Skip to main content

Papillomavirus E5 Proteins

  • Chapter
Book cover The Papillomaviruses
  • 708 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, J.L., Briggs, M.W., and McCance, D.J. (2000). A mutagenic analysis of the E5 protein of human papillomavirus type 16 reveals that E5 binding to the vacuolar H+-ATPase is not sufficient for biological activity, using mammalian and yeast expression systems. Virology 272:315–325.

    PubMed  CAS  Google Scholar 

  • Adduci, A.J., and Schlegel, R. (1999). The transmembrane domain of the E5 oncoprotein contains functionally discrete helical faces. J. Biol. Chem. 274:10249–10258.

    PubMed  CAS  Google Scholar 

  • Andresson, T., Sparkowski, J., Goldstein, D.J., and Schlegel, R. (1995). Vacuolar H+-ATPase mutants transform cells and define a binding site for the papillomavirus E5 oncoprotein. J. Biol. Chem. 270:6830–6837.

    PubMed  CAS  Google Scholar 

  • Araibi, E.H., Marchetti, B., Ashrafi, G.H., and Campo, M.S. (2004). Downregulation of major histocompatibility complex class I in bovine papillomas. J. Gen. Virol. 85:2809–2814.

    PubMed  CAS  Google Scholar 

  • Ashby, A.D.M., Meagher, L., Campo, M.S., and Finbow, M.E. (2001). E5 transforming proteins of papillomaviruses do not disturb the activity of the vacuolar H+-ATPase. J. Gen. Virol. 82:2353–2362.

    PubMed  CAS  Google Scholar 

  • Ashrafi, G.H., Haghshenas, M., Marchetti, B., and Campo, M.S. (2006). E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int. J. Cancer 119:2105–2112.

    PubMed  CAS  Google Scholar 

  • Ashrafi, G.H., Haghshenas, M.R, Marchetti, B., O’Brien, P.M., and Campo, M.S. (2005). E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I Int. J. Cancer 113:276–283.

    CAS  Google Scholar 

  • Ashrafi, G.H., Pitts, J.D., Faccini, A., McLean, P., O’Brien, P.M., Finbow, M.E., and Campo, M.S. (2000). Binding of bovine papillomavirus type 4 E8 to ductin (16K proteolipid), down-regulation of gap junction intercellular communication and full cell transformation are independent events. J. Gen. Virol. 81:689–694.

    PubMed  CAS  Google Scholar 

  • Ashrafi, G.H., Tsirimonaki, E., Marchetti, B., O’Brien, P.M., Sibbet, G.J., Andrew, L., and Campo, M.S. (2002). Down-regulation of MHC class I by bovine papillomavirus E5 oncoproteins. Oncogene 21:248–259.

    PubMed  CAS  Google Scholar 

  • Auvinen, E., Alonso, A., and Auvinen, P. (2004). Human papillomavirus type 16 E5 protein colocalizes with the antiapoptotic Bcl-2 protein. Arch. Virol. 149:1745–1759.

    PubMed  CAS  Google Scholar 

  • Bergman, P., Ustav, M., Sedman, J., Moreno-Lopez, J., Vennstrom, B., and Pettersson, U. (1988). The E5 gene of bovine papillomavirus type 1 is sufficient for complete oncogenic transformation of mouse fibroblasts. Oncogene 2:453–459.

    PubMed  CAS  Google Scholar 

  • Bible, J.M., Mant, C., Best, J.M., Kell, B., Starkey, W.G., Raju, K.S., Seed, P., Biswas, C., Muir, P., Banatvala, J.E., and Cason, J. (2000). Cervical lesions are associated with human papillomavirus type 16 intratypic variants that have high transcriptional activity and increased usage of common mammalian codons. J. Gen. Virol. 8:1517–1527.

    Google Scholar 

  • Bohl, J., Hull, B., and Vande Pol, S.B. (2001). Cooperative transformation and coexpression of bovine papillomavirus type 1 E5 and E7 proteins. J. Virol. 75:513–521.

    PubMed  CAS  Google Scholar 

  • Borzacchiello, G., Iovane, G., Marcante, M.L., Poggiali, F., Roperto, F., Roperto, S., and Venuti, A. (2003). Presence of bovine papillomavirus type 2 DNA and expression of the viral oncoprotein E5 in naturally occurring urinary bladder tumours in cows. J. Gen. Virol. 84:2921–2926.

