Skip to main content

Laser Light Scattering as an Indispensable Tool for Probing Protein Aggregation

  • Chapter

Abstract

Protein misfolding and aggregation have emerged as significant problems in two quite different arenas. For the medical community, the spontaneous conversion of soluble proteins or protein fragments into fibrillar polymers with regular cross-β-sheet structure is linked to diseases as diverse as Huntington’s, Alzheimer’s, type II diabetes, and the prion diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. S. Timasheff and R. Townend, Light scattering: in Physical Principles and Techniques of Protein Chemistry, Part B, ed. by S. J. Leach (New York: Academic Press, 1970).

    Google Scholar 

  2. 2. W. Burchard, Static and dynamic light scattering from branched polymers and biopolymers, Adv. Polymer Sci. 48, 1–124 (1983).

    CAS  Google Scholar 

  3. 3. E. P. Geiduschek and A. Holtzer, Application of light scattering to biological systems: deoxyribonucleic acid and the muscle proteins, Adv. Biol. Med. Phys. 6, 431–551 (1958).

    PubMed  CAS  Google Scholar 

  4. 4. M. M. Tirado and J. G. de la Torre, Translational friction coefficients of rigid, symmetric top macromolecules. Application to circular cylinders, J. Chem. Phys. 71, 2581–2587 (1979).

    Article  CAS  Google Scholar 

  5. 5. J. M. Andreu and S. N. Timasheff, The measurement of cooperative protein self-assembly by turbidity and other techniques, Meth. Enzymol. 130, 47–59 (1986).

    Article  PubMed  CAS  Google Scholar 

  6. 6. M. M. Pallitto and R. M. Murphy, A mathematical model of the kinetics of β-amyloid fibril growth from the denatured state, Biophys. J. 81, 1805–1822 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. 7. J. R. Kim and R. M. Murphy, Mechanism of accelerated assembly of β-amyloid filaments into fibrils by KLVFFK6, Biophys. J. 86, 3194–3203 (2004).

    PubMed  CAS  Google Scholar 

  8. 8. T. L. Lowe, A. Strzelec, L. L. Kiessling and R. M. Murphy, Structure-function relationships for inhibitors of β-amyloid toxicity containing the recognition sequence KLVFF, Biochemistry 40, 7882–7889 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. 9. Y., Georgalis, E. B. Starikov, B. Hollenbach, R. Lurz, E. Scherzinger, W. Saenger, H. Lehrach, and E. E. Wanker, Huntingtin aggregation monitored by dynamic light scattering, Proc. Natl. Acad. Sci. USA 95: 6118–6121 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. 10. F. Sokolowski, A. J. Modler, R. Masuch, D. Zirwer, M. Baier, G. Lutsch, D. A. Moss, K. Gast, and D. Naumann, Formation of critical oligomers is a key event during conformational transition of recombinant Syrian hamster prion protein, J. Biol. Chem. 278, 40481–40492 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. 11. A. M. Pots, E. ten Grotenhuis, H. Grappen, A. G. J. Voragen, and K. G. de Kruif, Thermal aggregation of patatin studied in situ, J. Ag. Food Chem. 47, 4600–4605 (1999).

    Article  CAS  Google Scholar 

  12. 12. R. Bauer, R. Carrotta, C. Rischel, and L. Ogendal, Characterization and isolation of intermediates in β-lactoglobulin heat aggregation at high pH, Biophys. J. 79, 1030–1038 (2000).

    PubMed  CAS  Google Scholar 

  13. 13. M. Panda, B. M. Gorovits, and P.M. Horowitz., Productive and nonproductive intermediates in the folding of denatured rhodanese, J. Biol. Chem. 275, 63–70 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. 14. R. Herbst, K. Gast, and R. Seckler, R, Folding of firefly (Photinus pyralis) luciferase: aggregation and reactivation of unfolding intermediates, Biochemistry 37, 6586–6597 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. 15. S. Abgar, J. Vanhoudt, T. Aerts, and J. Clauwaert, Study of the chaperoning mechanism of bovine lens α-crystallin, a member of the α-small heat shock superfamily, Biophys. J. 80, 1986–1995 (2000).

    Google Scholar 

  16. 16. S. Tanaka, Y. Oda, M. Ataka, K. Onuma, S. Fujiwara, and Y. Yonezawa, Denaturation and aggregation of hen egg lysozyme in aqueous ethanol solution studied by dynamic light scattering, Biopolymers 59, 370–379 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Murphy, R.M., Lee, C.C. (2006). Laser Light Scattering as an Indispensable Tool for Probing Protein Aggregation. In: Misbehaving Proteins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36063-8_7

Download citation

Publish with us

Policies and ethics