Skip to main content
  • 728 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, A. L., Cresswell, P. (2004) Cellular mechanisms governing cross-presentation of exogenous antigens. Nat. Immunol. 5:678–684.

    PubMed  CAS  Google Scholar 

  • Allan, S. M., Rothwell, N. J. (2001) Cytokines and acute neurodegeneration. Nat. Rev. Neurosci. 2:734–744.

    PubMed  CAS  Google Scholar 

  • Babbe, H., Roers, A., Waisman, A., et al. (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192:393–404.

    PubMed  CAS  Google Scholar 

  • Balashov, K. E., Rottman, J. B., Weiner, H. L., Hancock, W. W. (1999) CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc. Natl. Acad. Sci. U S A 96:6873–6878.

    PubMed  CAS  Google Scholar 

  • Battistini, L., Piccio, L., Rossi, B., et al. (2003) CD8+ T cells from patients with acute multiple sclerosis display selective increase of adhesiveness in brain venules: a critical role for P-selectin glycoprotein ligand-1. Blood 101:4775–4782.

    PubMed  CAS  Google Scholar 

  • Baumann, N., Pham-Dinh, D. (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol. Rev. 81:871–927.

    PubMed  CAS  Google Scholar 

  • Becher, B., Durell, B. G., Miga, A. V., et al. (2001) The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J. Exp. Med. 193:967–974.

    PubMed  CAS  Google Scholar 

  • Ben-Nun, A., Wekerle, H., Cohen, I. R. (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol. 11:195–199.

    PubMed  CAS  Google Scholar 

  • Bevan, M. J. (2004) Helping the CD8(+) T-cell response. Nat. Rev. Immunol. 4:595–602.

    PubMed  CAS  Google Scholar 

  • Biddison, W. E., Taub, D. D., Cruikshank, W. W., et al. (1997) Chemokine and matrix metalloproteinase secretion by myelin proteolipid protein-specific CD8+ T cells: potential roles in inflammation. J. Immunol. 158:3046–3053.

    PubMed  CAS  Google Scholar 

  • Bitsch, A., Schuchardt, J., Bunkowski, S., et al. (2000) Acute axonal injury in multiple sclerosis: correlation with demyelination and inflammation. Brain 123(Pt 6):1174–1183.

    PubMed  Google Scholar 

  • Boon, M., Nolte, I. M., Bruinenberg, M., et al. (2001) Mapping of a susceptibility gene for multiple sclerosis to the 51 kb interval between G511525 and D6S1666 using a new method of haplotype sharing analysis. Neurogenetics 3:221–230.

    PubMed  CAS  Google Scholar 

  • Booss, J., Esiri, M. M., Tourtellotte, W. W., Mason, D. Y. (1983) Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J. Neurol. Sci. 62:219–232.

    PubMed  CAS  Google Scholar 

  • Brabb, T., von Dassow, P., Ordonez, N., et al. (2000) In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J. Exp. Med. 192:871–880.

    PubMed  CAS  Google Scholar 

  • Calzascia, T., Di Berardino-Besson, W., Wilmotte, R., et al. (2003) Cutting edge: cross-presentation as a mechanism for efficient recruitment of tumor-specific CTL to the brain. J. Immunol. 171:2187–2191.

    PubMed  CAS  Google Scholar 

  • Calzascia, T., Masson, F., De Berardino-Besson, W., et al. (2005) Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs. Immunity 22:175–184.

    PubMed  CAS  Google Scholar 

  • Carson, M. J., Reilly, C. R., Sutcliffe, J. G., Lo, D. (1999) Disproportionate recruitment of CD8+ T cells into the central nervous system by professional antigen-presenting cells. Am. J. Pathol. 154:481–494.

    PubMed  CAS  Google Scholar 

  • Chang, T. T., Sobel, R. A., Wei, T., et al. (2003) Recovery from EAE is associated with decreased survival of encephalitogenic T cells in the CNS of B7–1/B7–2-deficient mice. Eur. J. Immunol. 33:2022–2032.

