Skip to main content

How to Model Emergence: Non-Traditional Methods

  • Chapter
  • 965 Accesses

Part of the book series: Contemporary Systems Thinking ((CST))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhiezer, A. and Péletminski, S., 1980. Les méthodes de la physique statistique. Mir, Moscow.

    Google Scholar 

  • Akhmediev, N. and Soto-Crespo, J.M., 2003. Exploding solitons and Shil’nikov’s theorem. Physics Letters A, 317: 287–292.

    CAS  MathSciNet  ADS  Google Scholar 

  • Akhromeeva, T.S., Kurdyumov, S.P., Malinetskii, G.G. and Samarskii, A.A., 1984. Classification of two-component systems near a bifurcation point. Soviet Physics Doklady, 29:911–913.

    Google Scholar 

  • Alfinito, E., Viglione, R.G. and Vitiello, G., 2001. The decoherence criterion. Modern Physics Letters B, 15: 127–136.

    CAS  ADS  Google Scholar 

  • Amit, D.J., 1984. Field Theory, the Renormalization Group, and Critical Phenomena. World Scientific, Singapore.

    Google Scholar 

  • Amit, D.J., 1989. Modeling Brain Function. The world of Attractor Neural Networks. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Arnold, L., 1974. Stochastic Differential Equations: Theory and applications. Wiley, New York.

    MATH  Google Scholar 

  • Balashov, Y., 2002. What is a law of nature? The broken-symmetry story. Southern Journal of Philosophy, 40: 459–473.

    Google Scholar 

  • Banzhaf, W., Dittrich, P. and Rauhe, H., 1996. Emergent computation by catalytic reactions. Nanotechnology, 7: 1–8.

    Google Scholar 

  • Bartlett, P.L. and Anthony, M.M., 1999. Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Benfatto, G. and Gallavotti, G., 1995. Renormalization Group. Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  • Bianchini, M., Fiasconi, P., Gori, M. and Maggini, M., 1998. Optimal learning in artificial neural networks: A theoretical view. In C. Leondes (Ed.), Neural Network Systems Techniques and Applications (pp. 1–51). Academic Press, New York.

    Google Scholar 

  • Bishop, C.M., 1995. Neural networks for pattern recognition. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Bonabeau, E., Dorigo, M. and Theraulaz, G., 1999. Swarm Intelligence: From natural to artificial systems. Oxford University Press, Oxford, UK.

    MATH  Google Scholar 

  • Brading, K. and Castellani, E. (Eds.), 2003. Symmetries in physics: philosophical reflections. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Brown, L.M. and Cao, T.Y., 1991. Spontaneous breakdown of symmetry: its rediscovery and integration into quantum field theory. Historical Studies in the Physical and Biological Sciences, 21: 211–235.

    Google Scholar 

  • Burgess, C.P., 2000. Goldstone and pseudo-Goldstone bosons in nuclear, particle and condensed-matter physics. Physics Reports, 330: 193–261.

    CAS  ADS  Google Scholar 

  • Burks, A.W. (Ed.), 1970. Essays on Cellular Automata. Illinois University Press, Urbana, IL.

    MATH  Google Scholar 

  • Callen, H., 1960. Thermodynamics. Wiley, New York.

    MATH  Google Scholar 

  • Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G. and Bonabeau, E., 2001. Self-Organization in biological systems. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Cao, T.Y. (Ed.), 1999. Conceptual Foundations of Quantum Field Theory. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Carati, A. and Galgani, L., 2001. Theory of dynamical systems and the relations between classical and quantum mechanics. Foundations of Physics, 31: 69–87.

    MathSciNet  Google Scholar 

  • Cardy, J., 1996. Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Cariani, P., 1997. Emergence of new signal-primitives in neural networks. Intellectica, 2: 95–143.

    Google Scholar 

  • Carrillo, O., Ibañes, M., García-Ojalvo, J., Casademunt, J. and Sancho, J.M., 2003. Intrinsic noise-induced phase transitions: Beyond the noise interpretation. Physical Review E, 67:046110, 1–9.

    CAS  ADS  Google Scholar 

  • Castro, J.L., Mantas, C.J. and Benítez, J.M., 2000. Neural networks with a continuous squashing function in the output are universal approximators. Neural Networks, 13: 561–563.

    PubMed  CAS  Google Scholar 

  • Celeghini, E. and Rasetti, M., 2000. Bosons and environment. In R.C. Hilborn and G.M. Tino (Eds.). Spin-Statistics connection and commutation relations (pp. 59–66). American Institute of Physics, New York.

    Google Scholar 

  • Chaichian, M. and Demichev, A., 2001. Path Integrals in Physics. Volume 2: Quantum Field Theory, Statistical Physics and other modern applications. IOP Press, Bristol, UK.

