Skip to main content

How to Model Emergence: Traditional Methods

  • Chapter
  • 932 Accesses

Part of the book series: Contemporary Systems Thinking ((CST))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ablowitz, M. J., and Segur, H., (eds.), 1981, Solitons and Inverse Scattering Transform. Society for Industrial and Applied Mathematics, Philadelphia, PA.

    MATH  Google Scholar 

  • Albano, A. M., Abraham, N.B., Chyba, D.E., and Martelli, M., 1984, Bifurcations, propagating solutions, and phase transitions in a nonlinear chemical reaction with diffusion, American Journal of Physics, 52:161–167.

    Article  CAS  ADS  Google Scholar 

  • Alligood, K., Sauer, T., and Yorke, J. A., 1997, Chaos: An introduction to Dynamical Systems. Springer, New York.

    Google Scholar 

  • Auchmuty, J. F. G., and Nicolis, G., 1975, Bifurcation analysis of nonlinear reaction-diffusion equations. I: Evolution equations and the steady state solutions. Bulletin of Mathematical Biology, 37: 325–365.

    MathSciNet  Google Scholar 

  • Auger, P., 1980, Coupling between N levels of observation of a system (biological or physical) resulting in creation of structure, International Journal of General Systems 8:82–100.

    Google Scholar 

  • Auger, P., 1983, Hierarchically organized populations: Interactions between individual, population and ecosystem levels, Mathematical Biosciences 65:269–289.

    Article  Google Scholar 

  • Auger, P., 1985, Dynamics in hierarchically organized systems. In: Dynamics of macrosystems, (J.P. Aubin, D. Saari, and K. Sigmund, eds.), Springer, Berlin, pp. 203–212.

    Google Scholar 

  • Auger, P., 1989, Dynamics and Thermodynamics in hierarchically organized systems: Applications in Physics, Biology and Economics. Pergamon Press, Oxford, UK.

    Google Scholar 

  • Auger, P., and Poggiale, J. C., 1995, Emerging properties in population dynamics with different time scales, Journal of Biological Systems 3:591–602.

    Article  Google Scholar 

  • Auger, P., and Poggiale, J. C., 1996, Aggregation, emergence and immergence in hierarchically organized systems. In: Third European Congress on Systems Science, (E. Pessa, M. P. Penna and A. Montesanto, eds.), Kappa, Rome, pp. 43–45.

    Google Scholar 

  • Barnett, W. A., Kirman, A. P., and Salmon, M., (eds.), 1996, Nonlinear dynamics and Economics: Proceedings of the Tenth International Symposium in Economic Theory and Econometrics. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Bedau, M. A., 1997, Weak emergence, Philosophical Perspectives 11:375–399.

    Google Scholar 

  • Belintsev, B. N., 1983, Dissipative structures and the problem of biological pattern formation, Soviet Physics Uspekhi 26:775–800.

    Article  MathSciNet  Google Scholar 

  • Beloussov, L. V., 1998, The dynamic architecture of developing organism. Kluwer, Dordrecht.

    Google Scholar 

  • Benettin, G., Galgani, L. and Strelcyn, J.-M., 1976. Kolmogorov entropy and numerical experiments, Physical Review A 14:2338–2345.

    Article  ADS  Google Scholar 

  • Bitsadze, A. V., 1980, Equations of mathematical physics. Mir, Moscow.

    MATH  Google Scholar 

  • Boyce, W. E., and DiPrima, R. C., 1977, Elementary differential equations and boundary value problems, 3rd edition. Wiley, New York.

    MATH  Google Scholar 

  • Brian Arthur, W., Durlauf, S. N., and Lane, D. A., (eds.), 1997, The Economy as an evolving complex system II: Proceedings. Perseus Books, Santa Fe, NM.

    Google Scholar 

  • Bullough, R. K., 1988, “The Wave par excellence”, the solitary, progressive great wave of equilibrium of the fluid — an early history of the solitary wave. In: Solitone, (M. Lakshmanan, ed.), Springer, Berlin, pp. 150–281.

    Google Scholar 

  • Campbell, D. K., Flach, S., and Kivshar, Yu. S., 2004, Localizing energy through nonlinearity and discreteness, Physics Today 57:43–49.

