Skip to main content

Small-Angle Neutron Scattering as a Probe for Protein Aggregation at Many Length Scales

  • Chapter
Misbehaving Proteins

Abstract

Small-angle neutron scattering (SANS) is uniquely suited to the study of biological systems in solution in the size range from 10 Å to 1000 Å. In the case of protein aggregates, SANS is sensitive to structures at all of these length scales, from the total aggregate size down to the monomer size. Thus, it is possible to observe scattering over a wide range of length scales and to follow the change in morphology of a protein system as it assembles into aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. B. Jacrot, The study of biological structures by neutron scattering from solution, Rep. Prog. Phys. 39, 911–953 (1976).

    Article  CAS  Google Scholar 

  2. 2. C.J. Glinka, J.G. Barker, B. Hammouda, S. Krueger, J.J. Moyer, and W.J. Orts, The 30 m small-angle neutron scattering instruments at the National Institute of Standards and Technology, J. Appl. Cryst. 31, 430–445 (1998).

    Article  CAS  Google Scholar 

  3. 3. L.A. Feigin and D.I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering, (New York: Plenum Press, 1987).

    Google Scholar 

  4. 4. A. Guinier and G. Fournet, Small Angle Scattering of X-Rays (New York: Wiley, 1955).

    Google Scholar 

  5. 5. O. Glatter and O. Kratky, Small Angle X-ray Scattering, (New York: Academic Press, 1982).

    Google Scholar 

  6. 6. S. Hansen, Calculation of small-angle scattering profiles using Monte Carlo simulation, J. Appl. Cryst. 23, 344–346 (1990).

    Article  Google Scholar 

  7. 7. J. Zhou, A. Deyhim, S. Krueger, and S.K. Gregurick, LORES: low resolution shape program for the calculation of small-angle scattering profiles for biological macromolecules in solution, Comp. Phys. Comm., 170, 186–204.

    Google Scholar 

  8. 8. M.S. Wertheim, Analytic solution of the Percus-Yevick equation, J. Math. Phys. 5, 643–651 (1964).

    Article  Google Scholar 

  9. 9. J.-P. Hansen and J.B. Hayter, A rescaled MSA structure factor for dilute charged colloidal dispersions, Mol. Phys. 46, 651–656 (1982).

    Article  CAS  Google Scholar 

  10. 10. W. Yong, A. Lomakin, M.D. Kirkitadze, D.B. Teplow, S.-H. Chen, and G.B. Benekek, Structure determination of micelle-like intermediates in amyloid β-protein fibril assembly by using small angle neutron scattering, Proc. Natl. Acad. Sci. USA 99, 150–154 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. 11. H.G. Thomas, A. Lomakin, D. Blankschtein, and G.B. Benedek, Growth of mixed nonionic micelles, Langmuir 13, 209–218 (1997).

    Article  CAS  Google Scholar 

  12. 12. D. Blankschtein, G.M. Thurston, and G.B. Benedek, Phenomenological theory of equilibrium thermodynamic properties and phase-separation of micellar solutions, J. Phys. Chem. 85, 7268–7288 (1986).

    Article  CAS  Google Scholar 

  13. 13. C.M. Dobson, Protein misfolding, evolution and disease, Trends Biochem. Sci. 9, 329–332 (1999).

    Article  Google Scholar 

  14. 14. J.I. Guijarro, M. Sunde, J.A. Jones, I.D. Campbell, and C.M. Dobson, Amyloid fibril formation by an SH3 domain, Proc. Natl. Acad. Sci. USA 95, 4224–4228 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. 15. M.R.H. Krebs, D.K. Wilkins, E.W. Chung, M.C. Pitkeathly, A.K. Chamberlain, J. Zurdo, C.V. Robinson, and C.M Dobson, Formation and seeding of amyloid fibrils from wild-type hen lysozume and a peptide fragment from the β domain, J. Mol. Biol. 300, 541–549 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. 16. M. Fändrich, M.A. Fletcher, and C.M. Dobson, Amyloid fibrils from muscle myoglobin, Nature 410, 165–166 (2001).