    PubMed  CAS  Google Scholar 

  • Borzacchiello, G., Russo, V., Gentile, F., Roperto, F., Venuti, A., Nitsch, L., Campo, M.S., and Roperto, S. (2006). Bovine papillomavirus E5 oncoprotein binds to the activated form of the platelet-derived growth factor beta receptor in naturally occurring bovine urinary blader tumours. Oncogene 25:1251–1260.

    PubMed  CAS  Google Scholar 

  • Bouvard, V., Matlashewski, G., Gu, Z.-M., Storey, A., and Banks, L. (1994). The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increases viral gene expression. Virology 203:73–80.

    PubMed  CAS  Google Scholar 

  • Bravo, I.G., and Alonso, A. (2004). Mucosal human papillomaviruses encode four different E5 proteins whose chemistry and phylogeny correlate with malignant or benign growth. J. Virol. 78:13613–13626.

    PubMed  CAS  Google Scholar 

  • Bravo, I.G., Crusius, K., and Alonso, A. (2005). The E5 protein of the human papillomavirus type 16 modulates composition and dynamics of membrane lipids in keratinocytes. Arch. Virol. 150:231–246.

    PubMed  CAS  Google Scholar 

  • Briggs, M.W., Adam, J.L., and McCance, D.J. (2001). The human papillomavirus type 16 E5 protein alters vacuolar H+-ATPase function and stability in Saccharomyces cerevisiae. Virology 280:169–175.

    PubMed  CAS  Google Scholar 

  • Burkhardt, A., DiMaio, D., and Schlegel, R. (1987). Genetic and biochemical definition of the bovine papillomavirus E5 transforming protein. EMBO J. 6(8):2381–2385.

    PubMed  CAS  Google Scholar 

  • Burkhardt, A., Willingham, M., Gay, C., Jeang, K.-T., and Schlegel, R. (1989). The E5 oncoprotein of bovine papillomavirus is oriented asymmetrically in Golgi and plasma membranes. Virology 170:334–339.

    PubMed  CAS  Google Scholar 

  • Burnett, S., Jareborg, N., and DiMaio, D. (1992). Localization of bovine papillomavirus type 1 E5 protein to transformed basal keratinocytes and permissive differentiated cells in fibropapilloma tissue. Proc. Natl. Acad. Sci.USA 89(12):5665–5669.

    PubMed  CAS  Google Scholar 

  • Cartin, W., and Alonso, A. (2003). The human papillomavirus HPV2a E5 protein localizes to the Golgi apparatus and modulates signal transduction. Virology 314:572–579.

    PubMed  CAS  Google Scholar 

  • Chang, J.-L., Tsao, Y.-P., Liu, D.-W., Huang, S.-J., Lee, W.-H., and Chen, S.-L. (2000). The expression of HPV-16 E5 protein in squamous neoplastic changes in the uterine cervix. J. Biomed. Sci. 8:206–213.

    Google Scholar 

  • Chen, S.L., Huang, C.H., Tsai, T.C., Lu, K.Y., and Tsao, Y.P. (1996a). The regulation mechanism of c-jun and junB by human papillomavirus type 16 E5 oncoprotein. Arch. Virol. 141:791–800.

    CAS  Google Scholar 

  • Chen, S.L., and Mounts, P. (1990). Transforming activity of E5a protein of human papillomavirus type 6 in NIH 3T3 and C127 cells. J. Virol. 64:3226–3233.

    PubMed  CAS  Google Scholar 

  • Chen, S.-L., Tsai, T.-C., Han, C.-P., and Tsao, Y.-P. (1996b). Mutational analysis of human papillomavirus type 11 E5a oncoprotein. J. Virol. 70:3502–3508.

    CAS  Google Scholar 

  • Chen, Y.F., Lin, C.W., Tsao, Y.P., and Chen, S.L. (2004). Cytotoxic-T-lymphocyte human papillomavirus type 16 E5 peptide with CpG-oligodeoxynucleotide can eliminate tumor growth in C57BL/6 mice. J. Virol. 78:1333–1343.

    PubMed  CAS  Google Scholar 

  • Cohen, B.D., Goldstein, D.J., Rutledge, L., Vass, W.C., Lowy, D.R., Schlegel, R., and Schiller, J.T. (1993). Transformation-specific interaction of the bovine papillomavirus E5 oncoprotein with the platelet-derived growth factor receptor transmembrane domain and the epidermal growth factor receptor cytoplasmic domain. J. Virol. 67:5303–5311.

    PubMed  CAS  Google Scholar 

  • Conrad, M., Bubb, V.J., and Schlegel, R. (1993). The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J. Virol. 67:6170–6178.

