopic demonstration of NACP/alpha-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson’s disease and in dementia with Lewy bodies. Brain Res 808: 93–100.

    PubMed  CAS  Google Scholar 

  • Asanuma, M., Miyazaki, I., and Ogawa, N. (2003). Dopamine-or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res 5: 165–176.

    PubMed  Google Scholar 

  • Aulak, K. S., Miyagi, M., Yan, L., West, K. A., Massillon, D., Crabb, J. W., and Stuehr, D. J. (2001). Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci USA 98: 12056–12061.

    PubMed  CAS  Google Scholar 

  • Auluck, P. K., and Bonini, N. M. (2002). Pharmacological prevention of Parkinson disease in Drosophila. Nat Med 8: 1185–1186.

    PubMed  CAS  Google Scholar 

  • Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., Lee, V. M., and Bonini, N. M. (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295: 865–868.

    PubMed  CAS  Google Scholar 

  • Baba, M., Nakajo, S., Tu, P. H., Tomita, T., Nakaya, K., Lee, V. M., Trojanowski, J. Q., and Iwatsubo, T. (1998). Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152: 879–884.

    PubMed  CAS  Google Scholar 

  • Beal, M. F. (1995). Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38: 357–366.

    PubMed  CAS  Google Scholar 

  • Bennett, M. C. (2005). The role of alpha-synuclein in neurodegenerative diseases. Pharmacol Ther 105: 311–331.

    PubMed  CAS  Google Scholar 

  • Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V., and Greenamyre, J. T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3: 1301–1306.

    PubMed  CAS  Google Scholar 

  • Bismuto, E., Martelli, P. L., De Maio, A., Mita, D. G., Irace, G., and Casadio, R. (2002). Effect of molecular confinement on internal enzyme dynamics: frequency domain fluorometry and molecular dynamics simulation studies. Biopolymers 67: 85–95.

    PubMed  CAS  Google Scholar 

  • Bodles, A. M., Guthrie, D. J., Harriott, P., Campbell, P., and Irvine, G. B. (2000). Toxicity of non-abeta component of Alzheimer’s disease amyloid, and N-terminal fragments thereof, correlates to formation of beta-sheet structure and fibrils. Eur J Biochem 267: 2186–2194.

    PubMed  CAS  Google Scholar 

  • Bodles, A. M., Guthrie, D. J., Greer, B., and Irvine, G. B. (2001). Identification of the region of non-Abeta component (NAC) of Alzheimer’s disease amyloid responsible for its aggregation and toxicity. J Neurochem 78: 384–395.

    PubMed  CAS  Google Scholar 

  • Bonifati, V., Rizzu, P., van Baren, M. J., Schaap, O., Breedveld, G. J., Krieger, E., Dekker, M. C., Squitieri, F., Ibanez, P., Joosse, M., van Dongen, J. W., Vanacore, N., van Swieten, J. C., Brice, A., Meco, G., van Duijn, C. M., Oostra, B. A., and Heutink, P. (2003). Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299: 256–259.

    PubMed  CAS  Google Scholar 

  • Braak, H., Sandmann-Keil, D., Gai, W., and Braak, E. (1999). Extensive axonal Lewy neurites in Parkinson’s disease: a novel pathological feature revealed by alpha-synuclein immunocytochemistry. Neurosci Lett 265: 67–69.

    PubMed  CAS  Google Scholar 

  • Bracken, C., Iakoucheva, L. M., Romero, P. R., and Dunker, A. K. (2004). Combining prediction, computation and experiment for the characterization of protein disorder. Curr Opin Struct Biol 14: 570–576.

    PubMed  CAS  Google Scholar 

  • Browne, S. E., Ferrante, R. J., and Beal, M. F. (1999). Oxidative stress in Huntington’s disease. Brain Pathol 9: 147–163.

    PubMed  CAS  Google Scholar 

  • Buchman, V. L., Adu, J., Pinon, L. G., Ninkina, N. N., and Davies, A. M. (1998a). Persyn, a member of the synuclein family, influences neurofilament network integrity. Nat Neurosci 1: 101–103.

    PubMed  CAS  Google Scholar 

  • Buchman, V. L., Hunter, H. J., Pinon, L. G., Thompson, J., Privalova, E. M., Ninkina, N. N., and Davies, A. M. (1998b). Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system. J Neurosci 18: 9335–9341.

    PubMed  CAS  Google Scholar 

  • Bussell, R., Jr., and Eliezer, D. (2001). Residual structure and dynamics in Parkinson’s disease-associated mutants of alpha-synuclein. J Biol Chem 276: 45996–46003.

    PubMed  CAS  Google Scholar 

  • Bussell, R., Jr., and Eliezer, D. (2004). Effects of Parkinson’s disease-linked mutations on the structure of lipid-associated alpha-synuclein. Biochemistry 43: 4810–4818.

    PubMed  CAS  Google Scholar 

  • Butterfield, D. A., and Kanski, J. (2001). Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122: 945–962.

    PubMed  CAS  Google Scholar 

  • Campbell, B. C., Li, Q. X., Culvenor, J. G., Jakala, P., Cappai, R., Beyreuther, K., Masters, C. L., and McLean, C. A. (2000). Accumulation of insoluble alpha-synuclein in dementia with Lewy bodies. Neurobiol Dis 7: 192–200.

    PubMed  CAS  Google Scholar 

  • Campbell, B. C., McLean, C. A., Culvenor, J. G., Gai, W. P., Blumbergs, P. C., Jakala, P., Beyreuther, K., Masters, C. L., and Li, Q. X. (2001). The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. J Neurochem 76: 87–96.

    PubMed  CAS  Google Scholar 

  • Cardin, A. D., and Weintraub, H. J. (1989). Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9: 21–32.

    PubMed  CAS  Google Scholar 

  • Castillo, G. M., Ngo, C., Cummings, J., Wight, T. N., and Snow, A. D. (1997). Perlecan binds to the beta-amyloid proteins (A beta) of Alzheimer’s disease, accelerates A beta fibril formation, and maintains A beta fibril stability. J Neurochem 69: 2452–2465.

    PubMed  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D. (1978). Empirical predictions of protein conformation. Annu Rev Biochem 47: 251–276.

    PubMed  CAS  Google Scholar 

  • Chui, D. H., Tabira, T., Izumi, S., Koya, G., and Ogata, J. (1994). Decreased beta-amyloid and increased abnormal Tau deposition in the brain of aged patients with leprosy. Am J Pathol 145: 771–775.

    PubMed  CAS  Google Scholar 

  • Clayton, D. F., and George, J. M. (1998). The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 21: 249–254.

    PubMed  CAS  Google Scholar 

  • Clayton, D. F., and George, J. M. (1999). Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res 58: 120–129.

    PubMed  CAS  Google Scholar 

  • Cohen, N. A., Kaufmann, W. E., Worley, P. F., and Rupp, F. (1997). Expression of agrin in the developing and adult rat brain. Neuroscience 76: 581–596.

    PubMed  CAS  Google Scholar 

  • Cohlberg, J. A., Li, J., Uversky, V. N., and Fink, A. L. (2002). Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. Biochemistry 41: 1502–1511.

    PubMed  CAS  Google Scholar 

  • Cole, G. J., Liu, I. H., Uversky, V. N., Munishkina, L. A., Fink, A. L. and Halfter, W., (2005). Agrin binds alpha-synuclein and modulates alpha-synuclein fibrillation. Glycobiology 15: 1320–1331.

    PubMed  Google Scholar 

  • Commenges, D., Scotet, V., Renaud, S., Jacqmin-Gadda, H., Barberger-Gateau, P., and Dartigues, J. F. (2000). Intake of flavonoids and risk of dementia. Eur J Epidemiol 16: 357–363.

    PubMed  CAS  Google Scholar 

  • Conway, K. A., Harper, J. D., and Lansbury, P. T. (1998). Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4: 1318–1320.

    PubMed  CAS  Google Scholar 

  • Conway, K. A., Harper, J. D., and Lansbury, P. T., Jr. (2000a). Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39: 2552–2563.

    PubMed  CAS  Google Scholar 

  • Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Harper, J. D., Williamson, R. E., and Lansbury, P. T., Jr. (2000b). Accelerated oligomerization by Parkinson’s disease linked alpha-synuclein mutants. Ann N Y Acad Sci 920: 42–45.

    PubMed  CAS  Google Scholar 

  • Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Williamson, R. E., and Lansbury, P. T., Jr. (2000c). Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97: 571–576.

    PubMed  CAS  Google Scholar 

  • Conway, K. A., Rochet, J. C., Bieganski, R. M., and Lansbury, P. T., Jr. (2001). Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294: 1346–1349.

    PubMed  CAS  Google Scholar 

  • Cookson, M. R. (2004) The Biochemistry of Parkinson’s Disease. Annu Rev Biochem: In press.

    Google Scholar 

  • Cookson, M. R., and Shaw, P. J. (1999). Oxidative stress and motor neurone disease. Brain Pathol 9: 165–186.

    PubMed  CAS  Google Scholar 

  • Cotman, S. L., Halfter, W., and Cole, G. J. (2000). Agrin binds to beta-amyloid (Abeta), accelerates abeta fibril formation, and is localized to Abeta deposits in Alzheimer’s disease brain. Mol Cell Neurosci 15: 183–198.

    PubMed  CAS  Google Scholar 

  • Creighton, T. E. (1993). Proteins. Structures and Molecular Properties. New York: W. H. Freeman and Company.

    Google Scholar 

  • Crowther, R. A., Jakes, R., Spillantini, M. G., and Goedert, M. (1998). Synthetic filaments assembled from C-terminally truncated alpha-synuclein. FEBS Lett 436: 309–312.

    PubMed  CAS  Google Scholar 

  • Crowther, R. A., Daniel, S. E., and Goedert, M. (2000). Characterisation of isolated alpha-synuclein filaments from substantia nigra of Parkinson’s disease brain. Neurosci Lett 292: 128–130.