    Article  PubMed  Google Scholar 

  17. 17. F. Chiti, P. Webster, N. Taddei, K. Clark, M. Stefani, G. Ramponi, and C.M. Dobson, Designing conditions for in vitro formation of amyloid proto-filaments and fibrils, Proc. Natl. Acad. Sci. USA 96, 3590–3594 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. 18. S. Goda, K. Takano, Y. Yamagata, R. Nagata, H. Akutsu, S. Maki, K. Namba, and K. Yutani, Amyloid protofilaments formation of hen egg white lysozyme in highly concentrated ethanol solution, Protein Sci. 9, 369–375 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. 19. Y. Yonezawa, T. S. Tanaka, T. Kubota, K. Wakabayashi, K. Yutani, and S. Fujiwara, An insight into the pathway of the amyloid fibril formation of hen egg white lysozyme obtained from a small-angle x-ray and neutron scattering study, J. Mol. Biol. 323, 237–251 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. 20. D.R. Booth, M. Sunde, V. Bellotti, C.V. Robinson, W.L. Hutchinson, P.E. Fraser, P.N. Hawkins, C.M. Dobson, S.E. Radford, C.C.F. Blake, and M.B. Pepys, Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis, Nature 385, 787–793 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. 21. T.R. Serio, A.G. Cashikar, A.S. Kowal, J. Sawicki, J.J. Moslehi, L. Serpell, M.F. Arnsdorf, and S.L. Lindquist, Nucleated conformation conversion and the replication of conformational information by a prion determinant, Science 289, 1317–1321 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. 22. L.C. Serpell, M. Sunde, M.D. Benson, G.A. Gennent, M.B. Pepys, and P.E. Fraser. The protofilament substructure of amyloid fibrils, J. Mol. Biol. 300, 1033–1039 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. 23. O.D. Velev, E.W. Kaler, and A.M. Lenhoff, Protein interactions in solution characterized by light and neutron scattering: comparison of lysozyme and chymotrypsinogen, Biophys. J. 75, 2682–2697 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. 24. T.E. Creighton, Proteins: Structure and Molecular Properties (New York: Freeman, 1993).

    Google Scholar 

  25. 25. O. Kratky and G. Porod, Diffuse small-angle scattering of X-rays in colloid systems, J. Colloid Science 4, 35–70 (1949).

    Article  CAS  Google Scholar 

  26. 26. J.S. Higgins and H.C. Benoit, Polymers and Neutron Scattering (New York Oxford, 1994).

    Google Scholar 

  27. 27. R.-J. Roe, Methods of X-Ray and Neutron Scattering in Polymer Science (New York: Oxford, 2000).

    Google Scholar 

  28. 28. F. Horkay, A.M. Hecht, and E. Geissler, Fine structure of polymer networks as revealed by solvent swelling, Macromolecules 31, 8851–8856 (1998).

    Article  CAS  Google Scholar 

  29. 29. C.L. Zhou, E. Hobbie, B.J. Bauer, and C.C Han, J. Polym. Sci., Polym. Phys. Ed. 36, 2745–2750 (1998).

    Article  CAS  Google Scholar 

  30. 30. B. Hammouda, D.L. Ho, and S. Kline, SANS from poly(ethylene oxide)/water systems, Macromolecules 35, 8578–8585 (2002).

    Article  Google Scholar 

  31. 31. D. Sackett, V. Chernomordik, S. Krueger, and R. Nossal, Use of small-angle neutron scattering to study tubulin polymers, Biomacromolecules 4, 461–467 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. 32. J.M. Andreu, J. Bordas, J.F. Diaz, J. Garcia de Ancos, R. Gil, F.J. Medrano, E. Nogales, E. Pantos, and E. Towns-Andrews, Low resolution structure of microtubules in solution. Synchrotron x-ray scattering and electron microscopy of taxol-induced microtubules assembled from purified tubulin in comparison with glycerol and MAP-induced microtubules, J. Mol. Biol. 226, 169–184 (1992).