    CAS  ADS  Google Scholar 

  • Chafee, N., 1975, Asymptotic behavior for solutions of a one-dimensional parabolic equation with homogeneous Neumann boundary conditions, Journal of Differential Equations 18:111–134.

    Article  MathSciNet  Google Scholar 

  • Chernavskii, D. S., and Ruijgrok, T. W., 1982, On the formation of unique dissipative structures, BioSystems 15:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Chertkov, M., Gabitov, I., Kolokolov, I., and Lebedev, V., 2001, Shedding and interaction of solitons in imperfect medium, JETP Letters 74:357–361.

    Article  CAS  ADS  Google Scholar 

  • Cicogna, G., 1981, Symmetry breakdown from bifurcation, Lettere al Nuovo Cimento 31:600–602.

    MathSciNet  Google Scholar 

  • Clausen, C. B., Kivshar, Yu. S., Bang, O., and Christiansen, P. L., 1999, Quasiperiodic envelope solitons, Physical Review Letters 83:4740–4743.

    Article  CAS  ADS  Google Scholar 

  • Collet, P., and Eckmann, J. P., 1980, Iterated maps of the interval as Dynamical Systems. Birkhäuser, Boston.

    Google Scholar 

  • Copson, E. T., 1975, Partial differential equations. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Crasovan, L. C., Kartashov, Y. V., Mihalache, D., Torner, L., Kivshar, Yu. S., and Perez-Garcia, V. M., 2003, Soliton “molecules”: Robust clusters of spatiotemporal optic solitons, Physical Review E 67:046610–046615.

    Article  ADS  CAS  Google Scholar 

  • Cruchtfield, J. P., 1994, The Calculi of Emergence: Computation, Dynamics and Induction, Physica D 75:11–54.

    Article  ADS  Google Scholar 

  • Davis, H. T., 1962, Introduction to nonlinear differential and integral equations. Dover, New York.

    MATH  Google Scholar 

  • De Souza-Machado, S., Rollins, R. W., Jacobs, D. T. and Hartman, J. L., 1990, Studying chaotic systems using microcomputer simulations and Lyapunov exponents, American Journal of Physics 58:321–329.

    Article  ADS  Google Scholar 

  • Dodd, R. K., Eilbeck, J. C., Gibbon, J., and Morris, H., 1982, Solitons and nonlinear wave equations. Academic Press, New York.

    MATH  Google Scholar 

  • Doucet, P., and Sloep, P. B., 1992, Mathematical modeling in the life sciences. Ellis Horwood, Chichester, UK.

    MATH  Google Scholar 

  • Duchateau, P., and Zachmann, D. W., 1986, Partial differential equations. McGraw-Hill, New York.

    Google Scholar 

  • Eckmann, J. P. and Ruelle, D., 1985, Ergodic theory of chaos and strange attractors, Reviews of Modern Physics 57:617–656.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Eilenberger, G., 1981, Solitons: Mathematical methods for physicists. Springer, New York.

    MATH  Google Scholar 

  • Ermentrout, G. B., and Cowan, J. D., 1979, Temporal oscillations in neuronal nets, Journal of Mathematical Biology 7:263–280.

    Article  MathSciNet  Google Scholar 

  • Erneux, T., and Cohen, D. S., 1983, Imperfect bifurcation near a double eigenvalue: Transitions between nonsymmetric and symmetric patterns, SIAM Journal of Applied Mathematics 43:1042–1060.

    Article  MathSciNet  Google Scholar 

  • Fernández, A., 1985, Global instability of a monoparametric family of vector fields representing the unfolding of a dissipative structure, Journal of Mathematical Physics 26:2632–2633.

    Article  MathSciNet  ADS  Google Scholar 

  • Forrester, J. W., 1968, Principles of Systems. Wright-Allen Press, Cambridge, MA.

    Google Scholar 

  • Garrido, L., (ed.), 1988, Far from equilibrium phase transitions. Springer, Berlin.

    Google Scholar 

  • Gierer, A., and Meinhardt, H., 1972, A theory of Biological Pattern formation, Kybernetik 12:30–39.