    Google Scholar 

  • Chate, H. and Manneville, P., 1996. Phase diagram of the two-dimensional complex Ginzburg-Landau equation. Physica A, 224: 348–368.

    CAS  MathSciNet  ADS  Google Scholar 

  • Chou, H.-H. and Reggia, J.A., 1997. Emergence of self-replicating structures in a cellular automata space. Physica D, 110: 252–276.

    CAS  ADS  Google Scholar 

  • Chua, L.O. and Roska, T., 1993. The CNN Paradigm. IEEE Transactions on Circuits and Systems, 40: 147–156.

    MathSciNet  Google Scholar 

  • Chua, L.O. and Yang, L., 1988. Cellular Neural Networks: Theory and applications. IEEE Transactions on Circuits and Systems, 35: 1257–1290.

    MathSciNet  Google Scholar 

  • Clifton, R.K. and Halvorson, H.P., 2001. Entanglement and open systems in algebraic quantum field theory. Studies in the History and Philosophy of Modern Physics, 32: 1–31.

    MathSciNet  Google Scholar 

  • Codd, E.F., 1968. Cellular Automata. Academic Press, New York.

    MATH  Google Scholar 

  • Cohen-Tannoudji, C., Diu, B. and Laloë, F., 1977. Quantum Mechanics (2 voll.). Wiley, New York.

    Google Scholar 

  • Crasovan, L-C., Malomed, B.A. and Mihalache, D., 2001. Spinning solitons in cubic-quintic nonlinear media. PRAMANA’ Journal of Physics, 57: 1041–1059.

    ADS  Google Scholar 

  • Crook, N., olde Scheper, T. and Pathirana, V., 2003. Self-organised dynamic recognition states for chaotic neural networks. Information Sciences, 150: 59–75.

    MathSciNet  Google Scholar 

  • Crutchfield, J.P. and Mitchell, M., 1995. The evolution of emergent computation. Proceedings of the National Academy of Sciences USA, 92: 10742–10746.

    CAS  ADS  Google Scholar 

  • Dasgupta, D. (Ed.), 1999. Artificial Immune Systems and their applications. Springer, Berlin-Heidelberg-New York.

    MATH  Google Scholar 

  • Davydov, A.S., 1976. Quantum Mechanics. Pergamon Press, Oxford, UK.

    Google Scholar 

  • De Boer, J. and Uhlenbeck, G.E. (Eds.), 1962. Studies in statistical mechanics, vol.I. North Holland, Amsterdam.

    MATH  Google Scholar 

  • Derrida, B. and Stauffer, D., 1986. Phase transition in two dimensional Kaufmann cellular automata. Europhysics Letters, 2: 739–745.

    ADS  Google Scholar 

  • Doi, M., 1976. Second quantization representation for classical many-particle system. Journal of Physics A, 9: 1465–1477.

    Google Scholar 

  • Domany, E., Van Hemmen, J.L. and Schulten, K. (Eds.), 1996. Models of Neural Networks III: Association, Generalization, and Representation (Physics of Neural Networks). Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Domb, C., 1996. The critical point. Taylor and Francis, London.

    Google Scholar 

  • Dotsenko, V., 1994. An introduction to the theory of Spin Glasses and Neural Networks. World Scientific, Singapore.

    MATH  Google Scholar 

  • Drugowich de Felício, J.R. and Hipólito, O., 1985. Spontaneous symmetry breaking in a simple mechanical model. American Journal of Physics, 53: 690–693.

    ADS  Google Scholar 

  • Fiasconi, P., Gori, M. and Tesi, A., 1997. Successes and failures of backpropagation: A theoretical investigation. In O. Omidvar and C. Wilson (Eds.). Progress in Neural Networks (pp. 205–242). Alex Publishing, Norwood, NJ.

    Google Scholar 

  • Flierl, G., Grunbaum, D., Levin, S. and Olson, D., 1999. From individuals to aggregations: The interplay between behavior and physics. Journal of Theoretical Biology, 196: 397–454.

    PubMed  CAS  Google Scholar 

  • Fogedby, H.C., 1998. Soliton approach to the noisy Burgers equation. Steepest descent method. Physical Review E, 57: 4943–4968.

    CAS  MathSciNet  ADS  Google Scholar 

  • Fogedby, H.C. and Brandenburg, A., 2002. Solitons in the noisy Burgers equation. Physical Review E, 66: 016604, 1–9.

    MathSciNet  ADS  Google Scholar 

  • Forrest, S., 1990. Emergent computation. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Freeman, W.J., 2000. Neurodynamics: An Exploration of Mesoscopic Brain Dynamics. Springer, Berlin-Heidelberg-New York.