    PubMed  CAS  Google Scholar 

  • da Costa, C. A., Ancolio, K., and Checler, F. (2000). Wild-type but not Parkinson’s disease-related ala-53 Thr mutant alpha-synuclein protects neuronal cells from apoptotic stimuli. J Biol Chem 275: 24065–24069.

    PubMed  Google Scholar 

  • Datla, K. P., Christidou, M., Widmer, W. W., Rooprai, H. K., and Dexter, D. T. (2001). Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. Neuroreport 12: 3871–3875.

    PubMed  CAS  Google Scholar 

  • Dauer, W., and Przedborski, S. (2003). Parkinson’s disease: mechanisms and models. Neuron 39: 889–909.

    PubMed  CAS  Google Scholar 

  • Daughdrill, G. W., Pielak, G. J., Uversky, V. N., Cortese, M. S., and Dunker, A. K. (2005). Natively disordered proteins. In Handbook of Protein Folding, ed. J. Buchner, and T. Kiefhaber, pp. 271–353. Weinheim, Germany: Wiley-VCH, Verlag GmbH & Co. KGaA.

    Google Scholar 

  • Davidson, W. S., Jonas, A., Clayton, D. F., and George, J. M. (1998). Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273: 9443–9449.

    PubMed  CAS  Google Scholar 

  • Davies, K. J. (1987). Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem 262: 9895–9901.

    PubMed  CAS  Google Scholar 

  • Davies, K. J., Lin, S. W., and Pacifici, R. E. (1987) Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J Biol Chem 262: 9914–9920.

    PubMed  CAS  Google Scholar 

  • Davis, L. E., and Adair, J. C. (1999). Parkinsonism from methanol poisoning: benefit from treatment with anti-Parkinson drugs. Mov Disord 14: 520–522.

    PubMed  CAS  Google Scholar 

  • Dev, K. K., Hofele, K., Barbieri, S., Buchman, V. L., and van der Putten, H. (2003). Part II: alpha-synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology 45: 14–44.

    PubMed  CAS  Google Scholar 

  • Dexter, D. T., Carayon, A., Javoy-Agid, F., Agid, Y., Wells, F. R., Daniel, S. E., Lees, A. J., Jenner, P., and Marsden, C. D. (1991). Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114 (Pt 4): 1953–1975.

    PubMed  Google Scholar 

  • Di Monte, D. A. (2001). The role of environmental agents in Parkinson’s disease. Clin Neurosci Res 1: 419–426.

    Google Scholar 

  • Di Monte, D. A. (2003). The environment and Parkinson’s disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol 2: 531–538.

    PubMed  Google Scholar 

  • Di Monte, D. A., Lavasani, M., and Manning-Bog, A. B. (2002). Environmental factors in Parkinson’s disease. Neurotoxicology 23: 487–502.

    PubMed  Google Scholar 

  • Dickson, D. W. (2001). Alpha-synuclein and the Lewy body disorders. Curr Opin Neurol 14: 423–432.

    PubMed  CAS  Google Scholar 

  • Dobson, C. M. (1999). Protein misfolding, evolution and disease. Trends Biochem Sci 24: 329–332.

    PubMed  CAS  Google Scholar 

  • Dobson, C. M. (2001a). Protein folding and its links with human disease. Biochem Soc Symp: 1–26.

    Google Scholar 

  • Dobson, C. M. (2001b). The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B Biol Sci 356: 133–145.

    PubMed  CAS  Google Scholar 

  • Donahue, J. E., Berzin, T. M., Rafii, M. S., Glass, D. J., Yancopoulos, G. D., Fallon, J. R., and Stopa, E. G. (1999). Agrin in Alzheimer’s disease: altered solubility and abnormal distribution within microvasculature and brain parenchyma. Proc Natl Acad Sci USA 96: 6468–6472.

    PubMed  CAS  Google Scholar 

  • Duda, J. E., Giasson, B. I., Chen, Q., Gur, T. L., Hurtig, H. I., Stern, M. B., Gollomp, S. M., Ischiropoulos, H., Lee, V. M., and Trojanowski, J. Q. (2000). Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol 157: 1439–1445.

    PubMed  CAS  Google Scholar 

  • Dunker, A. K., Brown, C. J., Lawson, J. D., Iakoucheva, L. M., and Obradovic, Z. (2002a). Intrinsic disorder and protein function. Biochemistry 41: 6573–6582.

    PubMed  CAS  Google Scholar 

  • Dunker, A. K., Brown, C. J., and Obradovic, Z. (2002b). Identification and functions of usefully disordered proteins. Adv Protein Chem 62: 25–49.

    PubMed  CAS  Google Scholar 

  • Dunker, A. K., Garner, E., Guilliot, S., Romero, P., Albrecht, K., Hart, J., Obradovic, Z., Kissinger, C., and Villafranca, J. E. (1998). Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput: 473–484.

    Google Scholar 

  • Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., Oldfield, C. J., Campen, A. M., Ratliff, C. M., Hipps, K. W., Ausio, J., Nissen, M. S., Reeves, R., Kang, C., Kissinger, C. R., Bailey, R. W., Griswold, M. D., Chiu, W., Garner, E. C., and Obradovic, Z. (2001). Intrinsically disordered protein. J Mol Graph Model 19: 26–59.

    PubMed  CAS  Google Scholar 

  • Dunker, A. K., and Obradovic, Z. (2001). The protein trinity-linking function and disorder. Nat Biotechnol 19: 805–806.

    PubMed  CAS  Google Scholar 

  • Duvoisin, R. C. (1992a). A brief history of parkinsonism. Neurol Clin 10: 301–316.

    PubMed  CAS  Google Scholar 

  • Duvoisin, R. C. (1992b). Overview of Parkinson’s disease. Ann N Y Acad Sci 648: 187–193.

    PubMed  CAS  Google Scholar 

  • Dyson, H. J., and Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6: 197–208.

    PubMed  CAS  Google Scholar 

  • Eggers, D. K., and Valentine, J. S. (2001a). Crowding and hydration effects on protein conformation: a study with sol-gel encapsulated proteins. J Mol Biol 314: 911–922.

    PubMed  CAS  Google Scholar 

  • Eggers, D. K., and Valentine, J. S. (2001b). Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci 10: 250–261.

    PubMed  CAS  Google Scholar 

  • El-Agnaf, O. M., Bodles, A. M., Guthrie, D. J., Harriott, P., and Irvine, G. B. (1998a). The N-terminal region of non-A beta component of Alzheimer’s disease amyloid is responsible for its tendency to assume beta-sheet and aggregate to form fibrils. Eur J Biochem 258: 157–163.

    PubMed  CAS  Google Scholar 

  • El-Agnaf, O. M., Jakes, R., Curran, M. D., Middleton, D., Ingenito, R., Bianchi, E., Pessi, A., Neill, D., and Wallace, A. (1998b). Aggregates from mutant and wild-type alpha-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of beta-sheet and amyloid-like filaments. FEBS Lett 440: 71–75.

    PubMed  CAS  Google Scholar 

  • El-Agnaf, O. M., Jakes, R., Curran, M. D., and Wallace, A. (1998c). Effects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of alpha-synuclein protein implicated in Parkinson’s disease. FEBS Lett 440: 67–70.

    PubMed  CAS  Google Scholar 

  • Eliezer, D., Kutluay, E., Bussell, R., Jr., and Browne, G. (2001). Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307: 1061–1073.

    PubMed  CAS  Google Scholar 

  • Ellis, R. J. (2001). Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26: 597–604.

    PubMed  CAS  Google Scholar 

  • Fall, P. A., Fredrikson, M., Axelson, O., and Granerus, A. K. (1999). Nutritional and occupational factors influencing the risk of Parkinson’s disease: a case-control study in southeastern Sweden. Mov Disord 14: 28–37.

    PubMed  CAS  Google Scholar 

  • Fandrich, M., Fletcher, M. A., and Dobson, C. M. (2001). Amyloid fibrils from muscle myoglobin. Nature 410: 165–166.

    PubMed  CAS  Google Scholar 

  • Farrer, M., Kachergus, J., Forno, L., Lincoln, S., Wang, D. S., Hulihan, M., Maraganore, D., Gwinn-Hardy, K., Wszolek, Z., Dickson, D., and Langston, J. W. (2004). Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 55: 174–179.

    PubMed  CAS  Google Scholar 

  • Feany, M. B., and Bender, W. W. (2000). A Drosophila model of Parkinson’s disease. Nature 404: 394–398.

    PubMed  CAS  Google Scholar 

  • Fink, A. L. (2005). Natively unfolded proteins. Curr Opin Struct Biol 15: 35–41.

    PubMed  CAS  Google Scholar 

  • Floyd, R. A. (1990). Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 4: 2587–2597.

    PubMed  CAS  Google Scholar 

  • Forloni, G., Bertani, I., Calella, A. M., Thaler, F., and Invernizzi, R. (2000) Alpha-synuclein and Parkinson’s disease: selective neurodegenerative effect of alpha-synuclein fragment on dopaminergic neurons in vitro and in vivo. Ann Neurol 47: 632–640.

    PubMed  CAS  Google Scholar 

  • Forno, L. S. (1996). Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55: 259–272.

    PubMed  CAS  Google Scholar 

  • Fu, S., Dean, R., Southan, M., and Truscott, R. (1998). The hydroxyl radical in lens nuclear cataractogenesis. J Biol Chem 273: 28603–28609.

    PubMed  CAS  Google Scholar 

  • Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., Shen, J., Takio, K., and Iwatsubo, T. (2002). alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4: 160–164.

    PubMed  CAS  Google Scholar 

  • Fulton, A. B. (1982). How crowded is the cytoplasm? Cell 30: 345–347.

    PubMed  CAS  Google Scholar 

  • Furesz, S. (1970). Chemical and biological properties of rifampicin. Antibiot Chemother 16: 316–351.

    PubMed  CAS  Google Scholar 

  • Gai, W. P., Power, J. H., Blumbergs, P. C., and Blessing, W. W. (1998). Multiple-system atrophy: a new alpha-synuclein disease? Lancet 352: 547–548.