    Article  PubMed  CAS  Google Scholar 

  33. 33. J.M. Andreu, J.F. Diaz, R. Gil, J.M. de Pereda, M. Garcia de Lacoba, V. Peyrot, C. Briand, E. Towns-Andrews, and J. Bordas, Solution structure of Taxotere-induced microtubules to 3-nm resolution. The change in protofilament number is linked to the binding of the taxol side chain, J. Biol. Chem. 269, 31785–31792 (1994).

    PubMed  CAS  Google Scholar 

  34. 34. F. Metoz, I. Arnal and R.H. Wade, Tomography without tilt: three-dimensional imaging of microtubule/motor complexes, J. Struct. Biol. 118, 159–168 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. 35. E. Mandelkow, J. Thomas, and C. Cohen, Microtubule structure at low resolution by x-ray diffraction, Proc. Natl. Acad. Sci. USA 74, 3370–3374 (1977).

    Article  PubMed  CAS  Google Scholar 

  36. 36. R.H. Wade and D. Chrétien, Cryoelectron microscopy of microtubules, J. Struct. Biol. 110, 1–27 (1993).

    Article  PubMed  CAS  Google Scholar 

  37. 37. M. Verheul, S.P. Roefs, and K.G. de Kruif, Aggregation of beta-lactoglobulin and influence of D2O, FEBS Lett. 421, 273–276 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. 38. C.H. Chen, R. Wu, L.G. Roth, S. Guillot, and R. Crainic, Elucidating mechanisms of thermostabilization of poliovirus by D2O and MgCl2O, Arch. Biochem. Biophys. 342, 108–116 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. 39. H. Omori, M. Kuroda, H. Naora, H. Takeda, Y. Nio, H. Otani, and K. Tamura, Deuterium oxide (heavy water) accelerates actin assembly in vitro and changes microfilament distribution in cultured cells, Eur. J. Cell Biol. 74, 273–280 (1997).

    PubMed  CAS  Google Scholar 

  40. 40. Y. Uratani, Polymerization of Salmonella flagellin in water and deuterium oxide media, J. Biochem. 75, 1143–1151 (1974).

    PubMed  CAS  Google Scholar 

  41. 41. R.W.H. Ruigrok and E. DiCapua, On the polymerization state of RecA in the absence of DNA, Biochimie 73, 191–197 (1991).

    Article  PubMed  CAS  Google Scholar 

  42. 42. M.T. Khalil and M.A. Lauffer, Polymerization-depolymerization of tobacco mosaic virus protein X. Effect of D2O, Biochemistry 6, 2474–2480 (1967).

    Article  PubMed  CAS  Google Scholar 

  43. 43. L.L. Houston, J. Odell, Y.C. Lee, and R.H. Himes, Solvent isotope effects on microtubule polymerization and depolymerization, J. Mol. Biol. 87, 141–146 (1974).

    Article  PubMed  CAS  Google Scholar 

  44. 44. T.J. Itoh and H. Sato, The effects of deuterium-oxide 2H2O) on the polymerization of tubulin in vitro, Biochim. Biophys. Acta 800, 21–27 (1984).

    PubMed  CAS  Google Scholar 

  45. 45. D. Panda, G. Chakrabarti, J. Hudson, K. Pigg, H.P. Miller, L. Wilson, and R.H. Himes, Suppression of microtubule dynamic instability and treadmilling by deuterium oxide, Biochemistry 39, 5075–5081 (2000).

    Article  PubMed  CAS  Google Scholar 

  46. 46. U. Larsson, Polymerization and gelation of fibronogen in D2O, Eur. J. Biochem. 174, 139–144 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Krueger, S., Ho, D., Tsai, A. (2006). Small-Angle Neutron Scattering as a Probe for Protein Aggregation at Many Length Scales. In: Misbehaving Proteins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36063-8_6

Download citation

Publish with us

Policies and ethics