    MATH  Google Scholar 

  • Frisch, U., Hasslacher, B. and Pomeau, Y., 1986. Lattice-gas automata for the Navier-Stokes equation. Physical Review Letters, 56: 1505–1508.

    PubMed  CAS  ADS  Google Scholar 

  • Gale, D., 1998. Tracking the automatic ant and other mathematical explorations. Springer, New York.

    MATH  Google Scholar 

  • Gallavotti, G., 1985. Renormalization theory and ultraviolet stability via renormalization group methods. Reviews of Modern Physics, 57: 471–569.

    MathSciNet  ADS  Google Scholar 

  • García-Ojalvo, J. and Sancho, J.M., 1999. Noise in spatially extended systems. Springer, New York.

    MATH  Google Scholar 

  • Gard, T.G., 1988. Introduction to Stochastic Differential Equations. Marcel Dekker, New York.

    MATH  Google Scholar 

  • Gardiner, C.W., 1983. Handbook of Stochastic Methods for physics, chemistry and the natural sciences. Springer, Berlin-Heidelberg-New York.

    MATH  Google Scholar 

  • Gardner, M., 1970. Mathematical Games. The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223, n.4: 120–123.

    Google Scholar 

  • Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O. and Zeh, H.D., 1996. Decoherence and the appearance of a classical world in Quantum Theory. Springer, Berlin.

    MATH  Google Scholar 

  • Goldberg, D., 1989. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  • Goldenfeld, N., 1992. Lectures on phase transitions and the renormalization group. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Goldstone, J., Salam, A. and Weinberg, S., 1962. Broken symmetries. Physical Review, 127: 965–970.

    MathSciNet  ADS  Google Scholar 

  • Grasman, J., 1989. Asymptotic analysis of nonlinear systems with small stochastic perturbations. Mathematics and Computers in Simulation, 31: 41–54.

    MathSciNet  Google Scholar 

  • Greenberger, D.M., 1978. Esoteric elementary particle phenomena in undergraduate physics — spontaneous symmtery breaking and scale invariance. American Journal of Physics, 46: 394–398.

    ADS  Google Scholar 

  • Griffiths, R.B., 1981. What’s wrong with real-space renormalisation group transformations. In J. Fritz, J.L. Lebowitz and D. Szasz (Eds.). Random fields, vol. I (pp. 463–479). North Holland, Amsterdam.

    Google Scholar 

  • Grossing, G. and Zeilinger, A., 1988. Quantum cellular automata. Complex Systems, 2: 197–208.

    MathSciNet  Google Scholar 

  • Gunji, Y.-P., 1995. Global logic resulting from disequilibrium process. BioSystems, 38: 127–133.

    Google Scholar 

  • Haag, R., 1961. Canonical commutation relations in Quantum Field Theory and Functional Integration. In W.E. Brittin, B.W. Downs and J. Downs (Eds.). Lectures in Theoretical Physics, vol. 3 (pp. 353–381). Wiley, New York.

    Google Scholar 

  • Haken, H., 1978. Synergetics. An introduction. Springer, Berlin.

    MATH  Google Scholar 

  • Haken, H., 1983. Advanced Synergetics. Springer, Berlin.

    MATH  Google Scholar 

  • Haken, H., 1988. Information and Self-Organization. A macroscopic approach to complex systems. Springer, Berlin.

    MATH  Google Scholar 

  • Halvorson, H.P., 2001. On the nature of continuous physical quantities in classical and quantum mechanics. Journal of Philosophical Logic, 37: 27–50.

    MathSciNet  Google Scholar 

  • Halvorson, H.P., 2002. No place for particles in relativistic quantum theories? Philosophy of Science, 69: 1–28.

    MathSciNet  Google Scholar 

  • Halvorson, H.P., 2004. Complementarity of representations in quantum mechanics. Studies in History and Philosophy of Modern Physics, 35: 45–56.

    MathSciNet  Google Scholar 

  • Hardy, J., de Pazzis, O. and Pomeau, Y., 1976. Molecular dynamics of a classical lattice gas: transport properties and time correlation functions. Physical Review A, 13: 1949–1961.

    CAS  ADS  Google Scholar 

  • Haykin, S., 1998. Neural networks; A comprehensive foundation (2nd edition). Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Heylighen, F., 1990. Classical and non-classical representations in Physics II: Quantum Mechanics. Cybernetics and Systems, 21: 477–502.

    MathSciNet  Google Scholar 

  • Hepp, K., 1972. Quantum theory of measurement and macroscopic observables. Helvetica Physica Acta, 45: 237–248.

    Google Scholar 

  • Hinton, G.E. and Sejnowski, T.J. (Eds.), 1999 Unsupervised Learning (Computational Neuroscience). MIT Press, Cambridge, MA.

    Google Scholar 

  • Hopfield, J.J., 1982. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of USA, 79: 2554–2558.