    PubMed  CAS  Google Scholar 

  • Gai, W. P., Power, J. H., Blumbergs, P. C., Culvenor, J. G., and Jensen, P. H. (1999). Alpha-synuclein immunoisolation of glial inclusions from multiple system atrophy brain tissue reveals multiprotein components. J Neurochem 73: 2093–2100.

    PubMed  CAS  Google Scholar 

  • Galvin, J. E., Lee, V. M., Schmidt, M. L., Tu, P. H., Iwatsubo, T., and Trojanowski, J. Q. (1999). Pathobiology of the Lewy body. Adv Neurol 80: 313–324.

    PubMed  CAS  Google Scholar 

  • Gao, Z., Huang, K., and Xu, H. (2001). Protective effects of flavonoids in the roots of Scutellaria baicalensis Georgi against hydrogen peroxide-induced oxidative stress in HS-SY5Y cells. Pharmacol Res 43: 173–178.

    PubMed  CAS  Google Scholar 

  • Gasser, T. (1998a). Genetics of Parkinson’s disease. Ann Neurol 44: S53–57.

    PubMed  CAS  Google Scholar 

  • Gasser, T. (1998b). Genetics of Parkinson’s disease. Clin Genet 54: 259–265.

    PubMed  CAS  Google Scholar 

  • Gasser, T. (2001). Genetics of Parkinson’s disease. J Neurol 248: 833–840.

    PubMed  CAS  Google Scholar 

  • Gast, K., Damaschun, H., Eckert, K., Schulze-Forster, K., Maurer, H. R., Muller-Frohne, M., Zirwer, D., Czarnecki, J., and Damaschun, G. (1995). Prothymosin alpha: a biologically active protein with random coil conformation. Biochemistry 34: 13211–13218.

    PubMed  CAS  Google Scholar 

  • George, J. M., Jin, H., Woods, W. S., and Clayton, D. F. (1995). Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15: 361–372.

    PubMed  CAS  Google Scholar 

  • Giasson, B. I., Duda, J. E., Murray, I. V., Chen, Q., Souza, J. M., Hurtig, H. I., Ischiropoulos, H., Trojanowski, J. Q., and Lee, V. M. (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290: 985–989.

    PubMed  CAS  Google Scholar 

  • Giasson, B. I., Duda, J. E., Quinn, S. M., Zhang, B., Trojanowski, J. Q., and Lee, V. M. (2002). Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34: 521–533.

    PubMed  CAS  Google Scholar 

  • Giasson, B. I., Uryu, K., Trojanowski, J. Q., and Lee, V. M. (1999). Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 274: 7619–7622.

    PubMed  CAS  Google Scholar 

  • Glaser, C. B., Yamin, G., Uversky, V. N., and Fink, A. L. (2005). Methionine oxidation, alpha-synuclein and Parkinson’s disease. Biochim Biophys Acta 1703: 157–169.

    PubMed  CAS  Google Scholar 

  • Goedert, M., Jakes, R., Spillantini, M. G., Hasegawa, M., Smith, M. J., and Crowther, R. A. (1996). Assembly of microtubuleassociated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383: 550–553.

    PubMed  CAS  Google Scholar 

  • Goedert, M. (1999). Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and alpha-synucleinopathies. Philos Trans R Soc Lond B Biol Sci 354: 1101–1118.

    PubMed  CAS  Google Scholar 

  • Goedert, M. (2001a). Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2: 492–501.

    PubMed  CAS  Google Scholar 

  • Goedert, M. (2001b). Parkinson’s disease and other alpha-synucleinopathies. Clin Chem Lab Med 39: 308–312.

    PubMed  CAS  Google Scholar 

  • Goers, J., Manning-Bog, A. B., McCormack, A. L., Millett, I. S., Doniach, S., Di Monte, D. A., Uversky, V. N., and Fink, A. L. (2003a). Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry 42: 8465–8471.

    PubMed  CAS  Google Scholar 

  • Goers, J., Uversky, V. N., and Fink, A. L. (2003b) Polycation-induced oligomerization and accelerated fibrillation of human alpha-synuclein in vitro. Protein Sci 12: 702–707.

    PubMed  CAS  Google Scholar 

  • Golbe, L. I. (1990). The genetics of Parkinson’s disease: a reconsideration. Neurology 40: 7–14.

    PubMed  Google Scholar 

  • Goldberg, M. S., and Lansbury, P. T., Jr. (2000) Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2: E115–119.

    PubMed  CAS  Google Scholar 

  • Good, P. F., Olanow, C. W., and Perl, D. P. (1992). Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593: 343–346.

    PubMed  CAS  Google Scholar 

  • Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L., and Richardson, R. J. (1998). The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50: 1346–1350.

    PubMed  CAS  Google Scholar 

  • Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L., Kortsha, G. X., Brown, G. G., and Richardson, R. J. (1999a). Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20: 239–247.

    PubMed  CAS  Google Scholar 

  • Gorell, J. M., Rybicki, B. A., Cole Johnson, C., and Peterson, E. L. (1999b) Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology 18: 303–308.

    PubMed  CAS  Google Scholar 

  • Gosavi, N., Lee, H. J., Lee, J. S., Patel, S., and Lee, S. J. (2002). Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. J Biol Chem 277: 48984–48992.

    PubMed  CAS  Google Scholar 

  • Gourie-Devi, M., Ramu, M. G., and Venkataram, B. S. (1991). Treatment of Parkinson’s disease in ‘Ayurveda’ (ancient Indian system of medicine): discussion paper. J R Soc Med 84: 491–492.

    PubMed  CAS  Google Scholar 

  • Greenbaum, E. A., Graves, C. L., Mishizen-Eberz, A. J., Lupoli, M. A., Lynch, D. R., Englander, S. W., Axelsen, P. H., and Giasson, B. I. (2005). The E46K mutation in alpha-synuclein increases amyloid fibril formation. J Biol Chem 280: 7800–7807.

    PubMed  CAS  Google Scholar 

  • Hageman, G., van der Hoek, J., van Hout, M., van der Laan, G., Steur, E. J., de Bruin, W., and Herholz, K. (1999). Parkinsonism, pyramidal signs, polyneuropathy, and cognitive decline after long-term occupational solvent exposure. J Neurol 246: 198–206.

    PubMed  CAS  Google Scholar 

  • Halfter, W., Schurer, B., Yip, J., Yip, L., Tsen, G., Lee, J. A., and Cole, G. J. (1997). Distribution and substrate properties of agrin, a heparan sulfate proteoglycan of developing axonal pathways. J Comp Neurol 383: 1–17.

    PubMed  CAS  Google Scholar 

  • Hamilton, B. A. (2004) alpha-Synuclein A53T substitution associated with Parkinson disease also marks the divergence of Old World and New World primates. Genomics 83: 739–742.

    PubMed  CAS  Google Scholar 

  • Han, H., Weinreb, P. H., and Lansbury, P. T., Jr. (1995). The core Alzheimer’s peptide NAC forms amyloid fibrils which seed and are seeded by beta-amyloid: is NAC a common trigger or target in neurodegenerative disease? Chem Biol 2: 163–169.

    PubMed  CAS  Google Scholar 

  • Hartmann, G., Honikel, K. O., Knusel, F., and Nuesch, J. (1967). The specific inhibition of the DNA-directed RNA synthesis by rifamycin. Biochim Biophys Acta 145: 843–844.

    PubMed  CAS  Google Scholar 

  • Hashimoto, M., Rockenstein, E., Mante, M., Mallory, M., and Masliah, E. (2001). beta-Synuclein inhibits alpha-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 32: 213–223.

    PubMed  CAS  Google Scholar 

  • Hashimoto, M., Yoshimoto, M., Sisk, A., Hsu, L. J., Sundsmo, M., Kittel, A., Saitoh, T., Miller, A., and Masliah, E. (1997). NACP, a synaptic protein involved in Alzheimer’s disease, is differentially regulated during megakaryocyte differentiation. Biochem Biophys Res Commun 237: 611–616.

    PubMed  CAS  Google Scholar 

  • Hemmings, H. C., Jr., Nairn, A. C., Aswad, D. W., and Greengard, P. (1984). DARPP-32, a dopamine-and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus. J Neurosci 4: 99–110.

    PubMed  CAS  Google Scholar 

  • Hertzman, C., Wiens, M., Snow, B., Kelly, S., and Calne, D. (1994). A case-control study of Parkinson’s disease in a horticultural region of British Columbia. Mov Disord 9: 69–75.

    PubMed  CAS  Google Scholar 

  • Hirsch, E. C., Brandel, J. P., Galle, P., Javoy-Agid, F., and Agid, Y. (1991). Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56: 446–451.

    PubMed  CAS  Google Scholar 

  • Hokenson, M. J., Uversky, V. N., Goers, J., Yamin, G., Munishkina, L. A., and Fink, A. L. (2004). Role of individual methionines in the fibrillation of methionine-oxidized alpha-synuclein. Biochemistry 43: 4621–4633.

    PubMed  CAS  Google Scholar 

  • Ikezoe, T., Chen, S. S., Heber, D., Taguchi, H., and Koeffler, H. P. (2001). Baicalin is a major component of PC-SPES which inhibits the proliferation of human cancer cells via apoptosis and cell cycle arrest. Prostate 49: 285–292.

    PubMed  CAS  Google Scholar 

  • Irizarry, M. C., Growdon, W., Gomez-Isla, T., Newell, K., George, J. M., Clayton, D. F., and Hyman, B. T. (1998). Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity. J Neuropathol Exp Neurol 57: 334–337.

    PubMed  CAS  Google Scholar 

  • Ischiropoulos, H. (1998). Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys 356: 1–11.

    PubMed  CAS  Google Scholar 

  • Ischiropoulos, H. (2003a). Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun 305: 776–783.

    PubMed  CAS  Google Scholar 

  • Ischiropoulos, H. (2003b). Biological significance and clinical relevance of nitric oxide-mediated protein modifications. Free Radic Res 37: 15.

