Skip to main content

Mutational Approach to Improve Physical Stability of Protein Therapeutics Susceptible to Aggregation

Role of Altered Conformation in Irreversible Precipitation

  • Chapter
Book cover Misbehaving Proteins

Abstract

Aggregation is a major challenge in the development of high dosage protein formulations. Administration of therapeutically effective doses of leptin is limited by its solubility at neutral pH. To achieve higher therapeutic doses, an acidic pH was utilized for the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. A. Haselbeck, Epoetins: differences and their relevance to immunogenicity, Curr. Med. Res. Opin. 19(5), 430–432 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. 2. J. L. Cleland, M. F. Powell, and S. J. Shire, The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation, Crit. Rev. Ther. Drug Carrier. Syst. 10(4), 307–377 (1993).

    PubMed  CAS  Google Scholar 

  3. 3. E. Y. Chi, S. Krishnan, T. W. Randolph, and J. F. Carpenter, Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation, Pharm. Res. 20(9), 1325–1336 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. 4. R. Krishnamurthy and M. C. Manning, The stability factor: importance in formulation development, Cur. Pharm. Biotech. 3(4), 361–371 (2002).

    Article  CAS  Google Scholar 

  5. 5. M. J. Treuheit, A. A. Kosky, and D. N. Brems, Inverse relationship of protein concentration and aggregation, Pharm. Res. 19(4), 511–516 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. 6. G. Walsh, Biopharmaceutical benchmarks—2003, Nat. Biotech. 21(8), 865–870 (2003).

    Article  CAS  Google Scholar 

  7. 7. S. A. Marshall, G. A. Lazar, A. J. Chirin, and J. R. Desjarlais, Rational design and engineering of therapeutic proteins, Drug Discov. Today 8(5), 212–221 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. 8. D. Daujotyt, G. Vilkaitis, L. Manelyt, J. Skalicky, T. Szyperski, and S. Klimaauskas, Solubility engineering of the HhaI methyltransferase, Protein Eng. 16(4), 295–301 (2003).

    Article  Google Scholar 

  9. 9. L. K. Mosavi and Z. Peng, Structure-based substitutions for increased solubility of a designed protein, Protein Eng. 16(10), 739–745 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. 10. L. Ågren, M. Norin, N. Lycke, and B. Löwenadler, Hydrophobicity engineering of cholera toxin A1 subunit in the strong adjuvant fusion protein CTA1-DD, Protein Eng. 12(2), 173–178 (1999).

    Article  PubMed  Google Scholar 

  11. 11. C. Tanford, Physical Chemistry of Macromolecules (New York: John Wiley and Sons, 1961).

    Google Scholar 

  12. 12. K. L. Shaw, G. R. Grimsley, G. I. Yakovlev, A. A. Makarov, and C. N. Pace, The effect of net charge on the solubility, activity, and stability of ribonuclease Sa, Protein Sci. 10(6), 1206–1215 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. 13. P. H. Tan, V. Chu, J. E. Stray, D. K. Hamlin, D. Pettit, D. S. Wilbur, R. L. Vessella, and P. S. Stayton, Engineering the isoelectric point of a renal cell carcinoma targeting antibody greatly enhances scFv solubility, Immunotechnology 4(2), 107–114 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. 14. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman, Positional cloning of the mouse obese gene and its human homologue, Nature 372(6505), 425–432 (1994).

    Article  PubMed  CAS  Google Scholar 

  15. 15. C. P. Hill, T. D. Osslund, and D. Eisenberg, The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors, Proc. Nat. Acad. Sci. USA 90(11), 5167–5171 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. 16. F. Zhang, M. B. Basinski, J. M. Beals, S. L. Briggs, L. M. Churgay, D. K. Clawson, R. D. DiMarchi, T. C. Furman, J. E. Hale, H. M. Hsiung, B. E. Schoner, D. P. Smith, X. Y. Zhang, J.-P. Wery, and R. W. Schevitz, Crystal structure of the obese protein leptin-E100, Nature 387(6629), 206–209 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. 17. K. Imagawa, Y. Numata, G. Katsuura, I. Sakaguchi, A. Morita, S. Kikuoka, Y. Matumoto, T. Tsuji, M. Tamaki, K. Sasakura, H. Teraoka, K. Hosoda, Y. Ogawa, and K. Nakao, Structure-function studies of human leptin, J. Biol. Chem. 273(52), 35245–35249 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. 18. F. L. Rock, S. W. Altmann, M. van Heek, R. A. Kastelein, and J. F. Bazan, The leptin haemopoietic cytokine fold is stabilized by an intrachain disulfide bond, Horm. Metab. Res. 28(12), 649–652 (1996).