    PubMed  CAS  Google Scholar 

  • Christensen, J. E., Nansen, A., Moos, T., et al. (2004) Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3. J. Neurosci. 24:4849–4858.

    PubMed  CAS  Google Scholar 

  • Coles, A. J., Wing, M. G., Molyneux, P., et al. (1999) Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann. Neurol. 46:296–304.

    PubMed  CAS  Google Scholar 

  • Crawford, M. P., Yan, S. X., Ortega, S. B., et al. (2004) High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood 103:4222–4231.

    PubMed  CAS  Google Scholar 

  • DiLorenzo, T. P., Serreze, D. V. (2005) The good turned ugly: immunopathogenic basis for dianetogenic CD8+ T cells in NOD mice. Immunol. Rev. 204:250–263.

    PubMed  CAS  Google Scholar 

  • Dressel, A., Chin, J. L., Sette, A., et al. (1997) Autoantigen recognition by human CD8 T cell clones: enhanced agonist response induced by altered peptide ligands. J. Immunol. 159:4943–4951.

    PubMed  CAS  Google Scholar 

  • Ebers, G. C., Sadovnick, A. D., Risch, N. J. (1995) A genetic basis for familial aggregation in multiple sclerosis: Canadian Collaborative Study Group. Nature 377:150–151.

    PubMed  CAS  Google Scholar 

  • Ebers, G. C., Kukay, K., Bulman, D. E., et al. (1996) A full genome search in multiple sclerosis. Nat. Genet. 13:472–476.

    PubMed  CAS  Google Scholar 

  • Ferguson, B., Matyszak, M. K., Esiri, M. M., Perry, V. H. (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120(Pt 3):393–399.

    PubMed  Google Scholar 

  • Fogdell-Hahn, A., Ligers, A., Gronning, M., et al. (2000) Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 55:140–148.

    PubMed  CAS  Google Scholar 

  • Ford, M. L., Evavold, B. D. (2005) Specificity, magnitude, and kinetics of MOG-specific CD8(+) T cell responses during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 35:76–85.

    PubMed  CAS  Google Scholar 

  • Friese, M. A., Fugger, L. (2005) Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128(Pt 8):1747–1763. Erratum in Brain 2005;128(Pt 9):2215.

    PubMed  Google Scholar 

  • Friese, M. A., Montalban, X., Wilcox, N., Bell, J. I., Martin, R., Fugger, L. (2006) The value of animal models for drug development in multiple sclerosis, Brain 129:1940–1952.

    PubMed  Google Scholar 

  • Gay, F. W., Drye, T. J., Dick, G. W., Esiri, M. M. (1997) The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis: identification and characterization of the primary demyelinating lesion. Brain 120(Pt 8):1461–1483.

    PubMed  Google Scholar 

  • Gobin, S. J., Montagne, L., Van Zutphen, M., et al. (2001) Upregulation of transcription factors controlling MHC expression in multiple sclerosis lesions. Glia 36:68–77.

    PubMed  CAS  Google Scholar 

  • Goverman, J., Perchellet, A., Huseby, E. S. (2005) The role of CD8(+) T cells in multiple sclerosis and its animal models. Curr. Drug Targets Inflamm. Allergy 4:239–245.

    PubMed  CAS  Google Scholar 

  • Greter, M., Heppner, F. L., Lemos, M. P., et al. (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11:328–334.

    PubMed  CAS  Google Scholar 

  • Gronski, M. A., Boulter, J. M., Moskophidis, D., et al. (2004) TCR affinity and negative regulation limit autoimmunity. Nat. Med. 10:1234–1239.

    PubMed  CAS  Google Scholar 

  • Harbo, H. F., Lie, B. A., Sawcer, S., et al. (2004) Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens 63:237–247.

    PubMed  CAS  Google Scholar 

  • Hauser, S. L., Bhan, A. K., Gilles, F., et al. (1986) Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann. Neurol. 19:578–587.

    PubMed  CAS  Google Scholar 

  • Hayashi, T., Morimoto, C., Burks, J. S., et al. (1988) Dual-label immunocytochemistry of the active multiple sclerosis lesion: major histocompatibility complex and activation antigens. Ann. Neurol. 24:523–531.