    Google Scholar 

  • Ischiropoulos, H. (2003c). Oxidative modifications of alpha-synuclein. Ann N Y Acad Sci 991: 93–100.

    PubMed  CAS  Google Scholar 

  • Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., de Silva, H. A., Kittel, A., and Saitoh, T. (1995a) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14: 467–475.

    PubMed  CAS  Google Scholar 

  • Iwai, A., Yoshimoto, M., Masliah, E., and Saitoh, T. (1995b). Non-A beta component of Alzheimer’s disease amyloid (NAC) is amyloidogenic. Biochemistry 34: 10139–10145.

    PubMed  CAS  Google Scholar 

  • Jakes, R., Spillantini, M. G., and Goedert, M. (1994). Identification of two distinct synucleins from human brain. FEBS Lett 345: 27–32.

    PubMed  CAS  Google Scholar 

  • Jarrett, J. T., and Lansbury, P. T., Jr. (1992). Amyloid fibril formation requires a chemically discriminating nucleation event: studies of an amyloidogenic sequence from the bacterial protein OsmB. Biochemistry 31: 12345–12352.

    PubMed  CAS  Google Scholar 

  • Jarrett, J. T., and Lansbury, P. T., Jr. (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73: 1055–1058.

    PubMed  CAS  Google Scholar 

  • Jensen, P. H., Hojrup, P., Hager, H., Nielsen, M. S., Jacobsen, L., Olesen, O. F., Gliemann, J., and Jakes, R. (1997). Binding of Abeta to alpha-and beta-synucleins: identification of segments in alpha-synuclein/NAC precursor that bind Abeta and NAC. Biochem J 323 (Pt 2): 539–546.

    PubMed  CAS  Google Scholar 

  • Jensen, P. H., Nielsen, M. S., Jakes, R., Dotti, C. G., and Goedert, M. (1998). Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273: 26292–26294.

    PubMed  CAS  Google Scholar 

  • Ji, H., Liu, Y. E., Jia, T., Wang, M., Liu, J., Xiao, G., Joseph, B. K., Rosen, C., and Shi, Y. E. (1997). Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res 57: 759–764.

    PubMed  CAS  Google Scholar 

  • Jo, E., McLaurin, J., Yip, C. M., St George-Hyslop, P., and Fraser, P. E. (2000). alpha-Synuclein membrane interactions and lipid specificity. J Biol Chem 275: 34328–34334.

    PubMed  CAS  Google Scholar 

  • Joseph, J. A., Shukitt-Hale, B., Denisova, N. A., Bielinski, D., Martin, A., McEwen, J. J., and Bickford, P. C. (1999). Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 19: 8114–8121.

    PubMed  CAS  Google Scholar 

  • Kahle, P. J., Neumann, M., Ozmen, L., Muller, V., Jacobsen, H., Spooren, W., Fuss, B., Mallon, B., Macklin, W. B., Fujiwara, H., Hasegawa, M., Iwatsubo, T., Kretzschmar, H. A., and Haass, C. (2002). Hyperphosphorylation and insolubility of alpha-synuclein in transgenic mouse oligodendrocytes. EMBO Rep 3: 583–588.

    PubMed  CAS  Google Scholar 

  • Kanda, S., Bishop, J. F., Eglitis, M. A., Yang, Y., and Mouradian, M. M. (2000). Enhanced vulnerability to oxidative stress by alpha-synuclein mutations and C-terminal truncation. Neuroscience 97: 279–284.

    PubMed  CAS  Google Scholar 

  • Khurana, R., Ionescu-Zanetti, C., Pope, M., Li, J., Nielson, L., Ramirez-Alvarado, M., Regan, L., Fink, A. L., and Carter, S. A. (2003). A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy. Biophys J 85: 1135–1144.

    PubMed  CAS  Google Scholar 

  • Kisilevsky, R. (2000). Review: amyloidogenesis-unquestioned answers and unanswered questions. J Struct Biol 130: 99–108.

    PubMed  CAS  Google Scholar 

  • Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., and Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608.

    PubMed  CAS  Google Scholar 

  • Klawans, H. L., Stein, R. W., Tanner, C. M., and Goetz, C. G. (1982). A pure parkinsonian syndrome following acute carbon monoxide intoxication. Arch Neurol 39: 302–304.

    PubMed  CAS  Google Scholar 

  • Ko, L., Mehta, N. D., Farrer, M., Easson, C., Hussey, J., Yen, S., Hardy, J., and Yen, S. H. (2000). Sensitization of neuronal cells to oxidative stress with mutated human alpha-synuclein. J Neurochem 75: 2546–2554.

    PubMed  CAS  Google Scholar 

  • Kong, S. K., Yim, M. B., Stadtman, E. R., and Chock, P. B. (1996). Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: Lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2(6–20)NH2 peptide. Proc Natl Acad Sci USA 93: 3377–3382.

    PubMed  CAS  Google Scholar 

  • Krishnan, S., Chi, E. Y., Wood, S. J., Kendrick, B. S., Li, C., Garzon-Rodriguez, W., Wypych, J., Randolph, T. W., Narhi, L. O., Biere, A. L., Citron, M., and Carpenter, J. F. (2003). Oxidative dimer formation is the critical rate-limiting step for Parkinson’s disease alpha-synuclein fibrillogenesis. Biochemistry 42: 829–837.

    PubMed  CAS  Google Scholar 

  • Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J. T., Schols, L., and Riess, O. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18: 106–108.

    PubMed  CAS  Google Scholar 

  • Langston, J. W., and Ballard, P. A., Jr. (1983). Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med 309: 310.

    PubMed  CAS  Google Scholar 

  • Langston, J. W., Sastry, S., Chan, P., Forno, L. S., Bolin, L. M., and Di Monte, D. A. (1998) Novel alpha-synuclein-immunoreactive proteins in brain samples from the Contursi kindred, Parkinson’s, and Alzheimer’s disease. Exp Neurol 154: 684–690.

    PubMed  CAS  Google Scholar 

  • Lansbury, P. T., Jr. (1999). Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci USA 96: 3342–3344.

    PubMed  CAS  Google Scholar 

  • Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T., and Lansbury, P. T., Jr. (2002a). Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418: 291.

    PubMed  CAS  Google Scholar 

  • Lashuel, H. A., Petre, B. M., Wall, J., Simon, M., Nowak, R. J., Walz, T., and Lansbury, P. T., Jr. (2002b). Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322: 1089–1102.

    PubMed  CAS  Google Scholar 

  • Lavedan, C. (1998). The synuclein family. Genome Res 8: 871–880.

    PubMed  CAS  Google Scholar 

  • Lavedan, C., Leroy, E., Dehejia, A., Buchholtz, S., Dutra, A., Nussbaum, R. L., and Polymeropoulos, M. H. (1998a). Identification, localization and characterization of the human gamma-synuclein gene. Hum Genet 103: 106–112.

    PubMed  CAS  Google Scholar 

  • Lavedan, C., Leroy, E., Torres, R., Dehejia, A., Dutra, A., Buchholtz, S., Nussbaum, R. L., and Polymeropoulos, M. H. (1998b). Genomic organization and expression of the human beta-synuclein gene (SNCB). Genomics 54: 173–175.

    PubMed  CAS  Google Scholar 

  • LaVoie, M. J., and Hastings, T. G. (1999). Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci 19: 1484–1491.

    PubMed  CAS  Google Scholar 

  • Lebeau, A., Esclaire, F., Rostene, W., and Pelaprat, D. (2001). Baicalein protects cortical neurons from beta-amyloid (25–35) induced toxicity. Neuroreport 12: 2199–2202.

    PubMed  CAS  Google Scholar 

  • Lee, M., Hyun, D., Halliwell, B., and Jenner, P. (2001). Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J Neurochem 76: 998–1009.

    PubMed  CAS  Google Scholar 

  • Lee, H. J., Choi, C., and Lee, S. J. (2002). Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 277: 671–678.

    PubMed  CAS  Google Scholar 

  • Leeuwenburgh, C., Hansen, P., Shaish, A., Holloszy, J. O., and Heinecke, J. W. (1998). Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats. Am J Physiol 274: R453–461.

    PubMed  CAS  Google Scholar 

  • Levine, H., 3rd. (1995). Soluble multimeric Alzheimer beta(1–40) pre-amyloid complexes in dilute solution. Neurobiol Aging 16: 755–764.

    PubMed  CAS  Google Scholar 

  • Levine, R. L., Mosoni, L., Berlett, B. S., and Stadtman, E. R. (1996). Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci USA 93: 15036–15040.

    PubMed  CAS  Google Scholar 

  • Lewy, F. H. (1912). Paralysis Agitans. Pathologische Anatomie. In Handbuch der Neurologie, ed. M. Lewandowski, pp. 920–933. Berlin: Springer.

    Google Scholar 

  • Li, X., Romero, P., Rani, M., Dunker, A. K., and Obradovic, Z. (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Inform Ser Workshop Genome Inform 10: 30–40

    PubMed  CAS  Google Scholar 

  • Li, B. Q., Fu, T., Gong, W. H., Dunlop, N., Kung, H., Yan, Y., Kang, J., and Wang, J. M. (2000). The flavonoid baicalin exhibits anti-inflammatory activity by binding to chemokines. Immunopharmacology 49: 295–306.

    PubMed  CAS  Google Scholar 

  • Li, J., Uversky, V. N., and Fink, A. L. (2001). Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 40: 11604–11613.

    PubMed  CAS  Google Scholar 

  • Li, J., Uversky, V. N., and Fink, A. L. (2002). Conformational behavior of human alpha-synuclein is modulated by familial Parkinson’s disease point mutations A30P and A53T. Neurotoxicology 23: 553–567.

    PubMed  CAS  Google Scholar 

  • Li, J., Zhu, M., Manning-Bog, A. B., Di Monte, D. A., and Fink, A. L. (2004a). Dopamine and L-dopa disaggregate amyloid fibrils: implications for Parkinson’s and Alzheimer’s disease. FASEB J 18: 962–964.