    CAS  MathSciNet  ADS  Google Scholar 

  • Hornik, K., Stinchcombe, M. and White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2: 359–366.

    Google Scholar 

  • Horsthemke, W. and Lefever, R., 1984. Noise-induced transitions. Springer, Berlin-Heidelberg-New York.

    MATH  Google Scholar 

  • Hoyuelos, M., Hernández-García, E., Colet, P. and San Miguel, M., 2003. Dynamics of defects in the vector complex Ginzburg-Landau equation. Physica D, 174: 176–197.

    MathSciNet  ADS  Google Scholar 

  • Huang, K., 1987. Statistical mechanics, 2nd edition. Wiley, New York.

    MATH  Google Scholar 

  • Huang, K., 1998. Quantum Field Theory: From operators to path integrals. Wiley, New York.

    MATH  Google Scholar 

  • Ilachinski, A., 2001. Cellular Automata: A discrete Universe. World Scientific, Singapore.

    MATH  Google Scholar 

  • Ipsen, M., Kramer, L. and Sørensen, P.G., 2000. Amplitude equations for description of chemical reaction-diffusion systems. Physics Reports, 337: 193–235.

    CAS  ADS  Google Scholar 

  • Itzykson, C. and Drouffe, J.-M., 1989a. Statistical Field Theory: Volume 1, from Brownian motion to Renormalization and Lattice Gauge Theory. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Itzykson, C. and Drouffe, J.-M., 1989b. Statistical Field Theory: Volume 2, Strong Coupling, Monte Carlo methods, Conformal Field Theory and Random Systems. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Itzykson, C. and Zuber, J.B., 1986. Quantum Field Theory. McGraw-Hill, Singapore.

    Google Scholar 

  • Izhikevich, E.M., 2003. Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14: 1569–1572.

    Google Scholar 

  • Izhikevich, E.M., 2004. Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks. 15: 1063–1070.

    PubMed  Google Scholar 

  • Jadbabaie, A., Lin, J. and Morse, A.S., 2003. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48: 988–1001.

    MathSciNet  Google Scholar 

  • Jang, J.-S.R., Sun, C.-T. and Mizutani, E., 1997. Neuro-fuzzy ans soft computing. A computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Johnson, S., 2002. Emergence: The connected lives of Ants, Brains, Cities and Software. Touchstone, New York.

    Google Scholar 

  • Jona-Lasinio, G., 2001. Renormalization group and probability theory. Physics Reports, 352: 439–458.

    CAS  MathSciNet  ADS  Google Scholar 

  • Kamp, Y. and Hasler, M., 1990. Recursive neural networks for associative memory. Wiley, Chichester, UK.

    MATH  Google Scholar 

  • Kennedy, J., Eberhart, R.C. and Shi, Y., 2001. Swarm intelligence. Morgan Kaufmann, San Francisco, CA.

    Google Scholar 

  • Kiselev, V.G., Shnir, Ya.M. and Tregubovich, A.Ya., 2000. Introduction to Quantum Field Theory. Gordon and Breach, Amsterdam.

    MATH  Google Scholar 

  • Koch, C., 1998. Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Kohonen, T., 1995. Self-organizing maps. Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Koma, T. and Tasaki, H., 1994. Symmetry breaking and finite size effects in quantum many-body systems. Journal of Statistical Physics, 76: 745–803.

    MathSciNet  Google Scholar 

  • Kosso, P., 2000. The epistemology of spontaneously broken symmetries. Synthese, 122: 359–376.

    MathSciNet  Google Scholar 

  • Kozek, T., Chua, L.O., Roska, T., Wolf, D., Tezlaff, R., Puffer, F. and Lotz, K., 1995. Simulating nonlinear waves and partial differential equations via CNN — Part II: Typical examples. IEEE Transactions on Circuits and Systems, 42: 816–820.

    Google Scholar 

  • Kuhlmann, M., Lyre, H. and Wayne, A. (Eds.), 2002. Ontological aspects of Quantum Field Theory. World Scientific, Singapore.

    MATH  Google Scholar 

  • Kuramoto, Y. and Tsuzuki, T., 1975. On the formation of dissipative structures in reaction-diffusion systems: Reductive perturbation approach. Progress of Theoretical Physics, 54: 687–699.

    ADS  Google Scholar 

  • Lahiri, A. and Pal, P.B., 2001. A first book of Quantum Field Theory. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Landau, L.D. and Lifshitz, E.M., 1959. Statistical Physics. Pergamon Press, London.

    Google Scholar 

  • Landau, L.D. and Lifshitz, E.M., 1981. Quantum Mechanics (Non-relativistic theory). Butterworth Heinemann, Oxford, UK.