    PubMed  CAS  Google Scholar 

  • Heath, W. R., Carbone, F. R. (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19:47–64.

    PubMed  CAS  Google Scholar 

  • Hemmer, B., Archelos, J. J., Hartung, H. P. (2002) New concepts in the immunopathogenesis of multiple sclerosis. Nat. Rev. Neurosci. 3:291–301.

    PubMed  CAS  Google Scholar 

  • Hernandez, J., Aung, S., Marquardt, K., Sherman, L. A. (2002) Uncoupling of proliferative potential and gain of effector function by CD8(+) T cells responding to self-antigens. J. Exp. Med. 196:323–333.

    PubMed  CAS  Google Scholar 

  • Hickey, W. F. (1999) Leukocyte traffic in the central nervous system: the participants and their roles. Semin. Immunol. 11:125–137.

    PubMed  CAS  Google Scholar 

  • Hickey, W. F., Kimura, H. (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:290–292.

    PubMed  CAS  Google Scholar 

  • Hoftberger, R., Aboul-Enein, F., Brueck, W., et al. (2004) Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions. Brain Pathol. 14:43–50.

    PubMed  CAS  Google Scholar 

  • Hohlfeld, R., Wiendl, H. (2001) The ups and downs of multiple sclerosis therapeutics. Ann. Neurol 49:281–284.

    PubMed  CAS  Google Scholar 

  • Honma, K., Parker, K. C., Becker, K. G., et al. (1997) Identification of an epitope derived from human proteolipid protein that can induce autoreactive CD8+ cytotoxic T lymphocytes restricted by HLA-A3: evidence for cross-reactivity with an environmental microorganism. J. Neuroimmunol. 73:7–14.

    PubMed  CAS  Google Scholar 

  • Howard, L. M. Miga, A. J., Vanderlugt, C. L., et al. (1999) Mechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis. J. Clin. Invest. 103:281–290.

    PubMed  CAS  Google Scholar 

  • Huseby, E. S., Ohlen, C., Goverman, J. (1999) Cutting edge: myelin basic protein-specific cytotoxic T cell tolerance is maintained in vivo by a single dominant epitope in H-2k mice. J. Immunol. 163:1115–1118.

    PubMed  CAS  Google Scholar 

  • Huseby, E. S., Liggitt, D., Brabb, T., et al. (2001) A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J. Exp. Med. 194:669–676.

    PubMed  CAS  Google Scholar 

  • Huseby, E. S., White, J., Crawford, F., et al. (2005) How the T cell repertoire becomes peptide and MHC specific. Cell 122:247–260.

    PubMed  CAS  Google Scholar 

  • Jacobsen, M., Cepok, S., Quak, E., et al. (2002) Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125:538–550.

    PubMed  Google Scholar 

  • Jensen, J., Krakauer, M., Sellebjerg, F. (2001) Increased T cell expression of CD154 (CD40-ligand) in multiple sclerosis. Eur. J. Neurol. 8:321–328.

    PubMed  CAS  Google Scholar 

  • Jersild, C., Svejgaard, A., Fog, T. (1972) HL-A antigens and multiple sclerosis. Lancet 1:1240–1241.

    PubMed  CAS  Google Scholar 

  • Jiang, H., Zhang, S. I., Pernis, B. (1992) Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science 256:1213–1215.

    PubMed  CAS  Google Scholar 

  • Joly, E., Mucke, L., Oldstone, M. B. (1991) Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science 253:1283–1285.

    PubMed  CAS  Google Scholar 

  • Jurewicz, A., Biddison, W. E., Antel, J. P. (1998) MHC class I-restricted lysis of human oligodendrocytes by myelin basic protein peptide-specific CD8 T lymphocytes. J. Immunol. 160:3056–3059.

    PubMed  CAS  Google Scholar 

  • Karman, J., Ling, C., Sandor, M., Fabry, Z. (2004) Initiation of immune responses in brain is promoted by local dendritic cells. J. Immunol. 173:2353–2361.