    PubMed  CAS  Google Scholar 

  19. 19. J. L. Liu, K. V. Lu, T. Eris, V. Katta, K. R. Westcott, L. O. Narhi, and H. S. Lu, In vitro methionine oxidation of recombinant human leptin, Pharm. Res. 15(4), 632–640 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. 20. L.-C. Au, S.-Y. Lin, M.-J. Li, and C.-J. Ho, pH-dependent secondary conformation of the peptide hormone leptin in different buffer solutions, Artif. Cells Blood Substit. Immobil. Biotechol. 27(2), 119–134 (1999).

    CAS  Google Scholar 

  21. 21. M. S. Ricci, C. A. Sarkar, E. M. Fallon, D. A. Lauffenburger, and D. N. Brems. pH dependence of structural stability of interleukin-2 and granulocyte colony-stimulating factor, Protein Sci. 12(5), 1030–1038 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. 22. L. D. Ward, J. G. Zhang, G. Checkley, B. Preston, and R. J. Simpson, Effect of pH and denaturants on the folding and stability of murine interleukin-6, Protein Sci. 2(8), 1291–1300 (1993).

    PubMed  CAS  Google Scholar 

  23. 23. M. S. Ricci and D. N. Brems, Common structural stability properties of 4-helical bundle cytokines: Possible physiological and pharmaceutical consequences, Curr. Pharm. Design, 10:3901–3911 (2004).

    Article  CAS  Google Scholar 

  24. 24. S. B. Heymsfield, A. S. Greenberg, K. Fujioka, R. M. Dixon, R. Kushner, T. Hunt, J. A. Lubina, J. Patane, B. Self, P. Hunt, and M. McCamish, Recombinant leptin for weight loss in obese and lean adults: A randomized, controlled, dose-escalation trial, J. Am. Med. Assoc. 282(16), 1568–1575 (1999).

    Article  CAS  Google Scholar 

  25. 25. I. S. Farooqi, G. Matarese, G. M. Lord, J. M. Keogh, E. Lawrence, C. Agwu, V. Sanna, S. A. Jebb, F. Perna, S. Fontana, R. I. Lechler, A. M. DePaoli, and S. O'Rahilly, Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency, J. Clin. Invest. 110(8), 1093–1103 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. 26. G.-M. Wu, D. Hummel, and A. Herman, Analysis of the solution behavior of protein pharmaceuticals by laser light scattering photometry, in Therapeutic Protein and Peptide Formulation and Delivery (Washington, DC: American Chemical Society Symposium Series 675, 1997).

    Google Scholar 

  27. 27. G. D. Rose, A. R. Geselowitz, G. J. Lesser, R. H. Lee, and M. H. Zehfus, Hydrophobicity of amino acid residues in globular proteins, Science 229(4716), 834–838 (1985).

    Article  PubMed  CAS  Google Scholar 

  28. 28. J. L. Fauchère and V. Pliska, Hydrophobic parameters pi of amino-acid side chains from the partitioning of N-acetyl-amino acid amides, Eur. J. Med. Chem. 18, 369–375 (1983).

    Google Scholar 

  29. 29. D. Eisenberg, R. M. Weiss, T. C. Terwilliger, and W. Wilcox, Hydrophobic moments and protein structure, Faraday Symp. Chem. Soc. 17, 109–120 (1982).

    Article  Google Scholar 

  30. 30. P. Horowitz and N. L. Criscimagna, Low concentrations of guanidinium chloride expose apolar surfaces and cause differential perturbation in catalytic intermediates of rhodanese, J. Biol. Chem. 261(33), 15652–15658 (1986).

    PubMed  CAS  Google Scholar 

  31. 31. N. A. Rodionova, G. V. Semisotnov, V. P. Kutyshenko, V. N. Uverskii, and I. A. Bolotina, Staged equilibrium of carbonic anhydrase unfolding in strong denaturants, Mol. Biol. (Mosk) 23(3), 683–692 (1989).

    CAS  Google Scholar 

  32. 32. E. H. Strickland, Aromatic contributions to circular dichroism spectra of proteins, CRC Crit. Rev. Biochem. 2(1), 113–175 (1974).

    PubMed  CAS  Google Scholar 

  33. 33. D. C. Howey, R. R. Bowsher, R. L. Brunelle, and J. R. Woodworth, [Lys(B28), Pro(B29)]-Human insulin: a rapidly absorbed analog of human insulin, Diabetes 43(3), 396–402 (1994).

    Article  PubMed  CAS  Google Scholar 

  34. 34. N. C. Kaarsholm, K. Norris, R. J. Jorgensen, J. Mikkelsen, S. Ludvigsen, O. H. Olsen, A. R. Sorensen, and S. Havelund, Engineering stability of the insulin monomer fold with application to structure-activity relationships, Biochem. 32(40), 10773–10778 (1993).