    Google Scholar 

  • Langton, C.G. (Ed.), 1989. Artificial Life. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Langton, C.G., 1990. Computation at the edge of chaos: Phase transitions and emergent computation. Physica D, 42: 12–37.

    MathSciNet  ADS  Google Scholar 

  • Langton, C.G. (Ed.), 1994. Artificial Life III. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Langton, C.G. (Ed.), 1997. Artificial Life: An overview (Complex adaptive systems). MIT Press, Cambridge, MA.

    Google Scholar 

  • Langton, C.G., Taylor, C., Doyne Farmer, J. and Rasmussen, S. (Eds.), 1992. Artificial Life II. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Le Gal, P., Ravoux, J.F., Floriani, E. and Dudok de Wit, T., 2003. Recovering coefficients of the complex Ginzburg-Landau equation from experimental spatio-temporal data: two examples from hydrodynamics. Physica D, 174: 114–133.

    MathSciNet  ADS  Google Scholar 

  • Lee, T.D. and Yang, C.N., 1952. Statistical theory of equations of state and phase transitions. Physical Review, 87: 410–419.

    CAS  MathSciNet  ADS  Google Scholar 

  • Leutwyler, H., 1997. Phonons as Goldstone bosons. Helvetica Physica Acta, 70: 275–286.

    Google Scholar 

  • Liu, C., 1999. Explaining the emergence of cooperative phenomena. Philosophy of Science, 66: S92–S106.

    Google Scholar 

  • Liu, C., 2003. Spontaneous symmetry breaking and chance in classical world. Philosophy of Science, 70: 590–608.

    MathSciNet  Google Scholar 

  • Lombardo, F.C., Rivers, R.J., and Mazzitelli, F.D., 2002. Classical behavior after a phase transition: I. Classical order parameters. International Journal of Theoretical Physics, 41: 2121–2144.

    Google Scholar 

  • Lundh, D., Narayanan, A. and Olsson, B., 1997. Biocomputing and emergent computation. World Scientific, Singapore.

    Google Scholar 

  • Maass, W., 1997. Networks of spiking neurons: The third generation of neural network models. Neural Networks, 10: 1659–1671.

    Google Scholar 

  • Maass, W. and Bishop, C.M., 1999. Pulsed Neural Networks. MIT Press, Cambridge, MA.

    Google Scholar 

  • Maggiore, M., 2005. A modern introduction to Quantum Field Theory. Oxford University Press, Oxford, UK.

    MATH  Google Scholar 

  • Mao, X., 1998. Stochastic Differential Equations and applications. Albion/Horwood Publishing, Chichester, UK.

    Google Scholar 

  • Marinaro, M. and Scarpetta, S., 2000. On-line learning in RBF neural networks: a stochastic approach. Neural Networks, 13: 719–729.

    PubMed  CAS  Google Scholar 

  • Matsumoto, H., Sodano, P. and Umezawa, H., 1979. Extended objects in quantum systems and soliton solutions. Physical Review D, 19: 511–516.

    CAS  ADS  Google Scholar 

  • Mermin, N.D. and Wagner, H., 1966. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Physical Review Letters, 17: 1133–1136.

    CAS  ADS  Google Scholar 

  • Merzbacher, E., 1998. Quantum Mechanics (3rd edition). Wiley, New York.

    Google Scholar 

  • Messiah, A., 2000. Quantum Mechanics (2 voll.). Dover, New York.

    Google Scholar 

  • Meyer, D.A., 1996. From quantum cellular automata to quantum lattice gases. Journal of Statistical Physics, 85: 551–574.

    MathSciNet  Google Scholar 

  • Mézard, M., Parisi, G. and Virasoro, M.A., 1987. Spin Glass Theory and Beyond. World Scientific, Singapore.

    MATH  Google Scholar 

  • Mikhailov, A.S., 1990. Foundations of Synergetics I. Distributed active systems. Springer, Berlin.

    MATH  Google Scholar 

  • Mikhailov, A.S. and Calenbuhr, V., 2002. From cells to societies. Models of complex coherent actions. Springer, Berlin.

    Google Scholar 

  • Mikhailov, A.S. and Loskutov, A,Yu., 1996. Foundations of Synergetics II. Chaos and Noise, 2nd revised edition. Springer, Berlin.

    Google Scholar 

  • Millonas, M.M., 1994. Swarms, phase transitions, and collective intelligence. In C.G. Langton (Ed.). Artificial Life III (pp. 417–445). Addison-Weley, Reading, MA.

    Google Scholar 

  • Minati, G., Penna, M.P. and Pessa, E., 2004. Collective phenomena in living systems and in social organizations. Chaos and Complexity Letters, 1: 173–184.

    Google Scholar 

  • Mitchell, M., Hraber, P.T. and Crutchfield, J.P., 1993. Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems, 7: 89–130.