    Article  PubMed  CAS  Google Scholar 

  • Glansdorff, P., and Prigogine, I., 1971, Thermodynamic theory of structure, stability and fluctuations. Wiley, New York.

    MATH  Google Scholar 

  • Glendinning, P., 1994, Stability, Instability and Chaos: An introduction to the theory of Nonlinear Differential Equations. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Golubitsky, M., and Schaeffer, D. G., 1979, A theory for imperfect bifurcations via singularity theory, Communications in Pure and Applied Mathematics 32:21–98.

    MathSciNet  Google Scholar 

  • Golubitsky, M., and Schaeffer, D. G., 1985, Singularities and groups in bifurcation theory, vol. I. Springer, Berlin.

    MATH  Google Scholar 

  • Golubitsky, M., Luss, D., and Strogatz, S. H., (eds.), 1999, Pattern formation in continuous and coupled systems. Springer, New York.

    MATH  Google Scholar 

  • Grillakis, M., Shatah, J., and Strauss, W., 1987, Stability theory of solitary waves in the presence of symmetry I, Journal of Functional Analysis 74:160–197.

    Article  MathSciNet  Google Scholar 

  • Grillakis, M., Shatah, J., and Strauss, W., 1990, Stability theory of solitary waves in the presence of symmetry II, Journal of Functional Analysis 94:308–348.

    Article  MathSciNet  Google Scholar 

  • Guckenheimer, J., and Holmes, P., 1983, Nonlinear oscillations, dynamical systems and bifurcation of vector fields. Springer, Berlin.

    Google Scholar 

  • Gumowski, I., and Mira, C., 1980, Dynamique chaotique. Transformations ponctuelles. Transition Ordre-Désordre. Cepadues, Toulouse.

    MATH  Google Scholar 

  • Haken, H., 1983, Advanced Synergetics. Springer, Berlin-Heidelberg-New York.

    MATH  Google Scholar 

  • Hassard, B. D., Kazarinoff, N. D., and Wan, Y.-H., 1981, Theory and applications of Hopf bifurcation. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Infeld, E., and Rowlands, G., 2000, Nonlinear waves, solitons and chaos. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Iooss, G., and Joseph, D. D., 1981, Elementary stability and bifurcation theory. Springer, New York.

    Google Scholar 

  • Jordan, D. W., and Smith, P., 1977, Nonlinear ordinary differential equations. Clarendon Press, Oxford, UK.

    MATH  Google Scholar 

  • Kerner, B. S., and Osipov, V. V., 1978, Nonlinear theory of stationary strata in dissipative systems. Soviet Physics JETP 47:874–885.

    Google Scholar 

  • Kevrekidis, P. G., Kivshar, Yu. S., and Kovalev, A. S., 2003, Instabilities and bifurcations of nonlinear impurity modes, Physical Review E 67:046604–046608.

    Article  MathSciNet  ADS  CAS  Google Scholar 

  • Kivshar, Yu. S., and. Pelinovsky, D. E., 2000, Self-focusing and transverse instabilities of solitary waves, Physics Reports 331:117–195.

    Article  MathSciNet  ADS  Google Scholar 

  • Korpel, A., and Banerjee, P. P., 1984, A heuristic guide to nonlinear dispersive wave equations and soliton-type solutions, Proceedings of the IEEE 72:1109–1130.

    Article  ADS  Google Scholar 

  • Krinsky, V. I., (ed.), 1984, Self-organization: Autowaves and structures far from equilibrium. Springer, Berlin.

    MATH  Google Scholar 

  • Lakshmanan, M., (ed.), 1988, Solitons. Springer, Berlin.

    MATH  Google Scholar 

  • Lanford, O. E., 1981, Strange attractors and turbulence. In: Hydrodynamic instabilities and transition to turbulence, (H. L. Swinney and J. P. Gollub, eds.), Springer, Berlin, pp. 7–31.

    Google Scholar 

  • Lefever, R., and Prigogine, I., 1968, Symmetry-breaking instabilities in dissipative systems, Journal of Chemical Physics 48:1695–1700.