    PubMed  CAS  Google Scholar 

  • Li, J., Zhu, M., Rajamani, S., Uversky, V. N., and Fink, A. L. (2004b). Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem Biol 11: 1513–1521.

    PubMed  CAS  Google Scholar 

  • Lindersson, E., and Jensen, P. H. (2004). Alpha-synuclein binding proteins. In Molecular Mechanisms of Parkinson’s Disease, ed. P. J. Kahle, and C. Haass: Landes Bioscience.

    Google Scholar 

  • Lindersson, E., Lundvig, D., Petersen, C., Madsen, P., Nyengaard, J. R., Hojrup, P., Moos, T., Otzen, D., Gai, W. P., Blumbergs, P. C., and Jensen, P. H. (2005). p25alpha Stimulates alpha-synuclein aggregation and is co-localized with aggregated alpha-synuclein in alpha-synucleinopathies. J Biol Chem 280: 5703–5715.

    PubMed  CAS  Google Scholar 

  • Lindersson, E. K., Hojrup, P., Gai, W. P., Locker, D., Martin, D., and Jensen, P. H. (2004). alpha-Synuclein filaments bind the transcriptional regulator HMGB-1. Neuroreport 15: 2735–2739.

    PubMed  CAS  Google Scholar 

  • Liou, H. H., Tsai, M. C., Chen, C. J., Jeng, J. S., Chang, Y. C., Chen, S. Y., and Chen, R. C. (1997). Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan. Neurology 48: 1583–1588.

    PubMed  CAS  Google Scholar 

  • Lo Bianco, C., Ridet, J. L., Schneider, B. L., Deglon, N., and Aebischer, P. (2002). alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci USA 99: 10813–10818.

    PubMed  Google Scholar 

  • Lomakin, A., Teplow, D. B., Kirschner, D. A., and Benedek, G. B. (1997). Kinetic theory of fibrillogenesis of amyloid beta-protein. Proc Natl Acad Sci USA 94: 7942–7947.

    PubMed  CAS  Google Scholar 

  • Lowe, R., Pountney, D. L., Jensen, P. H., Gai, W. P., and Voelcker, N. H. (2004). Calcium(II) selectively induces alpha-synuclein annular oligomers via interaction with the C-terminal domain. Protein Sci 13: 3245–3252.

    PubMed  CAS  Google Scholar 

  • Lucking, C. B., and Brice, A. (2000). Alpha-synuclein and Parkinson’s disease. Cell Mol Life Sci 57: 1894–1908.

    PubMed  CAS  Google Scholar 

  • Lundvig, D., Lindersson, E., and Jensen, P. H. (2005). Pathogenic effects of alpha-synuclein aggregation. Brain Res Mol Brain Res 134: 3–17.

    PubMed  CAS  Google Scholar 

  • Lyras, L., Perry, R. H., Perry, E. K., Ince, P. G., Jenner, A., Jenner, P., and Halliwell, B. (1998). Oxidative damage to proteins, lipids, and DNA in cortical brain regions from patients with dementia with Lewy bodies. J Neurochem 71: 302–312.

    PubMed  CAS  Google Scholar 

  • MacMillan-Crow, L. A., and Thompson, J. A. (1999). Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant (Y34F) by peroxynitrite. Arch Biochem Biophys 366: 82–88.

    PubMed  CAS  Google Scholar 

  • Maguire-Zeiss, K. A., and Federoff, H. J. (2003). Convergent pathobiologic model of Parkinson’s disease. Ann N Y Acad Sci 991: 152–166.

    PubMed  CAS  Google Scholar 

  • Manning-Bog, A. B., McCormack, A. L., Li, J., Uversky, V. N., Fink, A. L., and Di Monte, D. A. (2002). The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 277: 1641–1644.

    PubMed  CAS  Google Scholar 

  • Marder, K., Logroscino, G., Alfaro, B., Mejia, H., Halim, A., Louis, E., Cote, L., and Mayeux, R. (1998). Environmental risk factors for Parkinson’s disease in an urban multiethnic community. Neurology 50: 279–281.

    PubMed  CAS  Google Scholar 

  • Maries, E., Dass, B., Collier, T. J., Kordower, J. H., and Steece-Collier, K. (2003). The role of alpha-synuclein in Parkinson’s disease: insights from animal models. Nat Rev Neurosci 4: 727–738.

    PubMed  CAS  Google Scholar 

  • Markesbery, W. R., and Carney, J. M. (1999). Oxidative alterations in Alzheimer’s disease. Brain Pathol 9: 133–146.

    PubMed  CAS  Google Scholar 

  • Maroteaux, L., Campanelli, J. T., and Scheller, R. H. (1988). Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8: 2804–2815.

    PubMed  CAS  Google Scholar 

  • Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., Sagara, Y., Sisk, A., and Mucke, L. (2000). Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287: 1265–1269.

    PubMed  CAS  Google Scholar 

  • McCormack, A. L., Thiruchelvam, M., Manning-Bog, A. B., Thiffault, C., Langston, J. W., Cory-Slechta, D. A., and Di Monte, D. A. (2002). Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 10: 119–127.

    PubMed  CAS  Google Scholar 

  • Mcgeer, P. L., Harada, N., Kimura, H., Mcgeer, E. G., and Schulzer, M. (1992). Prevalence of dementia amongst elderly Japanese with leprosy-apparent effect of chronic drug-therapy. Dementia 3: 146–149.

    Google Scholar 

  • McLaurin, J., Franklin, T., Kuhns, W. J., and Fraser, P. E. (1999). A sulfated proteoglycan aggregation factor mediates amyloid-beta peptide fibril formation and neurotoxicity. Amyloid 6: 233–243.

    PubMed  CAS  Google Scholar 

  • McLaurin, J., Yang, D., Yip, C. M., and Fraser, P. E. (2000). Review: modulating factors in amyloid-beta fibril formation. J Struct Biol 130: 259–270.

    PubMed  CAS  Google Scholar 

  • Miller, J. D., Cummings, J., Maresh, G. A., Walker, D. G., Castillo, G. M., Ngo, C., Kimata, K., Kinsella, M. G., Wight, T. N., and Snow, A. D. (1997). Localization of perlecan (or a perlecan-related macromolecule) to isolated microglia in vitro and to microglia/macrophages following infusion of beta-amyloid protein into rodent hippocampus. Glia 21: 228–243.

    PubMed  CAS  Google Scholar 

  • Miller, D. W., Hague, S. M., Clarimon, J., Baptista, M., Gwinn-Hardy, K., Cookson, M. R., and Singleton, A. B. (2004). Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62: 1835–1838.

    PubMed  CAS  Google Scholar 

  • Minton, A. P. (2000a). Effect of a concentrated “inert” macromolecular cosolute on the stability of a globular protein with respect to denaturation by heat and by chaotropes: a statistical-thermodynamic model. Biophys J 78: 101–109.

    PubMed  CAS  Google Scholar 

  • Minton, A. P. (2000b). Implications of macromolecular crowding for protein assembly. Curr Opin Struct Biol 10: 34–39

    PubMed  CAS  Google Scholar 

  • Minton, A. P. (2001). The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276: 10577–10580.

    PubMed  CAS  Google Scholar 

  • Morano, A., Jimenez-Jimenez, F. J., Molina, J. A., and Antolin, M. A. (1994). Risk-factors for Parkinson’s disease: case-control study in the province of Caceres, Spain. Acta Neurol Scand 89: 164–170.

    PubMed  CAS  Google Scholar 

  • Morar, A. S., Olteanu, A., Young, G. B., and Pielak, G. J. (2001) Solvent-induced collapse of alpha-synuclein and acid-denatured cytochrome c. Protein Sci 10: 2195–2199.

    PubMed  CAS  Google Scholar 

  • Moskovitz, J., Jenkins, N. A., Gilbert, D. J., Copeland, N. G., Jursky, F., Weissbach, H., and Brot, N. (1996). Chromosomal localization of the mammalian peptide-methionine sulfoxide reductase gene and its differential expression in various tissues. Proc Natl Acad Sci USA 93: 3205–3208.

    PubMed  CAS  Google Scholar 

  • Munishkina, L. A., Phelan, C., Uversky, V. N., and Fink, A. L. (2003). Conformational behavior and aggregation of alpha-synuclein in organic solvents: modeling the effects of membranes. Biochemistry 42: 2720–2730.

    PubMed  CAS  Google Scholar 

  • Munishkina, L. A., Henriques, J., Uversky, V. N., and Fink, A. L. (2004b).Role of protein-water interactions and electrostatics in alpha-synuclein fibril formation. Biochemistry 43: 3289–3300.

    PubMed  CAS  Google Scholar 

  • Munishkina, L. A., Cooper, E. M., Uversky, V. N., and Fink, A. L. (2004a). The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J Mol Recognit 17: 456–464.

    PubMed  CAS  Google Scholar 

  • Murray, I. V., Giasson, B. I., Quinn, S. M., Koppaka, V., Axelsen, P. H., Ischiropoulos, H., Trojanowski, J. Q., and Lee, V. M. (2003) Role of alpha-synuclein carboxy-terminus on fibril formation in vitro. Biochemistry 42: 8530–8540.

    PubMed  CAS  Google Scholar 

  • Naiki, H., Higuchi, K., Hosokawa, M., and Takeda, T. (1989). Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal Biochem 177: 244–249.

    PubMed  CAS  Google Scholar 

  • Naiki, H., Higuchi, K., Matsushima, K., Shimada, A., Chen, W. H., Hosokawa, M., and Takeda, T. (1990). Fluorometric examination of tissue amyloid fibrils in murine senile amyloidosis: use of the fluorescent indicator, thioflavine T. Lab Invest 62: 768–773.

    PubMed  CAS  Google Scholar 

  • Nakajo, S., Shioda, S., Nakai, Y., and Nakaya, K. (1994). Localization of phosphoneuroprotein 14 (PNP 14) and its mRNA expression in rat brain determined by immunocytochemistry and in situ hybridization. Brain Res Mol Brain Res 27: 81–86.