    Google Scholar 

  • Montvay, I. and Münister, G., 1997. Quantum Fields on a Lattice. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Moreira, A., Gajardo, A. and Goles, E., 2001. Dynamical behavior and complexity of Langton’s ant. Complexity, 6: 46–51.

    MathSciNet  Google Scholar 

  • Nelson E., 1967. Dynamical theories of Brownian motion. Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  • Newman, C.M., 1997. Topics in disordered systems. Birkhäuser, Basel, CH.

    MATH  Google Scholar 

  • Nitzan, A. and Ortoleva, P., 1980. Scaling and Ginzburg criteria for critical bifurcations in nonequilibrium reacting systems. Physical Review A, 21: 1735–1755.

    CAS  MathSciNet  ADS  Google Scholar 

  • Oksendal, B., 2003. Stochastic Differential Equations: An introduction with applications (5th ed.). Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Olemskoi, A.I. and Klepikov, V.F., 2000. The theory of spatiotemporal pattern in nonequilibrium systems. Physics Reports, 338: 571–677.

    MathSciNet  ADS  Google Scholar 

  • Parisi, G., 1988. Statistical Field Theory. Addison-Wesley, Redwood City, CA.

    MATH  Google Scholar 

  • Parisi, G., 1998. Statistical Field Theory. (New edition). Perseus Books, New York.

    Google Scholar 

  • Patashinskij, A.Z. and Pokrovskij, V.L., 1979. Fluctuation theory of phase transitions. Pergamon Press, Oxford, UK.

    Google Scholar 

  • Peliti, L., 1985. Path integral approach to birth-death processes on a lattice. Journal de Physique, 46: 1469–1483.

    Google Scholar 

  • Perelson, A.S. and Weisbuch, G., 1997. Immunology for physicists. Reviews of Modern Physics, 69: 1219–1267.

    CAS  ADS  Google Scholar 

  • Peskin, M.E. and Schroeder, D.V., 1995. An introduction to Quantum Field Theory. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Pessa, E., 1988. Symmetry breaking in neural nets. Biological Cybernetics, 59: 277–281.

    PubMed  CAS  MathSciNet  Google Scholar 

  • Pessa, E., 2000. Connectionist Psychology and Synergetics of Cognition. In A. Carsetti (Ed.), Functional Models of Cognition. Self-Organizing Dynamics and Semantic Structures in Cognitive Systems (pp. 67–90). Kluwer, Dordrecht.

    Google Scholar 

  • Pessa, E. and Vitiello, G., 2004a. Quantum noise, entanglement and chaos in the Quantum Field Theory of Mind/Brain states. Mind and Matter, 1: 59–79.

    Google Scholar 

  • Pessa, E. and Vitiello, G., 2004b. Quantum noise induced entanglement and chaos in the dissipative quantum model of brain. International Journal of Modern Physics B. 18: 841–858.

    ADS  Google Scholar 

  • Porod, W., 1997. Quantum-dot devices and quantum-dot cellular automata. Journal of Franklin Institute, 334B: 1147–1175.

    Google Scholar 

  • Protter, P.E., 2003. Stochastic integration and differential equations (2nd ed.). Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Rajantie, A., 2002. Formation of topological defects in gauge field theories. International Journal of Modern Physics A, 17: 1–44.

    ADS  Google Scholar 

  • Rédei, M. and Stölzner, M. (Eds.), 2001. John Von Neumann and the Foundations of Quantum Physics. Kluwer, New York.

    MATH  Google Scholar 

  • Risken, H., 1984. The Fokker-Planck equation. Springer, Berlin-Heidelberg-New York.

    MATH  Google Scholar 

  • Rivers, R.J., 2000. Fluctuations and phase transition dynamics. International Journal of Theoretical Physics, 39: 1779–1802.

    Google Scholar 

  • Rivers, R.J., Lombardo, F.C. and Mazzitelli, F.D. 2002. Classical behavior after a phase transition: II. The formation of classical defects. International Journal of Theoretical Physics, 41: 2145–2160.

    Google Scholar 

  • Rojas, R., 1996. Neural networks. A systematic introduction. Springer, Berlin-Heidelberg-New York.

    MATH  Google Scholar 

  • Roska, T., Chua, L.O., Wolf, D., Kozek, T., Tezlaff, R. and Puffer, F., 1995. Simulating nonlinear waves and partial differential equations via CNN — Part I: Basic techniques. IEEE Transactions on Circuits and Systems, 42: 807–815.

    Google Scholar 

  • Ruelle, D., 1969. Statistical mechanics. Benjamin, New York.

    MATH  Google Scholar 

  • Ruetsche, L., 2003. A matter of degree: Putting unitary inequivalence to work. Philosophy of Science, 70: 1329–1342.