    PubMed  CAS  Google Scholar 

  • Conrad, M., Goldstein, D., Andresson, T., and Schlegel, R. (1994). The E5 protein of HPV-6, but not HPV-16, associates efficiently with cellular growth factor receptors. Virology 200:796–800.

    PubMed  CAS  Google Scholar 

  • Conrad-Stoppler, M., Straight, S.W., Tsao, G., Schlegel, R., and McCance, D.J. (1996). The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA. Virology 223:251–254.

    Google Scholar 

  • Constantinescu, S.N., Liu, X., Beyer, W., Fallon, A., Shekar, S., Henis, Y.I., Smith, S.O., and Lodish, H.F. (1999). Activation of the erythropoietin receptor by the gp55-P viral envelope protein is determined by a single amino acid in its transmembrane domain. EMBO J. 18:3334–3347.

    PubMed  CAS  Google Scholar 

  • Crusius, K., Auvinen, E., and Alonso, A. (1997). Enhancement of EGF-and PMA-mediated MAP kinase activation in cells expressing the human papillomavirus type 16 E5 protein. Oncogene 15:1437–1444.

    PubMed  CAS  Google Scholar 

  • Crusius, K., Auvinen, E., Steuer, B., Gaissert, H., and Alonso, A. (1998). The human papillomavirus type 16 E5-protein modulates ligand-dependent activation of the EGF receptor family in the human epithelial cell line HaCaT. Exp. Cell Res. 241: 76–83.

    PubMed  CAS  Google Scholar 

  • Crusius, K., Kaszkin, M., Kinzel, V., and Alonso, A. (1999). The human papillomavirus type 16 E5 protein modulates phospholipase C–1 activity and phosphatidyl inositol turnover in mouse fibroblasts. Oncogene 18:6714–6718.

    PubMed  CAS  Google Scholar 

  • Crusius, K., Rodriguez, I., and Alonso, A. (2000). The human papillomavirus type 16 E5 protein modulates ERK1/2 and p38 MAP kinase activation by an EGFR-independent process in stressed human keratinocytes. Virus Genes 20:65–69.

    PubMed  CAS  Google Scholar 

  • DiMaio, D., Guralski, D., and Schiller, J.T. (1986). Translation of open reading frame E5 of bovine papillomavirus is required for its transforming activity. Proc. Natl. Acad. Sci.USA 83(6):1797–801.

    PubMed  CAS  Google Scholar 

  • Disbrow, G.L., Hanover, J.A., and Schlegel, R. (2005). Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J. Virol. 79:5839–5846.

    PubMed  CAS  Google Scholar 

  • Drummond-Barbosa, D.A., Vaillancourt, R.R., Kazlauskas, A., and DiMaio, D. (1995). Ligand-independent activation of the platelet-derived growth factor beta receptor: requirements for bovine papillomavirus E5-induced mitogenic signaling. Mol. Cell. Biol. 15(5):2570–2581.

    PubMed  CAS  Google Scholar 

  • Faccini, A.M., Cairney, M., Ashrafi, G.H., Finbow, M.E., Campo, M.S., and Pitts, J.D. (1996). The bovine papillomavirus type 4 E8 protein binds to ductin and causes loss of gap junctional intercellular communication in primary fibroblasts. J. Virol. 70:9041–9045.

    PubMed  CAS  Google Scholar 

  • Fehrmann, F., Klumpp, D.J., and Laimins, L.A. (2003). Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J. Virol. 77:2819–2831.

    PubMed  CAS  Google Scholar 

  • Finbow, M.E., Goodwin, S.F., Meagher, L., Lane, N.J., Keen, J., Findlay, J.B., and Kaiser, K. (1994). Evidence that the 16 kDa proteolipid (subunit c) of the vacuolar H(+)-ATPase and ductin from gap junctions are the same polypeptide in Drosophila and Manduca: molecular cloning of the Vha16k gene from Drosophila. J. Cell Sci. 107:1817–1824.

    PubMed  CAS  Google Scholar 

  • Freeman-Cook, L., Dixon, A.M., Frank, J.B., Xia, Y., Ely, L., Gerstein, M., Engelman, D.M., and DiMaio, D. (2004). Selection and characterization of small random transmembrane proteins that bind and activate the platelet-derived growth factor receptor. J. Mol. Biol. 338:907–920.

    PubMed  CAS  Google Scholar 

  • Freeman-Cook, L.L., and DiMaio, D. (2005). Modulation of cell function by small transmembrane proteins modeled on the bovine papillomavirus E5 protein. Oncogene 24:7756–7762.