    PubMed  CAS  Google Scholar 

  • Kivisakk, P., Mahad D. J., Callahan, M. K., et al. (2003) Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl. Acad. Sci. U S A 100:8389–8394.

    PubMed  Google Scholar 

  • Kivisakk, P., Mahad, D. J., Callahan, M. K., et al. (2004) Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann. Neurol. 55:627–638.

    PubMed  CAS  Google Scholar 

  • Kleinschmidt-DeMasters, B. K., Tyler, K. L. (2005) Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N. Engl. J. Med. 353:369–374.

    PubMed  CAS  Google Scholar 

  • Koh, D. R., Fung-Leung, W. P., Ho, A., et al. (1992) Less mortality but more relapses in experimental allergic encephalomyelitis in CD8-/- mice. Science 256:1210–1213.

    PubMed  CAS  Google Scholar 

  • Kornek, B., Storch, M. K., Weissert, R., et al. (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 157:267–276.

    PubMed  CAS  Google Scholar 

  • Krogsgaard, M., Wucherpfennig, K. W., Cannella, B., et al. (2000) Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85–99 complex. J. Exp. Med. 191:1395–1412.

    PubMed  CAS  Google Scholar 

  • Kuhlmann, T., Lingfeld, G., Bitsch, A., et al. (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212.

    PubMed  Google Scholar 

  • Kurts, C., Sutherland, R. M., Davey, G., et al. (1999) CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose. Proc. Natl. Acad. Sci. U S A 96:12703–12707.

    PubMed  CAS  Google Scholar 

  • Kutzelnigg, A., Lucchinetti, C. F., Stadelmann, C., et al. (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712.

    PubMed  Google Scholar 

  • Langer-Gould, A., Atlas, S. W., Green, A. J., et al. (2005) Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N. Engl. J. Med. 353:375–381.

    PubMed  CAS  Google Scholar 

  • Laplaud, D. A., Ruiz, C., Wiertleewski, S., et al. (2004) Blood T-cell receptor beta chain transcriptome in multiple sclerosis: characterization of the T cells with altered CDR3 length distribution. Brain 127:981–995.

    PubMed  Google Scholar 

  • Lassmann, H. (1983) Comparative neuropathology of chronic experimental allergic encephalomyelitis and multiple sclerosis. Schriftenr. Neurol. 25:1–135.

    PubMed  CAS  Google Scholar 

  • Lassmann, H., Ransohoff, R. M. (2004) The CD4-Th1 model for multiple sclerosis: a critical [correction of crucial] re-appraisal. Trends Immunol. 25:132–137.

    PubMed  CAS  Google Scholar 

  • Logunova, N. N., Viret, C., Pobezinsky, L. A., et al. (2005) Restricted MHC-peptide repertoire predisposes to autoimmunity. J. Exp. Med. 202:73–84.

    PubMed  CAS  Google Scholar 

  • Madsen, L. S., Andersson, E. C., Jansson, L., et al. (1999) A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor. Nat. Genet. 23:343–347.

    PubMed  CAS  Google Scholar 

  • Marrosu, M., Murru, M. R., Costa, G., et al. (1997) Multiple sclerosis in Sardinia is associated and in linkage disequilibrium with HLA-DR3 and -DR4 alleles. Am. J. Hum. Genet. 61:454–457.

    PubMed  CAS  Google Scholar 

  • Marrosu, M. G., Murru, R., Murru, M. R., et al. (2001) Dissection of the HLA association with multiple sclerosis in the founder isolated population of Sardinia. Hum. Mol. Genet. 10:2907–2916.

    PubMed  CAS  Google Scholar 

  • McMahon, E. J., Bailey, S. L., Castenada, C. V., et al. (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11:335–339.

    PubMed  CAS  Google Scholar 

  • Medana, I., Li, Z., Flugel, A., et al. (2001a) Fas ligand (CD95L) protects neurons against perforin-mediated T lymphocyte cytotoxicity. J. Immunol. 167:674–681.