    MathSciNet  Google Scholar 

  • Rumer, Yu.B. and Rivkyn, M.Sh., 1980. Thermodynamics, Statistical Physics, and Kinetics. Mir, Moscow.

    Google Scholar 

  • Saad, D. (Ed.), 1998. On-line Learning in Neural Networks. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Sakurai, J.J., 1995. Modern Quantum Mechanics (revised edition by S.F. Tuan). Benjamin/Cummings, Menlo Park, CA.

    Google Scholar 

  • San Miguel, M. and Toral, R., 2000. Stochastic effects in physical systems. In E. Tirapegui, J. Martinez, R. Tiemann (Eds.). Instabilities and Nonequilibrium Structures VI (pp. 35–130). Kluwer, New York.

    Google Scholar 

  • Schwinger, J. (Ed.), 1958. Selected papers on Quantum Electrodynamics. Dover, New York.

    MATH  Google Scholar 

  • Sears, F.W., 1955. Thermodynamics, 2nd ed.. Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  • Sewell, G.L., 1986. Quantum Theory of Collective Phenomena. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Sewell, G.L., 2002. Quantum Mechanics and its emergent macrophysics. Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  • Shi, Y., 2003. Quantum disentanglement in long-range orders and spontaneous symmetry breaking. Physics Letters A, 309: 254–261.

    CAS  MathSciNet  ADS  Google Scholar 

  • Shirkov, D.V. and Kovalev, V.F., 2001. The Bogoliubov renormalization group and solution symmetry in mathematical physics. Physics Reports, 352: 219–249.

    CAS  MathSciNet  ADS  Google Scholar 

  • Sinai, Ya.G., 1982. Theory of Phase Transitions: Rigorous Results. Pergamon Press, London.

    MATH  Google Scholar 

  • Sipper, M., 1997. Evolution of Parallel Cellular Machines. Springer, Berlin.

    Google Scholar 

  • Sirovich, L. and Newton, P.K., 1986. Periodic solutions of the Ginzburg-Landau equation. Physica D, 21: 115–125.

    MathSciNet  ADS  Google Scholar 

  • Sivardière, J., 1983. A simple mechanical model exhibiting a spontaneous symmetry breaking. American Journal of Physics, 51: 1016–1018.

    ADS  Google Scholar 

  • Smolensky, P., 1986. Information processing in dynamical systems: Foundations of Harmony Theory. In D.E. Rumelhart, J.L. McClelland (Eds.). Parallel Distributed Processing. Explorations in the microstructure of cognition, vol. 1, pp. 194–281. MIT Press, Cambridge, MA.

    Google Scholar 

  • Snider, G.L., Orlov, A.O., Amlani, I., Zuo, X., Bernstein, G.H., Lent, C.S., Merz, J.L. and Porod, W., 1999. Quantum-dot cellular automata: Review and recent experiments. Journal of Applied Physics, 85: 4283–4285.

    CAS  ADS  Google Scholar 

  • Soong, T.T., 1973. Random Differential Equations in science and engineering. Academic Press, New York.

    MATH  Google Scholar 

  • Stanley, H.E., 1971. Introduction to phase transitions and critical phenomena. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Stewart, J. and Varela, F.J., 1991. Morphogenesis in shape-space. Elementary meta-dynamics in a model of the Immune Network. Journal of Theoretical Biology, 153: 477–498.

    PubMed  CAS  Google Scholar 

  • Stone, M., 2000. The Physics of Quantum Fields. Springer, Berlin.

    MATH  Google Scholar 

  • Sun, R. and Giles, C. (Eds.), 2000. Sequence learning. Springer, Berlin.

    Google Scholar 

  • Sutton, R.S. and Barto, A.G., 1998. Reinforcement learning. An introduction. MIT Press, Cambridge, MA.

    Google Scholar 

  • Svozil, K., 1986. Are quantum fields cellular automata? Physics Letters A, 119: 153–156.

    CAS  MathSciNet  ADS  Google Scholar 

  • t’Hooft, G., 2003. Can quantum mechanics be reconciled with cellular automata? International Journal of Theoretical Physics, 42: 349–354.

    MathSciNet  Google Scholar 

  • Tegmark, M., 2000. Why the brain is probably not a quantum computer. Information Sciences, 128: 155–179.

    MathSciNet  Google Scholar 

  • Teuscher, C., Mange, D., Stauffer, A. and Tempesti, G., 2003. Bio-inspired computing tissues: towards machines that evolve, grow, and learn. BioSystems, 68: 235–244.

    PubMed  Google Scholar 

  • Thiesen, S. and Thomas, H., 1987. Bifurcation, stability, and symmetry of nonlinear waves. Zeitschrift für Physik B — Condensed Matter, 65: 397–408.