    PubMed  CAS  Google Scholar 

  • Nakajo, S., Tsukada, K., Kameyama, H., Furuyama, Y., and Nakaya, K. (1996). Distribution of phosphoneuroprotein 14 (PNP 14) in vertebrates: its levels as determined by enzyme immunoassay. Brain Res 741: 180–184.

    PubMed  CAS  Google Scholar 

  • Nakajo, S., Tsukada, K., Omata, K., Nakamura, Y., and Nakaya, K. (1993). A new brain-specific 14-kDa protein is a phosphoprotein. Its complete amino acid sequence and evidence for phosphorylation. Eur J Biochem 217: 1057–1063.

    PubMed  CAS  Google Scholar 

  • Namba, Y., Kawatsu, K., Izumi, S., Ueki, A., and Ikeda, K. (1992). Neurofibrillary tangles and senile plaques in brain of elderly leprosy patients. Lancet 340: 978.

    PubMed  CAS  Google Scholar 

  • Narhi, L., Wood, S. J., Steavenson, S., Jiang, Y., Wu, G. M., Anafi, D., Kaufman, S. A., Martin, F., Sitney, K., Denis, P., Louis, J. C., Wypych, J., Biere, A. L., and Citron, M. (1999). Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 274: 9843–9846.

    PubMed  CAS  Google Scholar 

  • Neumann, M., Kahle, P. J., Giasson, B. I., Ozmen, L., Borroni, E., Spooren, W., Muller, V., Odoy, S., Fujiwara, H., Hasegawa, M., Iwatsubo, T., Trojanowski, J. Q., Kretzschmar, H. A., and Haass, C. (2002). Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies. J Clin Invest 110: 1429–1439.

    PubMed  CAS  Google Scholar 

  • Nielsen, M. S., Vorum, H., Lindersson, E., and Jensen, P. H. (2001). Ca2+ binding to alpha-synuclein regulates ligand binding and oligomerization. J Biol Chem 276: 22680–22684.

    PubMed  CAS  Google Scholar 

  • Ninkina, N. N., Alimova-Kost, M. V., Paterson, J. W., Delaney, L., Cohen, B. B., Imreh, S., Gnuchev, N. V., Davies, A. M., and Buchman, V. L. (1998). Organization, expression and polymorphism of the human persyn gene. Hum Mol Genet 7: 1417–1424.

    PubMed  CAS  Google Scholar 

  • Ninkina, N. N., Privalova, E. M., Pinon, L. G., Davies, A. M., and Buchman, V. L. (1999). Developmentally regulated expression of persyn, a member of the synuclein family, in skin. Exp Cell Res 246: 308–311.

    PubMed  CAS  Google Scholar 

  • Nishie, M., Mori, F., Fujiwara, H., Hasegawa, M., Yoshimoto, M., Iwatsubo, T., Takahashi, H., and Wakabayashi, K. (2004). Accumulation of phosphorylated alpha-synuclein in the brain and peripheral ganglia of patients with multiple system atrophy. Acta Neuropathol (Berl) 107: 292–298.

    CAS  Google Scholar 

  • Norris, E. H., Giasson, B. I., Ischiropoulos, H., and Lee, V. M. (2003). Effects of oxidative and nitrative challenges on alpha-synuclein fibrillogenesis involve distinct mechanisms of protein modifications. J Biol Chem 278: 27230–27240.

    PubMed  CAS  Google Scholar 

  • Okazaki, H., Lipkin, L. E., and Aronson, S. M. (1961). Diffuse intracytoplasmic ganglionic inclusions (Lewy type) associated with progressive dementia and quadriparesis in flexion. J Neuropathol Exp Neurol 20: 237–244.

    PubMed  CAS  Google Scholar 

  • Okochi, M., Walter, J., Koyama, A., Nakajo, S., Baba, M., Iwatsubo, T., Meijer, L., Kahle, P. J., and Haass, C. (2000). Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J Biol Chem 275: 390–397.

    PubMed  CAS  Google Scholar 

  • Olanow, C. W., and Tatton, W. G. (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22: 123–144.

    PubMed  CAS  Google Scholar 

  • Oldfield, C. J., Cheng, Y., Cortese, M. S., Brown, C. J., Uversky, V. N., and Dunker, A. K. (2005). Comparing and combining predictors of mostly disordered proteins. Biochemistry 44: 1989–2000.

    PubMed  CAS  Google Scholar 

  • Orth, M., and Tabrizi, S. J. (2003). Models of Parkinson’s disease. Mov Disord 18: 729–737.

    PubMed  Google Scholar 

  • Paik, S. R., Lee, J. H., Kim, D. H., Chang, C. S., and Kim, J. (1997). Aluminum-induced structural alterations of the precursor of the non-A beta component of Alzheimer’s disease amyloid. Arch Biochem Biophys 344: 325–334.

    PubMed  CAS  Google Scholar 

  • Paik, S. R., Shin, H. J., Lee, J. H., Chang, C. S., and Kim, J. (1999). Copper(II)-induced self-oligomerization of alpha-synuclein. Biochem J 340 (Pt 3): 821–828.

    PubMed  CAS  Google Scholar 

  • Papp, M. I., Kahn, J. E., and Lantos, P. L. (1989). Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94: 79–100.

    PubMed  CAS  Google Scholar 

  • Parkinson, J. (1817) An essay on shaking palsy. London: Sherwood, Neely and Jones.

    Google Scholar 

  • Paxinou, E., Chen, Q., Weisse, M., Giasson, B. I., Norris, E. H., Rueter, S. M., Trojanowski, J. Q., Lee, V. M., and Ischiropoulos, H. (2001). Induction of alpha-synuclein aggregation by intracellular nitrative insult. J Neurosci 21: 8053–8061.

    PubMed  CAS  Google Scholar 

  • Perrin, R. J., Woods, W. S., Clayton, D. F., and George, J. M. (2000). Interaction of human alpha-Synuclein and Parkinson’s disease variants with phospholipids. Structural analysis using site-directed mutagenesis. J Biol Chem 275: 34393–34398.

    PubMed  CAS  Google Scholar 

  • Perry, E. K., Pickering, A. T., Wang, W. W., Houghton, P. J., and Perry, N. S. (1999). Medicinal plants and Alzheimer’s disease: from ethnobotany to phytotherapy. J Pharm Pharmacol 51: 527–534.

    PubMed  CAS  Google Scholar 

  • Pertinhez, T. A., Bouchard, M., Tomlinson, E. J., Wain, R., Ferguson, S. J., Dobson, C. M., and Smith, L. J. (2001). Amyloid fibril formation by a helical cytochrome. FEBS Lett 495: 184–186.

    PubMed  CAS  Google Scholar 

  • Pezzoli, G., Strada, O., Silani, V., Zecchinelli, A., Perbellini, L., Javoy-Agid, F., Ghidoni, P., Motti, E. D., Masini, T., Scarlato, G., Agid, Y., and Hirsch, E. C. (1996). Clinical and pathological features in hydrocarbon-induced parkinsonism. Ann Neurol 40: 922–925.

    PubMed  CAS  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., and Nussbaum, R. L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047.

    PubMed  CAS  Google Scholar 

  • Pountney, D. L., Lowe, R., Quilty, M., Vickers, J. C., Voelcker, N. H., and Gai, W. P. (2004). Annular alpha-synuclein species from purified multiple system atrophy inclusions. J Neurochem 90: 502–512.

    PubMed  CAS  Google Scholar 

  • Pountney, D. L., Voelcker, N. H., and Gai, W. P. (2005). Annular alpha-synuclein oligomers are potentially toxic agents in alpha-synucleinopathy. Hypothesis. Neurotox Res 7: 59–67.

    CAS  Google Scholar 

  • Pronin, A. N., Morris, A. J., Surguchov, A., and Benovic, J. L. (2000). Synucleins are a novel class of substrates for G proteincoupled receptor kinases. J Biol Chem 275: 26515–26522.

    PubMed  CAS  Google Scholar 

  • Ragonese, P., Salemi, G., Morgante, L., Aridon, P., Epifanio, A., Buffa, D., Scoppa, F., and Savettieri, G. (2003). A case-control study on cigarette, alcohol, and coffee consumption preceding Parkinson’s disease. Neuroepidemiology 22: 297–304.

    PubMed  CAS  Google Scholar 

  • Riederer, P., Sofic, E., Rausch, W. D., Schmidt, B., Reynolds, G. P., Jellinger, K., and Youdim, M. B. (1989). Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520.

    PubMed  CAS  Google Scholar 

  • Rochet, J. C., Conway, K. A., and Lansbury, P. T., Jr. (2000). Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse alpha-synuclein. Biochemistry 39: 10619–10626.

    PubMed  CAS  Google Scholar 

  • Romero, P., Obradovic, Z., and Dunker, A. K. (2004). Natively disordered proteins: functions and predictions. Appl Bioinformatics 3: 105–113.

    PubMed  CAS  Google Scholar 

  • Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., and Dunker, A. K. (2001). Sequence complexity of disordered protein. Proteins 42: 38–48.

    PubMed  CAS  Google Scholar 

  • Ross, G. W., Abbott, R. D., Petrovitch, H., Morens, D. M., Grandinetti, A., Tung, K. H., Tanner, C. M., Masaki, K. H., Blanchette, P. L., Curb, J. D., Popper, J. S., and White, L. R. (2000). Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283: 2674–2679.

    PubMed  CAS  Google Scholar 

  • Ross, G. W., and Petrovitch, H. (2001). Current evidence for neuroprotective effects of nicotine and caffeine against Parkinson’s disease. Drugs Aging 18: 797–806.

    PubMed  CAS  Google Scholar 

  • Rybicki, B. A., Johnson, C. C., Uman, J., and Gorell, J. M. (1993). Parkinson’s disease mortality and the industrial use of heavy metals in Michigan. Mov Disord 8: 87–92.