    PubMed  CAS  Google Scholar 

  • Medana, I., Martinic, M. A., Wekerle, H., Neumann, H. (2001b) Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. Am. J. Pathol. 159:809–815.

    PubMed  CAS  Google Scholar 

  • Mendel, I., Kerlero de Rosbo, N., Ben-Nun, A. (1996) Delineation of the minimal encephalitogenic epitope within the immunodominant region of myelin oligodendrocyte glycoprotein: diverse V beta gene usage by T cells recognizing the core epitope encephalitogenic for T cell receptor V beta b and T cell receptor V beta a H-2b mice. Eur. J. Immunol. 26:2470–2479.

    CAS  Google Scholar 

  • Miller, D. H., Khan, O. A., Sheremata, W. A., et al. (2003) A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 348:15–23.

    PubMed  CAS  Google Scholar 

  • Monaco, M. C., Shin, J., Major, E. O. (1998) JC virus infection in cells from lymphoid tissue. Dev. Biol. Stand. 94:115–122.

    PubMed  CAS  Google Scholar 

  • Muller, D. M., Pender, M. P., Greer, J. M. (2004) Chemokines and chemokine receptors: potential therapeutic targets in multiple sclerosis. Curr. Drug Targets Inflamm. Allergy 3:279–290.

    PubMed  CAS  Google Scholar 

  • Naito, S., Namerow, N., Mickey, M. R., Terasaki, P. I. (1972) Multiple sclerosis: association with HL-A3. Tissue Antigens 2:1–4.

    PubMed  CAS  Google Scholar 

  • Nepom, G. T., Erlich, H. (1991) MHC class-II molecules and autoimmunity. Annu. Rev. Immunol. 9:493–525.

    PubMed  CAS  Google Scholar 

  • Neumann, H., Cavalie, A., Jenne, D. E., Wekerle, H. (1995) Induction of MHC class I genes in neurons. Science 269:549–552.

    PubMed  CAS  Google Scholar 

  • Neumann, H., Schmidt, H., Cavalie, A., et al. (1997) Major histocompatibility complex (MHC) class I gene expression in single neurons of the central nervous system: differential regulation by interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha. J. Exp. Med. 185:305–316.

    PubMed  CAS  Google Scholar 

  • Neumann, H., Misgeld, T., Matsumuro, K., Wekerle, H. (1998) Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc. Natl. Acad. Sci. U S A 95:5779–5784.

    PubMed  CAS  Google Scholar 

  • Neumann, H., Medana, I. M., Bauer, J., Lassmann, H. (2002) Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 25:313–319.

    PubMed  CAS  Google Scholar 

  • Niland, B., Banki, K., Biddison, W. E., Perl, A. (2005) CD8+ T cell-mediated HLA-A*0201-restricted cytotoxicity to transaldolase peptide 168–176 in patients with multiple sclerosis. J. Immunol. 175:8365–8378.

    PubMed  CAS  Google Scholar 

  • Odeberg, J., Piao, J. H., Samuelsson, E. B., et al. (2005) Low immunogenicity of in vitro-expanded human neural cells despite high MHC expression. J. Neuroimmunol. 161:1–11.

    PubMed  CAS  Google Scholar 

  • Oksenberg, J. R., Panzara, M. A., Begovich, A. B., et al. (1993) Selection for T-cell receptor V beta-D beta-J beta gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 362:68–70.

    PubMed  CAS  Google Scholar 

  • Olerup, O., Hillert, J. (1991) HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 38:1–15.

    PubMed  CAS  Google Scholar 

  • Paolillo, A., Coles, A. J., Molyneux, P. D., et al. (1999) Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H. Neurology 53:751–757.

    PubMed  CAS  Google Scholar 

  • Pashenkov, M., Link, H. (2002) Dendritic cells and immune responses in the central nervous system. Trends Immunol. 23:69–70; author reply 70.

    PubMed  CAS  Google Scholar 

  • Pashenkov, M., Huang, Y. M., Kostulas, V., et al. (2001) Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 124:480–492.

