Skip to main content

Nonnative Protein Aggregation

Pathways, Kinetics, and Stability Prediction

  • Chapter

Abstract

Protein aggregation via nonnative conformational states is effectively irreversible for a variety of systems of scientific and commercial interest, particularly during processing and storage. The formation of irreversible aggregates typically involves one or more reversible conformational changes leading to nonnative, aggregation-prone conformers that subsequently assemble to form soluble or insoluble aggregates. Experimentally observed kinetics of this process are controlled by a combination of the dynamics and thermodynamics of conformational transitions and association or assembly steps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. A. L. Fink, Protein aggregation: folding aggregates, inclusion bodies, and amyloid, Folding Des. 3, R9–R23 (1998).

    Article  CAS  Google Scholar 

  2. 2. P. M. Bummer and S. Koppenol, Chemical and physical considerations in protein and peptide stability, Drugs Pharm. Sci. 99, 5–69 (2000).

    CAS  Google Scholar 

  3. 3. J. L. Cleland, M. F. Powell, and S. J. Shire, The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation, Crit. Rev. Therapeutic Drug Carr. Sys. 10, 307–377 (1993).

    CAS  Google Scholar 

  4. 4. E. Gazit, The “correctly folded” state of proteins: is it a metastable state? Angewandte Chemie, Int. Ed. 41, 257–259 (2002).

    Article  CAS  Google Scholar 

  5. 5. J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes, Theory of protein folding: the energy landscape perspective, Annu. Rev. Phys. Chem. 48, 545–600 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. 6. M. G. Mulkerrin and R. Wetzel, pH dependence of reversible and irreversible thermal denaturation of γ interferons, Biochemistry 28, 6556–6561 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. 7. J. M. Finke, M. Roy, B. H. Zimm, and P. A. Jennings, Aggregation events occur prior to stable intermediate formation during refolding of interleukin-1β, Biochemistry 39, 575–583 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. 8. A. Dong, T. W. Randolph, and J. F. Carpenter, Entrapping intermediates of thermal aggregation in αhelical proteins with low concentration of guanidine hydrochloride, J. Biol. Chem. 276, 27689–27693 (2000).

    Google Scholar 

  9. 9. R. Khurana, J. R. Gillespie, A. Talapatra; L. J. Minert, C. Ionescu-Zanetti, I. Millet I., and A. L. Fink, Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates, Biochemistry 40, 3525–3535 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. 10. A. O. Grillo, K.-L. T. Edwards, R. S. Kashi, K. M. Shipley, L. Hu, M. J. Besman, and C. R. Middaugh, Conformational origin of the aggregation of recombinant human factor VIII, Biochemistry 40, 586–595 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. 11. C. J. Roberts, R. T. Darrington, and M. B. Whitley, Irreversible aggregation of recombinant bovine granulocyte-colony stimulating factor (bG-CSF) and implications for predicting protein shelf life, J. Pharm. Sci. 92, 1095–1111 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. 12. B. S. Kendrick, J. L. Cleland, X. Lam, T. Nguyen, T. W. Randolph, M. C. Manning, and J. F. Carpenter, Aggregation of recombinant human interferon gamma: kinetics and structural transitions, J. Pharm. Sci. 87, 1069–1076 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. 13. P. L. Privalov, Intermediate states in protein folding, J. Mol. Biol. 258, 707–725 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. 14. A. V. Finkelstein, Proteins: structural, thermodynamic, and kinetic aspects, in Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter, NATO Advanced Study Institute, ed. J.-L. Barrat, M. Feigelman, J. Kurchan, J. Dalibard, (Berlin: Springer-Verlag, EDP Sciences, Les Ulis, 2003), 649–704.

    Google Scholar 

  15. 15. P. O. Souillac, V. N. Uversky, and A. L. Fink, Structural transformations of oligomeric intermediates in the fibrillation of the immunoglobulin light chain LEN, Biochemistry 42, 8094–8104 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. 16. A. Lomakin, D. S. Chung, G. B. Benedek, D. A. Kirschner D. A., and D. B. Teplow, On the nucleation and growth of amyloid β-protein fibrils: detection of nuclei and quantitation of rate constants, Proc. Natl. Acad. Sci. USA 93, 1125–1129 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. 17. M. D. Kirkitadze, M. M. Condron, and D. B. Teplow, Identification and characterization of key kinetic intermediates in amyloid β-protein fibrillogenesis, J. Mol. Biol. 312, 1103–1119 (2001); G. Bitan, S. S. Vollers, and D. B. Teplow, Elucidation of primary structure elements controlling early amyloid β-protein oligomerization, J. Biol. Chem. 278, 34882–34889 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. 18. C. R. Robinon, D. Rentzeperis, J. L. Silva, and R. T. Sauer, Formation of a denatured dimer limits the thermal stability of Arc repressor, J. Mol. Biol. 273, 692–700 (1997).