    Article  CAS  Google Scholar 

  35. 35. M. Ishikawa, H. Iijima, R. Satake-Ishikawa, H. Tsumura, A. Iwamatsu, T. Kadoya, Y. Shimada, H. Fukamachi, K. Kobayashi, S. Matsuki, and K. Asano, The substitution of cysteine 17 of recombinant human G-CSF with alanine greatly enhanced its stability, Cell Struct. Funct. 17(1), 61–65 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. 36. T. Arakawa, S. J. Prestrelski, L. O. Narhi, T. C. Boone, and W. C. Kenney, Cysteine 17 of recombinant human granulocyte-colony stimulating factor is partially solvent-exposed, J. Protein Chem. 12(5), 525–531 (1993).

    Article  PubMed  CAS  Google Scholar 

  37. 37. B. Bishop, D. C. Koay, A. C. Sartorelli, and L. Regan, Reengineering granulocyte colony-stimulating factor for enhanced stability, J. Biol. Chem. 276(36), 33465–33470 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. 38. S. R. Lehrman, J. L. Tuls, H. A. Havel, R. J. Haskell, S. D. Putnam, and C. S. Tomich, Site-directed mutagenesis to probe protein folding: Evidence that the formation and aggregation of a bovine growth hormone folding intermediate are dissociable processes, Biochem. 30(23), 5777–5784 (1991).

    Article  CAS  Google Scholar 

  39. 39. P. K. Tsai, D. B. Volkin, J. M. Dabora, K. C. Thompson, M. W. Bruner, J. O. Gress, B. Matuszewska, M. Keogan, J. V. Bondi, and C. R. Middaugh, Formulation design of acidic fibroblast growth factor, Pharm. Res. 10(5), 649–659 (1993).

    Article  PubMed  CAS  Google Scholar 

  40. 40. R. L. Remmele Jr, N. S. Nightlinger, S. Srinivasan, and W. R. Gombotz, Interleukin-1 receptor (IL-1R) liquid formulation development using differential scanning calorimetry, Pharm. Res. 15(2), 200–208 (1998).

    Article  PubMed  CAS  Google Scholar 

  41. 41. A. V. Filikov, R. J. Hayes, P. Luo, D. M. Stark, C. Chan, A. Kundu, and B. I. Dahiyat, Computational stabilization of human growth hormone, Protein Sci. 11(6), 1452–1461 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. 42. P. Luo, R. J. Hayes, C. Chan, D. M. Stark, M. Y. Hwang, J. M. Jacinto, P. Juvvadi, H. S. Chung, A. Kundu, M. L. Ary, and B. I. Dahiyat, Development of a cytokine analog with enhanced stability using computational ultrahigh throughput screening, Protein Sci. 11(5), 1218–1226 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. 43. J. M. Sturtevant, M. H. Yu, C. Haase-Pettingell, and J. King, Thermostability of temperature-sensitive folding mutants of the P22 tailspike protein, J. Biol. Chem. 264(18), 10693–10698 (1989).

    PubMed  CAS  Google Scholar 

  44. 44. B. Fane, R. Villafane, A. Mitraki, and J. King, Identification of global suppressors for temperature-sensitive folding mutations of the P22 tailspike protein, J. Biol. Chem. 266(18), 11640–11648 (1991).

    PubMed  CAS  Google Scholar 

  45. 45. M. Danner and R. Seckler, Mechanism of phage P22 tailspike protein folding mutations, Protein Sci. 2(11), 1869–1881 (1993).

    PubMed  CAS  Google Scholar 

  46. 46. C. Haase-Pettingell and J. King, Prevalence of temperature sensitive folding mutations in the parallel beta coil domain of the phage P22 tailspike endorhamnosidase, J. Mol. Biol. 267(1), 88–102 (1997).

    Article  PubMed  CAS  Google Scholar 

  47. 47. B. A. Chrunyk, J. Evans, J. Lillquist, P. Young, and R. Wetzel, Inclusion body formation and protein stability in sequence variants of interleukin-1β, J. Biol. Chem. 268(24), 18053–18061 (1993).

    PubMed  CAS  Google Scholar 

  48. 48. R. Wetzel, L. J. Perry, and C. Veilleux, Mutations in human interferon-gamma affecting inclusion body formation identified by a general immunochemical screen, Bio/Tech. 9(8), 731–737 (1991).

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Ricci, M.S., Pallitto, M.M., Narhi, L.O., Boone, T., Brems, D.N. (2006). Mutational Approach to Improve Physical Stability of Protein Therapeutics Susceptible to Aggregation. In: Misbehaving Proteins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36063-8_15

Download citation

Publish with us

Policies and ethics