    Article  Google Scholar 

  • Lefschetz, S., 1977, Differential equations: geometric theory. Dover, New York.

    Google Scholar 

  • Lichtenberg, A. J., and Lieberman, M. A., 1983, Regular and stochastic motion. Springer, Berlin.

    MATH  Google Scholar 

  • Makhankov, V.G., 1991, Soliton phenomenology. Kluwer, Dordrecht.

    Google Scholar 

  • Manton, N., Sutcliffe, P., Landshoff, P. V., Nelson, D. R., Sciama, D. W. and Weinberg, S., (eds.), 2004, Topological solitons. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Marsden, J. E., and McCracken, M., 1976, The Hopf bifurcation and its applications. Springer, New York.

    MATH  Google Scholar 

  • Matkowsky, B. J., and Reiss, E. L., 1977, Singular perturbations of bifurcations, SIAM Journal of Applied Mathematics 33:230–255.

    Article  MathSciNet  Google Scholar 

  • Mesarovic, M. D., and Takahara, Y., 1975, General Systems Theory: Mathematical foundations. Academic Press, New York.

    MATH  Google Scholar 

  • Mikhailov, A. S., 1990, Foundations of Synergetics I. Distributed active systems. Springer, Berlin.

    MATH  Google Scholar 

  • Mikhailov, A. S., and Loskutov, A.Yu., 1996, Foundations of Synergetics II. Chaos and Noise, 2nd revised edition. Springer, Berlin.

    Google Scholar 

  • Mori, H., and Kuramoto, Y., 2001, Dissipative structures and chaos. Springer, Berlin.

    Google Scholar 

  • Murray, J. D., 1989, Mathematical Biology. Springer, Berlin.

    MATH  Google Scholar 

  • Nekorkin, V. I., and Velarde, M.G., 2002, Synergetic phenomena in active lattices. Patterns, waves, solitons, chaos. Springer, Berlin.

    MATH  Google Scholar 

  • Nettel, S., 2003, Wave Physics: Oscillations — Solitons — Chaos, 3rd ed. Springer, Berlin.

    MATH  Google Scholar 

  • Newell, A. C., 1985, Solitons in Mathematics and Physics. Society for Industrial and Applied Mathematics, Philadelphia, PA.

    Google Scholar 

  • Nicolis, G., and Prigogine, I., 1977, Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations. Wiley, New York.

    MATH  Google Scholar 

  • Nicolis, J. S., 1986, Dynamics of hierarchical systems. An evolutionary approach. Springer, Berlin.

    MATH  Google Scholar 

  • Nitzan, A., and Ortoleva, P., 1980, Scaling and Ginzburg criteria for critical bifurcations in nonequilibrium reacting systems, Physical Review A 21:1735–1755.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Okubo, A., 1980, Diffusion and ecological problems. Mathematical models. Springer, Berlin.

    MATH  Google Scholar 

  • Olmstead, W. E., Davis, S. H., Rosenblat, S., and Kath, W. L., 1986, Bifurcation with memory, SIAM Journal of Applied Mathematics 46:171–188.

    Article  MathSciNet  ADS  Google Scholar 

  • Ott, E.,1993, Chaos in Dynamical Systems. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Pelinovsky, D. E., and Kivshar, Yu. S., 2000, Stability criterion for multicomponent solitary waves, Physical Review E 62:8668–8676.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Pessa, E., 2000, Cognitive Modelling and Dynamical Systems Theory, La Nuova Critica 35:53–93.

    Google Scholar 

  • Punzo, L. F., (ed.), 2001, Cycles, growth and structural change. Theories and empirical evidence. Routledge, London.

    Google Scholar 

  • Rajaraman, R., 1987, Solitons and Instantons. North Holland, Amsterdam.

    MATH  Google Scholar 

  • Rand, R. H., and Armbruster, D., 1987, Perturbation methods, bifurcation theory and computer algebra. Springer, New York.

    MATH  Google Scholar 

  • Rashevsky, N., 1960, Mathematical Biophysics. Physico-mathematical foundations of Biology, 2 voll., 3rd edition. Dover, New York.