    PubMed  CAS  Google Scholar 

  • Pouly, S., Becher, B., Blain, M., Antel, J. P. (2000) Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J. Neuropathol. Exp. Neurol. 59:280–286.

    PubMed  CAS  Google Scholar 

  • Rall, G. F., Mucke, L., Oldstone, M. B. (1995) Consequences of cytotoxic T lymphocyte interaction with major histocompatibility complex class I-expressing neurons in vivo. J. Exp. Med. 182:1201–1212.

    PubMed  CAS  Google Scholar 

  • Ramakrishna, C., Stohlman, S. A., Atkinson, R. A., et al. (2004) Differential regulation of primary and secondary CD8+ T cells in the central nervous system. J. Immunol. 173:6265–6273.

    PubMed  CAS  Google Scholar 

  • Ransohoff, R. M., Estes, M. L. (1991) Astrocyte expression of major histocompatibility complex gene products in multiple sclerosis brain tissue obtained by stereotactic biopsy. Arch. Neurol. 48:1244–1246.

    PubMed  CAS  Google Scholar 

  • Ransohoff, R. M., Kivisakk, P., Kidd, G. (2003) Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol. 3:569–581.

    PubMed  CAS  Google Scholar 

  • Rensing-Ehl, A., Malipiero, U., Irmler, M., et al. (1996) Neurons induced to express major histocompatibility complex class I antigen are killed via the perforin and not the Fas (APO-1/CD95) pathway. Eur. J. Immunol. 26:2271–2274.

    PubMed  CAS  Google Scholar 

  • Rioux, J. D., Abbas, A. K. (2005) Paths to understanding the genetic basis of autoimmune disease. Nature 435:584–589.

    PubMed  CAS  Google Scholar 

  • Rubio, J. P., Bahio, M., Butzkueven, H., et al. (2002) Genetic dissection of the human leukocyte antigen region by use of haplotypes of Tasmanians with multiple sclerosis. Am. J. Hum. Genet. 70:1125–1137.

    PubMed  CAS  Google Scholar 

  • Ruijs, T. C., Freedman, M. S., Grenier, Y. G., et al. (1990) Human oligodendrocytes are susceptible to cytolysis by major histocompatibility complex class I-restricted lymphocytes. J. Neuroimmunol. 27:89–97.

    PubMed  CAS  Google Scholar 

  • Scarpini, E., Galimberti, D., Baron, P., et al. (2002) IP-10 and MCP-1 levels in CSF and serum from multiple sclerosis patients with different clinical subtypes of the disease. J. Neurol. Sci. 195:41–46.

    PubMed  CAS  Google Scholar 

  • Seder, R. A., Ahmed, R. (2003) Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 4:835–842.

    PubMed  CAS  Google Scholar 

  • Serafini, B., Columba-Cabezas, S., Di Rosa, F., Aloisi, F. (2000) Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am. J. Pathol. 157:1991–2002.

    PubMed  CAS  Google Scholar 

  • Skulina, C., Schmidt, S., Dornmair, K., et al. (2004) Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc. Natl. Acad. Sci. U S A 101:2428–2433.

    PubMed  CAS  Google Scholar 

  • Smith, C. M., Wilson, N. S., Waithman, J., et al. (2004) Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat. Immunol. 5:1143–1148.

    PubMed  CAS  Google Scholar 

  • Sollid, L. M., Thorsby, E. (1993) HLA susceptibility genes in celiac disease: genetic mapping and role in pathogenesis. Gastroenterology 105:910–922.

    PubMed  CAS  Google Scholar 

  • Sollid, L. M., Markussen, G., Ek, J., et al. (1989) Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J. Exp. Med. 169:345–350.

    PubMed  CAS  Google Scholar 

  • Sriram, S., Steiner, I. (2005) Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Ann. Neurol. 58:939–945.

    PubMed  CAS  Google Scholar 

  • Stastny, P. (1978) Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N. Engl. J. Med. 298:869–871.

    PubMed  CAS  Google Scholar 

  • Steinman, L. (1999) Assessment of animal models for MS and demyelinating disease in the design of rational therapy. Neuron 24:511–514.