    PubMed  CAS  Google Scholar 

  • Freeman-Cook, L.L., Edwards, A.P.B., Dixon, A.M., Yates, K.E., Ely, L., Engelman, D.M., and DiMaio, D. (2005). Specific locations of hydrophilic amino acids in constructed transmembrane ligands of the platelet-derived growth factor receptor. J. Mol. Biol. 345:907–921.

    PubMed  CAS  Google Scholar 

  • Genther, S.M., Sterling, S., Duensing, S., Munger, K., Sattler, C., and Lambert, P.F. (2003). Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J. Virol. 77:2832–2842.

    PubMed  CAS  Google Scholar 

  • Genther-Williams, S.M., Disbrow, G.L., Schlegel, R., Lee, D., Threadgill, D.W., and Lambert, P.F. (2005). Requirement of epidermal growth factor receptor for hyperplasia induced by E5, a high-risk human papillomavirus oncogene. Cancer Res. 65:6534–6542.

    PubMed  CAS  Google Scholar 

  • Gieswein, C.E., Sharom, F.J., and Wildeman, A.G. (2003). Oligomerization of the E5 protein of human papillomavirus type 16 occurs through multiple hydrophobic regions. Virology 313:415–426.

    PubMed  CAS  Google Scholar 

  • Goldstein, D.J., Andresson, T., Sparkowski, J.J., and Schlegel, R. (1992a). The BPV-1 E5 protein, the 16 kDa membrane pore-forming protein and the PDGF receptor exist in a complex that is dependent on hydrophobic transmembrane interactions. EMBO J. 11:4851–4859.

    CAS  Google Scholar 

  • Goldstein, D.J., Finbow, M.E., Andresson, T., McLean, P., Smith, K., Bubb, V., and Schlegel, R. (1991). Bovine papillomavirus E5 oncoprotein binds to the 16K component of vacuolar H(+)-ATPases. Nature 352:347–349.

    PubMed  CAS  Google Scholar 

  • Goldstein, D.J., Kulke, R., DiMaio, D., and Schlegel, R. (1992b). A glutamine residue in the membrane-associating domain of the bovine papillomavirus type 1 E5 oncoprotein mediates its binding to a transmembrane component of the vacuolar H(+)-ATPase. J. Virol. 66(1):405–413.

    CAS  Google Scholar 

  • Goldstein, D.J., Li, W., Wang, L.-M., Heidaran, M.A., Aaronson, S.A., Shinn, R., Schlegel, R., and Pierce, J.H. (1994). The bovine papillomavirus type 1 E5 transforming protein specifically binds and activates the beta-type receptor for platelet-derived growth factor but not other tyrosine kinase-containing receptors to induce cellular transformation. J. Virol. 68:4432–4441.

    PubMed  CAS  Google Scholar 

  • Grindlay, G.J., Campo, M.S., and O’Brien, V. (2005). Transactivation of the cyclin A promoter by bovine papillomavirus type 4 E5 protein. Virus Res. 108:29–38.

    PubMed  CAS  Google Scholar 

  • Gu, Z.-M., and Matlashewski, G. (1995). Effect of human papillomavirus type 16 oncogenes on MAP kinase activity. J. Virol. 69:8051–8056.

    PubMed  CAS  Google Scholar 

  • Horwitz, B.H., Burkhardt, A.L., Schlegel, R., and DiMaio, D. (1988). 44-amino-acid E5 transforming protein of bovine papillomavirus requires a hydrophobic core and specific carboxyl-terminal amino acids. Mol. Cell. Biol. 8(10):4071–4078.

    Google Scholar 

  • Horwitz, B.H., Weinstat, D.L., and DiMaio, D. (1989). Transforming activity of a 16-amino-acid segment of the bovine papillomavirus E5 protein linked to random sequences of hydrophobic amino acids. J. Virol. 63(11):4515–4519.

    PubMed  CAS  Google Scholar 

  • Hossain, M.Z., Ao, P., and Boynton, A.L. (1998). Rapid disruption of Gap junctional communication and phosphorylation of connexin43 by platelet-derived growth factor in T51B rat liver epithelial cells expressing platelet-derived growth factor receptor. J. Cell. Physiol. 174:66–77.

    PubMed  CAS  Google Scholar 

  • Hwang, E.S., Nottoli, T., and DiMaio, D. (1995). The HPV16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology 211(1):227–233.

    PubMed  CAS  Google Scholar 

  • Kabsch, K., and Alonso, A. (2002a). The human papillomavirus type 16 (HPV-16) E5 protein sensitizes human keratinocytes to apoptosis induced by osmotic stress. Oncogene 21:947–953.