    PubMed  CAS  Google Scholar 

  • Saito, Y., Kawashima, A., Ruberu, N. N., Fujiwara, H., Koyama, S., Sawabe, M., Arai, T., Nagura, H., Yamanouchi, H., Hasegawa, M., Iwatsubo, T., and Murayama, S. (2003). Accumulation of phosphorylated alpha-synuclein in aging human brain. J Neuropathol Exp Neurol 62: 644–654.

    PubMed  CAS  Google Scholar 

  • Schroeter, H., Williams, R. J., Matin, R., Iversen, L., and Rice-Evans, C. A. (2000). Phenolic antioxidants attenuate neuronal cell death following uptake of oxidized low-density lipoprotein. Free Radic Biol Med 29: 1222–1233.

    PubMed  CAS  Google Scholar 

  • Segrest, J. P., De Loof, H., Dohlman, J. G., Brouillette, C. G., and Anantharamaiah, G. M. (1990) Amphipathic helix motif: classes and properties. Proteins 8: 103–117.

    PubMed  CAS  Google Scholar 

  • Segrest, J. P., Jones, M. K., De Loof, H., Brouillette, C. G., Venkatachalapathi, Y. V., and Anantharamaiah, G. M. (1992). The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res 33: 141–166.

    PubMed  CAS  Google Scholar 

  • Seidler, A., Hellenbrand, W., Robra, B. P., Vieregge, P., Nischan, P., Joerg, J., Oertel, W. H., Ulm, G., and Schneider, E. (1996). Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology 46: 1275–1284.

    PubMed  CAS  Google Scholar 

  • Semchuk, K. M., Love, E. J., and Lee, R. G. (1992). Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology 42: 1328–1335.

    PubMed  CAS  Google Scholar 

  • Semchuk, K. M., Love, E. J., and Lee, R. G. (1993). Parkinson’s disease: a test of the multifactorial etiologic hypothesis. Neurology 43: 1173–1180.

    PubMed  CAS  Google Scholar 

  • Serpell, L. C., Berriman, J., Jakes, R., Goedert, M., and Crowther, R. A. (2000). Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci USA 97: 4897–4902.

    PubMed  CAS  Google Scholar 

  • Sherer, T. B., Kim, J. H., Betarbet, R., and Greenamyre, J. T. (2003). Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179: 9–16.

    PubMed  CAS  Google Scholar 

  • Shibayama-Imazu, T., Okahashi, I., Omata, K., Nakajo, S., Ochiai, H., Nakai, Y., Hama, T., Nakamura, Y., and Nakaya, K. (1993). Cell and tissue distribution and developmental change of neuron specific 14 kDa protein (phosphoneuroprotein 14). Brain Res 622: 17–25.

    PubMed  CAS  Google Scholar 

  • Shieh, D. E., Liu, L. T., and Lin, C. C. (2000). Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res 20: 2861–2865.

    PubMed  CAS  Google Scholar 

  • Shtilerman, M. D., Ding, T. T., and Lansbury, P. T., Jr. (2002). Molecular crowding accelerates fibrillization of alpha-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson’s disease? Biochemistry 41: 3855–3860.

    PubMed  CAS  Google Scholar 

  • Singleton, A., Gwinn-Hardy, K., Sharabi, Y., Li, S. T., Holmes, C., Dendi, R., Hardy, J., Crawley, A., and Goldstein, D. S. (2004). Association between cardiac denervation and parkinsonism caused by alpha-synuclein gene triplication. Brain 127: 768–772.

    PubMed  Google Scholar 

  • Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M. R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J., and Gwinn-Hardy, K. (2003). alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302: 841.

    PubMed  CAS  Google Scholar 

  • Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., and Markesbery, W. R. (1991). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88: 10540–10543.

    PubMed  CAS  Google Scholar 

  • Souza, J. M., Giasson, B. I., Chen, Q., Lee, V. M., and Ischiropoulos, H. (2000). Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 275: 18344–18349.

    CAS  Google Scholar 

  • Spencer, J. P., Jenner, A., Butler, J., Aruoma, O. I., Dexter, D. T., Jenner, P., and Halliwell, B. (1996). Evaluation of the prooxidant and antioxidant actions of L-DOPA and dopamine in vitro: implications for Parkinson’s disease. Free Radic Res 24: 95–105.

    PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., and Goedert, M. (1997) Alpha-synuclein in Lewy bodies. Nature 388: 839–840.

    PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Crowther, R. A., Jakes, R., Cairns, N. J., Lantos, P. L., and Goedert, M. (1998a). Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251: 205–208.

    PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., and Goedert, M. (1998b). alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95: 6469–6473.

    PubMed  CAS  Google Scholar 

  • Stachowiak, O., Dolder, M., Wallimann, T., and Richter, C. (1998). Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J Biol Chem 273: 16694–16699.

    PubMed  CAS  Google Scholar 

  • Stadtman, E. R. (1993). Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metalcatalyzed reactions. Annu Rev Biochem 62: 797–821.

    PubMed  CAS  Google Scholar 

  • Stadtman, E. R., Oliver, C. N., Starke-Reed, P. E., and Rhee, S. G. (1993). Age-related oxidation reaction in proteins. Toxicol Ind Health 9: 187–196.

    PubMed  CAS  Google Scholar 

  • Sun, H., Gao, J., Ferrington, D. A., Biesiada, H., Williams, T. D., and Squier, T. C. (1999). Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase. Biochemistry 38: 105–112.

    PubMed  CAS  Google Scholar 

  • Sveinbjornsdottir, S., Hicks, A. A., Jonsson, T., Petursson, H., Gugmundsson, G., Frigge, M. L., Kong, A., Gulcher, J. R., and Stefansson, K. (2000) Familial aggregation of Parkinson’s disease in Iceland. N Engl J Med 343: 1765–1770.

    PubMed  CAS  Google Scholar 

  • Syme, C. D., Blanch, E. W., Holt, C., Jakes, R., Goedert, M., Hecht, L., and Barron, L. D. (2002). A Raman optical activity study of rheomorphism in caseins, synucleins and tau. New insight into the structure and behaviour of natively unfolded proteins. Eur J Biochem 269: 148–156.

    PubMed  CAS  Google Scholar 

  • Takahashi, M., Kanuka, H., Fujiwara, H., Koyama, A., Hasegawa, M., Miura, M., and Iwatsubo, T. (2003). Phosphorylation of alpha-synuclein characteristic of synucleinopathy lesions is recapitulated in alpha-synuclein transgenic Drosophila. Neurosci Lett 336: 155–158.

    PubMed  CAS  Google Scholar 

  • Takeda, A., Mallory, M., Sundsmo, M., Honer, W., Hansen, L., and Masliah, E. (1998). Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders. Am J Pathol 152: 367–372.

    PubMed  CAS  Google Scholar 

  • Tanner, C. M. (1989). The role of environmental toxins in the etiology of Parkinson’s disease. Trends Neurosci 12: 49–54.

    PubMed  CAS  Google Scholar 

  • Tanner, C. M., Chen, B., Wang, W., Peng, M., Liu, Z., Liang, X., Kao, L. C., Gilley, D. W., Goetz, C. G., and Schoenberg, B. S. (1989). Environmental factors and Parkinson’s disease: a case-control study in China. Neurology 39: 660–664.

    PubMed  CAS  Google Scholar 

  • Tanner, C. M., Ottman, R., Goldman, S. M., Ellenberg, J., Chan, P., Mayeux, R., and Langston, J. W. (1999). Parkinson disease in twins: an etiologic study. JAMA 281: 341–346.

    PubMed  CAS  Google Scholar 

  • Tieu, K., Ischiropoulos, H., and Przedborski, S. (2003). Nitric oxide and reactive oxygen species in Parkinson’s disease. IUBMB Life 55: 329–335.

    PubMed  CAS  Google Scholar 

  • Tobe, T., Nakajo, S., Tanaka, A., Mitoya, A., Omata, K., Nakaya, K., Tomita, M., and Nakamura, Y. (1992). Cloning and characterization of the cDNA encoding a novel brain-specific 14-kDa protein. J Neurochem 59: 1624–1629.

    PubMed  CAS  Google Scholar 

  • Tomiyama, T., Asano, S., Suwa, Y., Morita, T., Kataoka, K., Mori, H., and Endo, N. (1994). Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem Biophys Res Commun 204: 76–83.

    PubMed  CAS  Google Scholar 

  • Tomiyama, T., Kaneko, H., Kataoka, K., Asano, S., and Endo, N. (1997). Rifampicin inhibits the toxicity of pre-aggregated amyloid peptides by binding to peptide fibrils and preventing amyloid-cell interaction. Biochem J 322 (Pt 3): 859–865.

    PubMed  CAS  Google Scholar 

  • Tomiyama, T., Shoji, A., Kataoka, K., Suwa, Y., Asano, S., Kaneko, H., and Endo, N. (1996). Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin. Its possible function as a hydroxyl radical scavenger. J Biol Chem 271: 6839–6844.

    PubMed  CAS  Google Scholar 

  • Tompa, P. (2002). Intrinsically unstructured proteins. Trends Biochem Sci 27: 527–533.

    PubMed  CAS  Google Scholar 

  • Trojanowski, J. Q. (2003). Rotenone neurotoxicity: a new window on environmental causes of Parkinson’s disease and related brain amyloidoses. Exp Neurol 179: 6–8.

    PubMed  Google Scholar 

  • Trojanowski, J. Q., Goedert, M., Iwatsubo, T., and Lee, V. M. (1998). Fatal attractions: abnormal protein aggregation and neuron death in Parkinson’s disease and Lewy body dementia. Cell Death Differ 5: 832–837.

    PubMed  CAS  Google Scholar 

  • Trojanowski, J. Q., and Lee, V. M. (2003). Parkinson’s disease and related alpha-synucleinopathies are brain amyloidoses. Ann N Y Acad Sci 991: 107–110.

    PubMed  CAS  Google Scholar 

  • Tsen, G., Halfter, W., Kroger, S., and Cole, G. J. (1995). Agrin is a heparan sulfate proteoglycan. J Biol Chem 270: 3392–3399.