    PubMed  CAS  Google Scholar 

  • Steinman, L. (2001) Myelin-specific CD8 T cells in the pathogenesis of experimental allergic encephalitis and multiple sclerosis. J. Exp. Med. 194:F27–30.

    PubMed  CAS  Google Scholar 

  • Su, S. B., Silver, P. B., Grajewski, R. S., et al. (2005) Essential role of the MyD88 pathway, but nonessential roles of TLRs 2, 4, and 9, in the adjuvant effect promoting Th1-mediated autoimmunity. J. Immunol. 175:6303–6310.

    PubMed  CAS  Google Scholar 

  • Sun, D., Whitaker, J. N., Huang, Z., et al. (2001) Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol. 166:7579–7587.

    PubMed  CAS  Google Scholar 

  • Sun, D., Zhang, Y., Wei, B., et al. (2003) Encephalitogenic activity of truncated myelin oligodendrocyte glycoprotein (MOG) peptides and their recognition by CD8+ MOG-specific T cells on oligomeric MHC class I molecules. Int. Immunol. 15:261–268.

    PubMed  CAS  Google Scholar 

  • Sun, J. C., Williams, M. A., Bevan, M. J. (2004) CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat. Immunol. 5:927–933.

    PubMed  CAS  Google Scholar 

  • Trapp, B. D., Peterson, J., Ransohoff, R. M., et al. (1998) Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338:278–285.

    PubMed  CAS  Google Scholar 

  • Tsuchida, T., Parker, K. C., Turner, R. V., et al. (1994) Autoreactive CD8+ T-cell responses to human myelin protein-derived peptides. Proc. Natl. Acad. Sci. U S A 91:10859–10863.

    PubMed  CAS  Google Scholar 

  • Tyznik, A. J., Sun, J. C., Bevan, M. J. (2004) The CD8 population in CD4-deficient mice is heavily contaminated with MHC class II-restricted T cells. J. Exp. Med. 199:559–565.

    PubMed  CAS  Google Scholar 

  • Ubogu, E. E., Cossoy, M. B., Ransohoff, R. M. (2005) The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol. Sci. 27:48–55.

    PubMed  Google Scholar 

  • Van Assche, G., Ban Ranst, M., Sciot, R., et al. (2005) Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N. Engl. J. Med. 353:362–368.

    PubMed  Google Scholar 

  • Van Oosten, B. W., Lai, M., Hodgkinson, S., et al. (1997) Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49:351–357.

    PubMed  Google Scholar 

  • Weller, R. O. (1998) Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J. Neuropathol. Exp. Neurol. 57:885–894.

    PubMed  CAS  Google Scholar 

  • Weninger, W., Manjunath, N., von Andrian, U. H. (2002) Migration and differentiation of CD8+ T cells. Immunol. Rev. 186:221–233.

    PubMed  CAS  Google Scholar 

  • Yednock, T. A., Cannon, C., Fritz, L. C., et al. (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356:63–66.

    PubMed  CAS  Google Scholar 

  • Zamvil, S., Nelson, P., Trotter, J., et al. (1985a) T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317:355–358.

    PubMed  CAS  Google Scholar 

  • Zamvil, S. S., Nelson, P. A., Mitchell, D. J., et al. (1985b) Encephalitogenic T cell clones specific for myelin basic protein: an unusual bias in antigen recognition. J. Exp. Med. 162:2107–2124.

    PubMed  CAS  Google Scholar 

  • Zang, Y. C., Li, S., Rivera, V. M., et al. (2004) Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis. J. Immunol. 172:5120–5127.

    PubMed  CAS  Google Scholar 

  • Zehntner, S. P., Brisebois, M., Tran, E., et al. (2003) Constitutive expression of a costimulatory ligand on antigen-presenting cells in the nervous system drives demyelinating disease. FASEB J. 17:1910–1912.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Friese, M.A., Fugger, L. (2007). CD8+ T Cells in Multiple Sclerosis. In: Zhang, J. (eds) Immune Regulation and Immunotherapy in Autoimmune Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36003-4_13

Download citation

Publish with us

Policies and ethics