    CAS  Google Scholar 

  • Kabsch, K., and Alonso, A. (2002b). The human papillomavirus type 16 E5 protein impairs TRAIL-and FasL-mediated apoptosis in HaCaT cells by different mechanisms. J. Virol. 76:12162–12172.

    CAS  Google Scholar 

  • Kabsch, K., Mossadegh, N., Kohl, A., Komposch, G., Schenkel, J., Alonso, A., and Tomakidi, P. (2004). The HPV-16 E5 protein inhibits TRAIL-and FasL-mediated apoptosis in human keratinocyte raft cultures. Intervirology 47:48–56.

    PubMed  CAS  Google Scholar 

  • Kim, S.H., Juhnn, Y.S., Kang, S., Park, S.W., Sung, M.W., Bang, Y.J., and Song, Y.S. (2006). Human papillomavirus 16 E5 up-regulates the expression of vascular endothelial growth factor through the activation of epidermal growth factor receptor, MEK/ ERK1,2 and PI3K/Akt. Cell. Mol. Life Sci. 63:930–938.

    PubMed  CAS  Google Scholar 

  • Klein, O., Kegler-Ebo, D., Su, J., Smith, S., and DiMaio, D. (1999). The bovine papillomavirus Es5 protein requires a juxtamembrane negative charge for activation of the platelet-derived growth factor beta receptor and transformation of C127 cells. J. Virol. 73(4):3264–3272.

    PubMed  CAS  Google Scholar 

  • Klein, O., Polack, G. W., Surti, T., Kegler-Ebo, D., Smith, S. O., and DiMaio, D. (1998). Role of glutamine 17 of the bovine papillomavirus E5 protein in platelet-derived growth factor beta receptor activation and cell transformation. J. Virol. 72(11): 8921–8932.

    PubMed  CAS  Google Scholar 

  • Lai, C.-C., Edwards, A.P.B., and DiMaio, D. (2005). Productive interaction between transmembrane mutants of the bovine papillomavirus E5 protein and the platelet-derived growth factor receptor. J. Virol. 79:1924–1929.

    PubMed  CAS  Google Scholar 

  • Lai, C.C., Henningson, C., and DiMaio, D. (1998). Bovine papillomavirus E5 protein induces oligomerization and trans-phosphorylation of the platelet-derived growth factor beta receptor. Proc. Natl. Acad. Sci.USA 95(26):15241–15246.

    PubMed  CAS  Google Scholar 

  • Lai, C.C., Henningson, C., and DiMaio, D. (2000). Bovine papillomavirus E5 protein induces the formation of signal transduction complexes containing dimeric activated platelet-derived growth factor receptor and associated signaling proteins. J. Biol. Chem. 275:9832–9840.

    PubMed  CAS  Google Scholar 

  • Leechanachai, P., Banks, L., Moreau, F., and Matlashewski, G. (1992). The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7:19–25.

    PubMed  CAS  Google Scholar 

  • Leptak, C., Ramon y Cajal, S., Kulke, R., Horwitz, B.H., Riese, D.J., II, Dotto, G.P., and DiMaio, D. (1991). Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16. J Virol 65(12):7078–7083.

    PubMed  CAS  Google Scholar 

  • Liu, D.W., Tsao, Y.P., Hsieh, C.H., Hsieh, J.T., Kung, J.T., Chiang, C.L., Huang, S.J., and Chen, S.L. (2000). Induction of CD8 T cells by vaccination with recombinant adenovirus expressing human papillomavirus type 16 E5 gene reduces tumor growth. J. Virol. 74:9083–9089.

    PubMed  CAS  Google Scholar 

  • Marchetti, B., Ashrafi, G.H., Dornan, E.S., Araibi, E.H., Ellis, S.A., and Campo, M.S. (2006). The E5 protein of BPV-4 interacts with the heavy chain of MHC class I and irreversibly retains the MHC complex in the Golgi apparatus. Oncogene 25:2254–2263.

    PubMed  CAS  Google Scholar 

  • Marchetti, B., Ashrafi, G.H., Tsirimonaki, E., O’Brien, P.M., and Campo, M.S. (2002). The bovine papillomavirus oncoprotein E5 retains MHC class I molecules in the Golgi apparatus and prevents their transport to the cell surface. Oncogene 21: 7808–7816.

    PubMed  CAS  Google Scholar 

  • Martin, P., Vass, W.C., Schiller, J.T., Lowy, D.R., and Velu, T.J. (1989). The bovine papillomavirus E5 transforming protein can stimulate the transforming activity of EGF and CSF-1 receptors. Cell 59:21–32.