    PubMed  CAS  Google Scholar 

  • Ueda, K., Fukushima, H., Masliah, E., Xia, Y., Iwai, A., Yoshimoto, M., Otero, D. A., Kondo, J., Ihara, Y., and Saitoh, T. (1993). Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90: 11282–11286.

    PubMed  CAS  Google Scholar 

  • Uitti, R. J., Snow, B. J., Shinotoh, H., Vingerhoets, F. J., Hayward, M., Hashimoto, S., Richmond, J., Markey, S. P., Markey, C. J., and Calne, D. B. (1994). Parkinsonism induced by solvent abuse. Ann Neurol 35: 616–619.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N. (1993) Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry 32: 13288–13298.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N., Gillespie, J. R., and Fink, A. L. (2000). Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41: 415–427.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N., Lee, H. J., Li, J., Fink, A. L., and Lee, S. J. (2001a). Stabilization of partially folded conformation during alpha-synuclein oligomerization in both purified and cytosolic preparations. J Biol Chem 276: 43495–43498.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N., Li, J., and Fink, A. L. (2001b). Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276: 10737–10744.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N., Li, J., and Fink, A. L. (2001c). Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276: 44284–44296.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N., Li, J., and Fink, A. L. (2001d). Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett 500: 105–108.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N. (2002a). Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11: 739–756.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N. (2002b). What does it mean to be natively unfolded? Eur J Biochem 269: 2–12.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N., and Fink, A. L. (2002a). Amino acid determinants of alpha-synuclein aggregation: putting together pieces of the puzzle. FEBS Lett 522: 9–13.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N., and Fink, A. L. (2002b). Biophysical properties of human alpha-synuclein and its role in Parkinson’s disease. In Recent Research Developments in Proteins, ed. S. G. Pandalai, pp. 153–186. Kerala, India: Transworld Research Network.

    Google Scholar 

  • Uversky, V. N., E, M. C., Bower, K. S., Li, J., and Fink, A. L. (2002a). Accelerated alpha-synuclein fibrillation in crowded milieu. FEBS Lett 515: 99–103.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N., Li, J., Souillac, P., Millett, I. S., Doniach, S., Jakes, R., Goedert, M., and Fink, A. L. (2002c). Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta-and gamma-synucleins. J Biol Chem 277: 11970–11978.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N. (2003a). Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol Life Sci 60: 1852–1871.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N. (2003b). A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 21: 211–234.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N. (2004). Neurotoxicant-induced animal models of Parkinson’s disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res 318: 225–241.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N., and Fink, A. L. (2004). Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698: 131–153.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N., Yamin, G., Munishkina, L. A., Karymov, M. A., Millett, I. S., Doniach, S., Lyubchenko, Y. L., and Fink, A. L. (2005) Effects of nitration on the structure and aggregation of alpha-synuclein. Brain Res Mol Brain Res 134: 84–102.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N., Li, J., Bower, K., and Fink, A. L. (2002b). Synergistic effects of pesticides and metals on the fibrillation of alpha-synuclein: implications for Parkinson’s disease. Neurotoxicology 23: 527–536.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N., Yamin, G., Souillac, P. O., Goers, J., Glaser, C. B., and Fink, A. L. (2002d). Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro. FEBS Lett 517: 239–244.

    PubMed  CAS  Google Scholar 

  • van der Putten, H., Wiederhold, K. H., Probst, A., Barbieri, S., Mistl, C., Danner, S., Kauffmann, S., Hofele, K., Spooren, W. P., Ruegg, M. A., Lin, S., Caroni, P., Sommer, B., Tolnay, M., and Bilbe, G. (2000). Neuropathology in mice expressing human alpha-synuclein. J Neurosci 20: 6021–6029.

    PubMed  Google Scholar 

  • Vanacore, N., Nappo, A., Gentile, M., Brustolin, A., Palange, S., Liberati, A., Di Rezze, S., Caldora, G., Gasparini, M., Benedetti, F., Bonifati, V., Forastiere, F., Quercia, A., and Meco, G. (2002). Evaluation of risk of Parkinson’s disease in a cohort of licensed pesticide users. Neurol Sci 23Suppl 2: S119–120.

    PubMed  Google Scholar 

  • Verbeek, M. M., Otte-Holler, I., van den Born, J., van den Heuvel, L. P., David, G., Wesseling, P., and de Waal, R. M. (1999).. Agrin is a major heparan sulfate proteoglycan accumulating in Alzheimer’s disease brain. Am J Pathol 155: 2115–2125.

    PubMed  CAS  Google Scholar 

  • Vila, M., Vukosavic, S., Jackson-Lewis, V., Neystat, M., Jakowec, M., and Przedborski, S. (2000). Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 74: 721–729.

    PubMed  CAS  Google Scholar 

  • Vogt, W. (1995). Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18: 93–105.

    PubMed  CAS  Google Scholar 

  • Volles, M. J., and Lansbury, P. T., Jr. (2002). Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41: 4595–4602.

    PubMed  CAS  Google Scholar 

  • Volles, M. J., and Lansbury, P. T., Jr. (2003). Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry 42: 7871–7878.

    PubMed  CAS  Google Scholar 

  • Wakabayashi, K., Matsumoto, K., Takayama, K., Yoshimoto, M., and Takahashi, H. (1997). NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson’s disease. Neurosci Lett 239: 45–48.

    PubMed  CAS  Google Scholar 

  • Wakabayashi, K., Yoshimoto, M., Tsuji, S., and Takahashi, H. (1998). Alpha-synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci Lett 249: 180–182.

    PubMed  CAS  Google Scholar 

  • Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., and Lansbury, P. T., Jr. (1996). NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35: 13709–13715.

    PubMed  CAS  Google Scholar 

  • Witko-Sarsat, V., Friedlander, M., Nguyen Khoa, T., Capeillere-Blandin, C., Nguyen, A. T., Canteloup, S., Dayer, J. M., Jungers, P., Drueke, T., and Descamps-Latscha, B. (1998a). Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol 161: 2524–2532.

    PubMed  CAS  Google Scholar 

  • Witko-Sarsat, V., Khoa, T. N., Jungers, P., Drueke, T., and Descamps-Latscha, B. (1998b). Advanced oxidation protein products: oxidative stress markers and mediators of inflammation in uremia. Adv Nephrol Necker Hosp 28: 321–341.

    PubMed  CAS  Google Scholar 

  • Wood, N. W. (1998). Genetic risk factors in Parkinson’s disease. Ann Neurol 44: S58–62.

    PubMed  CAS  Google Scholar 

  • Wood, S. J., Wypych, J., Steavenson, S., Louis, J. C., Citron, M., and Biere, A. L. (1999). alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem 274: 19509–19512.

    PubMed  CAS  Google Scholar 

  • Wright, P. E., and Dyson, H. J. (1999). Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293: 321–331.

    PubMed  CAS  Google Scholar 

  • Wu, J. A., Attele, A. S., Zhang, L., and Yuan, C. S. (2001). Anti-HIV activity of medicinal herbs: usage and potential development. Am J Chin Med 29: 69–81.

    PubMed  CAS  Google Scholar 

  • Xu, J., Kao, S. Y., Lee, F. J., Song, W., Jin, L. W., and Yankner, B. A. (2002). Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8: 600–606.

    PubMed  CAS  Google Scholar 

  • Yamin, G., Glaser, C. B., Uversky, V. N., and Fink, A. L. (2003a). Certain metals trigger fibrillation of methionine-oxidized alpha-synuclein. J Biol Chem 278: 27630–27635.

    PubMed  CAS  Google Scholar 

  • Yamin, G., Uversky, V. N., and Fink, A. L. (2003b). Nitration inhibits fibrillation of human alpha-synuclein in vitro by formation of soluble oligomers. FEBS Lett 542: 147–152.

    PubMed  CAS  Google Scholar 

  • Yamin, G., Munishkina, L. A., Karymov, M. A., Lyubchenko, Y. L., Uversky, V. N., and Fink, A. L. (2005). Forcing the non-amyloidogenic beta-synuclein to fibrillate. Biochemistry 44: 9096–9107.

    PubMed  CAS  Google Scholar 

  • Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., and Somero, G. N. (1982). Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222.

    PubMed  CAS  Google Scholar 

  • Yasui, M., Kihira, T., and Ota, K. (1992). Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology 13: 593–600.

    PubMed  CAS  Google Scholar 

  • Yoshimoto, M., Iwai, A., Kang, D., Otero, D. A., Xia, Y., and Saitoh, T. (1995). NACP, the precursor protein of the non-amyloid beta/A4 protein (A beta) component of Alzheimer disease amyloid, binds A beta and stimulates A beta aggregation. Proc Natl Acad Sci USA 92: 9141–9145.

    PubMed  CAS  Google Scholar 

  • Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares, B., Llorens, V., Gomez Tortosa, E., del Ser, T., Munoz, D. G., and de Yebenes, J. G. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55: 164–173.

    PubMed  CAS  Google Scholar 

  • Zayed, J., Ducic, S., Campanella, G., Panisset, J. C., Andre, P., Masson, H., and Roy, M. (1990). Environmental factors in the etiology of Parkinson’s disease. Can J Neurol Sci 17: 286–291.

    PubMed  CAS  Google Scholar 

  • Zhou, W., Hurlbert, M. S., Schaack, J., Prasad, K. N., and Freed, C. R. (2000). Overexpression of human alpha-synuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon-derived cells. Brain Res 866: 33–43.

    PubMed  CAS  Google Scholar 

  • Zhu, M., Rajamani, S., Kaylor, J., Han, S., Zhou, F., and Fink, A. L. (2004). The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J Biol Chem 279: 26846–26857.

    PubMed  CAS  Google Scholar 

  • Zimmerman, S. B., and Trach, S. O. (1991). Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222: 599–620.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Uversky, V.N. (2007). α-Synuclein Aggregation and Parkinson’s Disease. In: Uversky, V.N., Fink, A.L. (eds) Protein Misfolding, Aggregation, and Conformational Diseases. Protein Reviews, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36534-3_4

Download citation

Publish with us

Policies and ethics