    Article  Google Scholar 

  19. 19. A. M. Buswell and A. P. J. Middelberg, Critical analysis of lysozyme refolding kinetics, Biotech. Prog. 18, 470–475 (2002).

    Article  CAS  Google Scholar 

  20. 20. K. J. Laidler, Chemical Kinetics, 3 rded. (New York: HarperCollins Pub., 1987).

    Google Scholar 

  21. 21. R. Lumry and H. Eyring, Conformational changes of proteins, J. Phys. Chem. 58, 110–120 (1954).

    Article  CAS  Google Scholar 

  22. 22. S. E. Zale and A. M. Klibanov, On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes, Biotech. Bioeng. 25, 2221–2230 (1983).

    Article  CAS  Google Scholar 

  23. 23. J. M. Sanchez-Ruiz, Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry, Biophys. J. 61, 921–935 (1992).

    CAS  PubMed  Google Scholar 

  24. 24. C. La Rosa, D. Milardi, D. Grasso, R. Guzzi, and L. Sportelli, Thermodynamics of the thermal unfolding of Azurin, J. Phys. Chem. 99, 14864–14870 (1995).

    Article  Google Scholar 

  25. 25. S. Tello-Solis and A. Hernandez-Arana, Effect of irreversibility on the thermodynamic characterization of the thermal denaturation of Aspergillus saitoi acid proteinase, Biochem. J. 31, 969–974 (1995).

    Google Scholar 

  26. 26. C. J. Roberts, Kinetics of irreversible protein aggregation: analysis of extended Lumry-Eyring models and implications for predicting protein shelf life, J. Phys. Chem. B 107, 1194–1207 (2003).

    Article  CAS  Google Scholar 

  27. 27. D. J. Caravoulias et al., unpublished.

    Google Scholar 

  28. 28. M. M. Pallitto and R. M. Murphy, A mathematical model of the kinetics of β-amyloid fibril growth from the denatured state, Biophys. J. 81, 1805–1822 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. 29. P. L. Privalov, Stability of proteins, Adv. Protein Chem. 33, 167–241 (1979).

    Article  PubMed  CAS  Google Scholar 

  30. 30. P. L. Privalov and S. A. Potekhin, Scanning microcalorimetry in studying temperature-induced changes in proteins, Methods Enzymol. 181, 4–51 (1986).

    Google Scholar 

  31. 31. S.-I. Segawa and M. Sugihara, Characterization of the transition state of lysozyme unfolding. I. Effect of protein-solvent interactions on the transition state, Biopolymers, 23, 2473–2488 (1984); M. Oliveberg, Y.-J. Tan, and A. R. Fersht, Negative activation enthalpies in the kinetics of protein folding, Proc. Natl. Acad. Sci. USA 92, 8926–8929 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. 32. L. Lopez-Arenas, S. Solis-Mendiola, and A. Hernandez-Arana, Estimating the degree of expansion in the transition state for protein unfolding: analysis of the pH dependence of the rate constant for caricain denaturation, Biochemistry 38, 15936–15943 (1999).

    Article  PubMed  CAS  Google Scholar 

  33. 33. I. M. Plaza del Pino, B. Ibarra-Molero, and J. M. Sanchez-Ruiz, Lower kinetic limit to protein thermal stability: a proposal regarding protein stability in vivo and its relation with misfolding diseases, Proteins: Struct. Funct. Genet. 40, 58–70 (2000).

    Article  CAS  Google Scholar 

  34. 34. A. Fatouros, T. Osterberg, and M. Mikaelsson, Recombinant factor VIII SQ—inactivation kinetics in aqueous solution and the influence of disaccharides and sugar alcohols, Pharm. Res. 14, 1679–1684 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. 35. D. Milardi, C. la Rosa, S. Fasone, and D. Grasso, An alternative approach in the structure-based predictions of the thermodynamics of protein unfolding, Biophys. Chem. 69, 43–51 (1997).

    Article  PubMed  CAS  Google Scholar 

  36. 36. J. Gomez, V. J. Hilser, D. Xie, and E. Freire, The heat capacity of proteins, Prot. Struc. Func. Genet. 22, 404–412 (1995).

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Roberts, C.J. (2006). Nonnative Protein Aggregation. In: Misbehaving Proteins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36063-8_2

Download citation

Publish with us

Policies and ethics