    PubMed  CAS  Google Scholar 

  • Mattoon, D., Gupta, K., Doyon, J., Loll, P.J., and DiMaio, D. (2001). Identification of the transmembrane dimer interface of the bovine papillomavirus E5 protein. Oncogene 20:3824–3834.

    PubMed  CAS  Google Scholar 

  • Mayer, T.J., Frauenhoffer, E.E., and Meyers, A.C. (2000). Expression of epidermal growth factor and platelet-derived growth factor receptors during cervical carcinogenesis. In Vitro Cell Dev. Biol. Anim. 36:667–676.

    PubMed  CAS  Google Scholar 

  • Mayer, T.J., and Meyers, C. (1998). Temporal and spatial expression of the E5a protein during the differentiation-dependent life cycle of human papillomavirus type 31b. Virology 248:208–217.

    PubMed  CAS  Google Scholar 

  • Meyer, A.N., Xu, Y.-F., Webster, M.K., Smith, A.S., and Donoghue, D.J. (1994). Cellular transformation by a transmembrane peptide: structural requirements for the bovine papillomavirus E5 oncoprotein. Proc. Natl. Acad. Sci. USA 91:4634–4638.

    PubMed  CAS  Google Scholar 

  • Nappi, V.M., and Petti, L.M. (2002). Multiple transmembrane amino acid requirements suggest a highly specific interaction between the bovine papillomavirus E5 oncoprotein and the platelet-derived growth factor beta receptor. J. Virol. 76:7976–7986.

    PubMed  CAS  Google Scholar 

  • Nappi, V.M., Schaefer, J.A., and Petti, L.M. (2002). Molecular examination of the transmembrane requirements of the platelet-derived growth factor beta receptor for a productive interaction with the bovine papillomavirus E5 oncoprotein. J. Biol. Chem. 277:47149–47159.

    PubMed  CAS  Google Scholar 

  • Nilson, L.A., and DiMaio, D. (1993). Platelet-derived growth factor receptor can mediate tumorigenic transformation by the bovine papillomavirus E5 protein. Mol. Cell. Biol. 13(7):4137–4145.

    PubMed  CAS  Google Scholar 

  • Nilson, L.A., Gottlieb, R.L., Polack, G.W., and DiMaio, D. (1995). Mutational analysis of the interaction between the bovine papillomavirus E5 transforming protein and the endogenous beta receptor for platelet-derived growth factor in mouse C127 cells. J. Virol. 69(9):5869–5874.

    PubMed  CAS  Google Scholar 

  • O’Brien, P.M., Ashrafi, G.H., Grindlay, G.J., Anderson, R., and Campo, M.S. (1999). A mutational analysis of the transforming functions of the E8 protein of bovine papillomavirus type 4. Virology 255:385–394.

    PubMed  Google Scholar 

  • O’Brien, P.M., Grindlay, G.J., and Campo, M.S. (2001). Cell transformation by the E5/E8 protein of bovine papillomavirus type 4. J. Biol. Chem. 276:33861–33868.

    PubMed  Google Scholar 

  • O’Brien, V., and Campo, M.S. (1998). BPV-4 E8 transforms NIH 3T3 cells, up-regulates cyclin A and cyclin A-associated kinase activity and de-regulates expression of the cdk inhibitor p27KIP1. Oncogene 17:293–301.

    PubMed  Google Scholar 

  • Oelze, I., Kartenbeck, J., Crusius, K., and Alonso, A. (1995). Human papillomavirus type 16 E5 protein affects cell–cell communication in an epithelial cell line. J. Virol. 69:4489–4494.

    PubMed  CAS  Google Scholar 

  • Petti, L., and DiMaio, D. (1992). Stable association between the bovine papillomavirus E5 transforming protein and activated platelet-derived growth factor receptor in transformed mouse cells. Proc. Natl. Acad. Sci USA 89(15):6736–6740.

    PubMed  CAS  Google Scholar 

  • Petti, L., and DiMaio, D. (1994). Specific interaction between the bovine papillomavirus E5 transforming protein and the beta receptor for platelet-derived growth factor in stably transformed and acutely transfected cells. J. Virol. 68(6):3582–3592.

    PubMed  CAS  Google Scholar 

  • Petti, L., Nilson, L.A., and DiMaio, D. (1991). Activation of the platelet-derived growth factor receptor by the bovine papillomavirus E5 transforming protein. EMBO J. 10(4):845–855.

    PubMed  CAS  Google Scholar 

  • Petti, L.M., and Ray, F.A. (2000). Transformation of mortal human fibroblasts and activation of a growth inhibitory pathway by the bovine papillomavirus E5 oncoprotein. Cell Growth Differ. 11:395–408.