    MathSciNet  Google Scholar 

  • Toko, K. and Yamafuji, K., 1990. Bifurcation characteristics and spatial patterns in an integro-differential equation. Physica D, 44: 459–470.

    MathSciNet  ADS  Google Scholar 

  • Tolédano, J.C. and Tolédano, P., 1987. The Landau theory of phase transitions. World Scientific, Singapore.

    Google Scholar 

  • Toner, J. and Tu, Y., 1998. Flocks, herds, and schools: A quantitative theory of flocking. Physical Review E, 58: 4828–4858.

    CAS  MathSciNet  ADS  Google Scholar 

  • Tougaw, P.D. and Lent, C.S., 1996. Dynamic behavior of quantum cellular automata. Journal of Applied Physics, 80: 4722–4736.

    CAS  ADS  Google Scholar 

  • Tsuda, S., Aono, M. and Gunji, Y.-P., 2004. Robust and emergent Physarum logical-computing. BioSystems, 73: 45–55.

    PubMed  Google Scholar 

  • Umezawa, H., 1993. Advanced Field Theory. Micro, Macro, and Thermal Physics. American Institute of Physics, New York.

    Google Scholar 

  • Umezawa, H., Matsumoto, H. and Tachiki, M., 1982. Thermo Field Dynamics and Condensed States. North Holland, Amsterdam.

    Google Scholar 

  • Vahala, G., Yepez, J. and Vahala, L., 2003. Quantum lattice gas representation of some classical solitons. Physics Letters A, 310: 187–196.

    CAS  MathSciNet  ADS  Google Scholar 

  • Van den Broeck, C., Parrondo, J.M.R., Toral, R. and Kawai, R., 1997. Nonequilibrium phase transitions induced by multiplicative noise. Physical Review E, 55: 4084–4094.

    ADS  Google Scholar 

  • Van Kampen, N.G., 1981. Stochastic processes in physics and chemistry. North Holland, Amsterdam.

    MATH  Google Scholar 

  • Vicsek, T., Czirok, A., Ben Jacob, E., Cohen, I. and Schochet, O., 1995. Novel type of phase transitions in a system of self-driven particles. Physical Review Letters, 75: 1226–1229.

    PubMed  CAS  ADS  Google Scholar 

  • Von Neumann, J., 1955. Mathematical foundations of quantum mechanics. Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  • Von Neumann, J., 1966. Theory of Self-Reproducing Automata. University of Illinois Press, Urbana, IL.

    Google Scholar 

  • Wadati, M., Matsumoto, H. and Umezawa, H., 1978a. Extended objects in crystals. Physical Review B, 18: 4077–4095.

    CAS  MathSciNet  ADS  Google Scholar 

  • Wadati, M., Matsumoto, H. and Umezawa, H., 1978b. Extended objects created by Goldstone bosons. Physical Review D, 18: 520–531.

    CAS  MathSciNet  ADS  Google Scholar 

  • Walgraef, D., Dewel, G. and Borckmans, P., 1981. Chemical instabilities and broken symmetry: The hard mode case. In L. Arnold and R. Lefever (Eds.). Stochastic nonlinear systems in physics, chemistry, and biology (pp. 72–83). Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Weinberg, S., 1995. The Quantum Theory of Fields, vol.1. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Weinberg, S., 1996. The Quantum Theory of Fields, vol.2. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • White, H., 1992. Artificial Neural Networks — Approximation and Learning Theory. Blackwell, Oxford, UK.

    Google Scholar 

  • Whitley, D. (Ed.), 1993. Foundations of Genetic Algorithms 2. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Whittle, P., 1998. Neural Nets and Chaotic Carriers. Wiley, Chichester, UK.

    MATH  Google Scholar 

  • Wolfram, S., 1983. Statistical mechanics of cellular automata. Reviews of Modern Physics, 55: 601–644.

    MathSciNet  ADS  Google Scholar 

  • Wolfram, S., 1984. Universality and complexity in cellular automata. Physica D, 10: 1–35.

    MathSciNet  ADS  Google Scholar 

  • Wolfram, S. (Ed.), 1986. Theory and applications of cellular automata. World Scientific, Singapore.

    MATH  Google Scholar 

  • Zinn-Justin, J., 2001. Precise determination of critical exponents and equation of state by field theory methods. Physics Reports, 344: 159–178.

    CAS  MathSciNet  ADS  Google Scholar 

  • Zurek, W.H., 1996. Cosmological experiments in condensed matter systems. Physics Reports, 276: 177–221.

    CAS  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). How to Model Emergence: Non-Traditional Methods. In: Collective Beings. Contemporary Systems Thinking. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35941-0_5

Download citation

Publish with us

Policies and ethics