    PubMed  CAS  Google Scholar 

  • Petti, L.M., Reddy, V., Smith, S.O., and DiMaio, D. (1997). Identification of amino acids in the transmembrane and juxtamembrane domains of the platelet-derived growth factor receptor required for productive interaction with the bovine papillomavirus E5 protein. J. Virol. 71(10):7318–7327.

    PubMed  CAS  Google Scholar 

  • Pim, D., Collins, M., and Banks, L. (1992). Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 7:27–32.

    PubMed  CAS  Google Scholar 

  • Riese, D.J., II, and DiMaio, D. (1995). An intact PDGF signaling pathway is required for efficient growth transformation of mouse C127 cells by the bovine papillomavirus E5 protein. Oncogene 10(7):1431–1439.

    PubMed  CAS  Google Scholar 

  • Rodriguez, M.I., Finbow, M.E., and Alonso, A. (2000). Binding of human papillomavirus 16 E5 to the 16 kDa subunit c (proteolipid) of the vacuolar H+-ATPase can be dissociated from the E5-mediated epidermal growth fator receptor overactivation. Oncogene 19:3727–3732.

    PubMed  CAS  Google Scholar 

  • Saito, T., Schlegel, R., Andresson, T., Yuge, L., Yamamoto, M., and Yamasaki, H. (1998). Induction of cell transformation by mutated 16K vacuolar H+-ATPase (ductin) is accompanied by down-regulation of gap junctional intercellular communication and translocation of connexin 43 in NIH3T3 cells. Oncogene 17:1673–1680.

    PubMed  CAS  Google Scholar 

  • Schapiro, F., Sparkowski, J., Adduci, A., Suprynowicz, F.A., Schlegel, R., and Grinstein, S. (2000). Golgi alkalinization by the papillomavirus E5 oncoprotein. J. Cell. Biol. 148:305–315.

    PubMed  CAS  Google Scholar 

  • Schiffman, M., Herrero, R., Desalle, R., Hildesheim, A., Wacholder, S., Rodriguez, A.C., Bratti, M.C., Sherman, M.E., Morales, J., Guillen, D., Alfaro, M., Hutchinson, M., Wright, T. C., Solomon, D., Chen, Z., Schussler, J., Castle, P.E., and Burk, R.D. (2005). The carcinogenicity of human papillomavirus types reflects viral evolution. Virology 337:76–84.

    PubMed  CAS  Google Scholar 

  • Schiller, J.T., Vass, W.C., Vousden, K.H., and Lowy, D.R. (1986). E5 open reading frame of bovine papillomavirus type 1 encodes a transforming gene. J. Virol. 57:1–6.

    PubMed  CAS  Google Scholar 

  • Schlegel, R., Wade-Glass, M., Rabson, M.S., and Yang, Y.-C. (1986). The E5 transforming gene of bovine papillomavirus encodes a small hydrophobic protein. Science 233:464–467.

    PubMed  CAS  Google Scholar 

  • Settleman, J., Fazeli, A., Malicki, J., Horwitz, B.H., and DiMaio, D. (1989). Genetic evidence that acute morphologic transformation, induction of cellular DNA synthesis, and focus formation are mediated by a single activity of the bovine papillomavirus E5 protein. Mol Cell Biol 9(12):5563–5572.

    PubMed  CAS  Google Scholar 

  • Sparkowski, J., Anders, J., and Schlegel, R. (1995). E5 oncoprotein retained in the endoplasmic reticulum/cis Golgi still induces PDGF receptor autophosphorylation but does not transform cells. EMBO J. 14:3055–3063.

    PubMed  CAS  Google Scholar 

  • Sparkowski, J., Mense, M., Anders, M., and Schlegel, R. (1996). E5 oncoprotein transmembrane mutants dissociate fibroblast transforming activity from 16-kilodalton protein binding and platelet-derived growth factor receptor binding and phosphorylation. J. Virol. 70:2420–2430.

    PubMed  CAS  Google Scholar 

  • Staebler, A., Pierce, J.H., Brazinski, S., Heidaran, M.A., Li, W., Schlegel, R., and Goldstein, D. J. (1995). Mutational analysis of the beta-type platelet-derived growth factor receptor defines the site of interaction with the bovine papillomavirus type 1 E5 transforming protein. J. Virol. 69:6507–6517.

    PubMed  CAS  Google Scholar 

  • Stevens, T.H., and Forgac, M. (1997). Structure, function and regulation of the vacuolar H+-ATPase. Ann. Rev. Cell Dev. Biol. 13:779–808.

    CAS  Google Scholar 

  • Straight, S.W., Herman, B., and McCance, D.J. (1995). The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J. Virol. 69:3185–3192.

    PubMed  CAS  Google Scholar 

  • Straight, S.W., Hinkle, P.M., Jewers, R.J., and McCance, D.J. (1993). The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J. Virol. 67:4521–4532.

    PubMed  CAS  Google Scholar 

  • Suprynowicz, F.A., Baege, A., Sunitha, I., and Schlegel, R. (2002). c-Src activation by the E5 oncoprotein enables transformation independently of PDGF receptor activation. Oncogene 21:1695–1706.

    PubMed  CAS  Google Scholar 

  • Suprynowicz, F.A., Disbrow, G.L., Simic, V., and Schlegel, R. (2005). Are transforming properties of the bovine papillomavirus E5 protein shared by E5 from high-risk human papillomavirus type 16? Virology 332:102–113.

    PubMed  CAS  Google Scholar 

  • Suprynowicz, F.A., Sparkowski, J., Baege, A., and Schlegel, R. (2000). E5 oncoprotein mutants activate phosphoinositide 3’-kinase independently of platelet-derived growth factor receptor activation. J. Biol. Chem. 275:5111–5119.

    PubMed  CAS  Google Scholar 

  • Surti, T., Klein, O., Aschheim, K., DiMaio, D., and Smith, S.O. (1998). Structural models of the bovine papillomavirus E5 protein. Proteins 33(4):601–612.

    PubMed  CAS  Google Scholar 

  • Thomsen, P., van Deurs, B., Norrild, B., and Kayser, L. (2000). The HPV16 E5 oncogene inhibits endocytic trafficking. Oncogene 19:6023–6032.

    PubMed  CAS  Google Scholar 

  • Tomakidi, P., Cheng, H., Kohl, A., Komposch, G., and Alonso, A. (2000). Connexin 43 expression is downregulated in raft cultures of humankeratinocytes expressing the human papillomavirus type 16 E5 protein. Cell Tissue Res. 301:323–327.

    PubMed  CAS  Google Scholar 

  • Tsao, Y.-P., Li, L.-Y., Tsai, T.-C., and Chen, S.-L. (1996). Human papillomavirus type 11 and 16 E5 represses p21WafI/SdiI/CipI gene expression in fibroblasts and keratinocytes. J. Virol. 70:7535–7539.

    PubMed  CAS  Google Scholar 

  • Vallee, G.F., and Banks, L. (1995). The human papillomavirus (HPV)-6 and HPV-16 proteins co-operate with HPV-16 E7 in the transformation of primary rodent cells. J. Gen. Virol. 76:1239–1245.

    Google Scholar 

  • Venuti, A., Salani, D., Poggiali, F., Manni, V., and Bagnato, A. (1998). The E5 oncoprotein of human papillomavirus type 16 enhances endothelin-1-induced keratinocyte growth. Virology 248:1–5.

    PubMed  CAS  Google Scholar 

  • Zago, M., Campo, M. S., and O’Brien, V. (2004). Cyclin A expression and growth in suspension can be uncoupled from p27 de-regulation and ERK activity in cells transformed by BPV-4 E5. J. Gen. Virol. 85:3585–3595.

    PubMed  CAS  Google Scholar 

  • Zhang, B., Li, P., Wang, E., Brahmi, Z., Dunn, K.W., Blum, J.S., and Roman, A. (2003). The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-. Virology 310:100–108.

    PubMed  CAS  Google Scholar 

  • Zhang, B., Spandau, D.F., and Roman, A. (2002). E5 protein of human papillomavirus type 16 protects human foreskin keratinocytes from UV B-irradiation-induced apoptosis. J. Virol. 76:220–231.

    PubMed  CAS  Google Scholar 

  • Zhang, B., Srirangam, A., Potter, D.A., and Roman, A. (2005). HPV16 E5 protein disrupts the c-Cbl-EGFR interaction and EGFR ubiquitination in human foreskin keratinocytes. Oncogene 24:2585–2588.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Lehman, J.M., and Petti, L .M. (2002). Apoptosis of mortal human fibroblasts transformed by the bovine papillomavirus E5 oncoprotein. Mol. Cancer Res. 1:122–136.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

DiMaio, D. (2007). Papillomavirus E5 Proteins. In: Garcea, R.L., DiMaio, D. (eds) The Papillomaviruses. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36523-7_9

Download citation

Publish with us

Policies and ethics