    Google Scholar 

  • Ronald, E. M. A., Sipper, M., and Capcarrère, M. S., 1999, Design, observation, surprise! A test of emergence, Artificial Life 5:225–239.

    Article  PubMed  CAS  Google Scholar 

  • Rueger, A., 2000, Physical emergence, diachronic and synchronic, Synthese 124:297–322.

    Article  MathSciNet  Google Scholar 

  • Ruelle, D., 1995, Turbulence, Stange Attractors and Chaos. World Scientific, Singapore.

    Google Scholar 

  • Saaty, T. L., 1981, Modern nonlinear equations. Dover, New York.

    MATH  Google Scholar 

  • Sakaguchi, H., 2003, Self-organization of hierarchical structures in non-locally coupled replicator models, Physics Letters A 313:188–191.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Sattinger, D. H., 1978, Group representation theory, bifurcation theory and pattern formation, Journal of Functional Analysis 28:58–101.

    Article  MathSciNet  Google Scholar 

  • Sattinger, D. H., 1978, Topics in stability and bifurcation theory. Springer, Berlin.

    Google Scholar 

  • Sattinger, D. H., 1980, Bifurcation and symmetry breaking in applied mathematics, Bulletin of the American Mathematical Society 3:779–819.

    MathSciNet  Google Scholar 

  • Sattinger, D. H., 1983, Branching in the presence of symmetry. Society for Industrial and Applied Mathematics, Philadelphia, PA.

    Google Scholar 

  • Schöll, E., 1986, Influence of boundaries on dissipative structures in the Schlögl model. Zeitschrift für Physik B — Condensed Matter 62:245–253.

    Article  Google Scholar 

  • Scott, A., 2003, Nonlinear science: Emergence and dynamics of coherent structures. Oxford University Press, Oxford, UK.

    MATH  Google Scholar 

  • Sinai, Ya. G. (ed.), 1989, Dynamical Systems II. Springer, Berlin.

    MATH  Google Scholar 

  • Sneddon, I., 1957, Elements of partial differential equations. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Stein, D. L., 1980, Dissipative structures, broken symmetry, and the theory of equilibrium phase transitions, Journal of Chemical Physics 72:2869–2874.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Svirezhev, Yu. M., and Logofet, D. O., 1983, Stability of biological communities. Mir, Moscow.

    Google Scholar 

  • Tabor, M., 1989, Chaos and integrability in nonlinear dynamics. Wiley, New York.

    MATH  Google Scholar 

  • Tirapegui, E., and Zeller, W., (eds.), 1993, Instabilities and nonequilibrium structures IV. Kluwer, Dordrecht.

    MATH  Google Scholar 

  • Tirapegui, E., and Zeller, W., (eds.), 1996, Instabilities and nonequilibrium structures V. Kluwer, Dordrecht.

    MATH  Google Scholar 

  • Toda, M., 1990, Nonlinear waves and solitons. Kluwer, Dordrecht.

    Google Scholar 

  • Tsikolia, N., 2003, What is a role of the morphogenetic gradients in development? Rivista di Biologia — Biology Forum 96:293–315.

    Google Scholar 

  • Turing, A. M., 1952, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London B 237:37–42.

    ADS  Google Scholar 

  • Vanderbauwhede, A., 1982, Local bifurcation and symmetry. Pitman, Boston.

    MATH  Google Scholar 

  • Vasilev, V. A., Romanovskii, Yu. M. and Yakhno, V. G., 1979, Autowave processes in distributed kinetic systems, Soviet Physics Uspekhi 22:615–639.

    Article  Google Scholar 

  • Vasilev, V. A., Romanovskii, Yu. M., Chernavskii, D. S. and Yakhno, V. G., 1986, Autowave processes in kinetic systems. Reidel, Dordrecht.

    Google Scholar 

  • Von Bertalanffy, L., 1940, Der organismus als physikalisches System betrachtet, Die Naturwissenschaften 28:521–531.

    Article  Google Scholar 

  • Von Bertalanffy, L., 1950, The theory of open systems in Physics and Biology, Science 111:23–29.

    Article  ADS  Google Scholar 

  • Von Bertalanffy, L., 1968, General System Theory. Development, Applications. George Braziller, New York

    Google Scholar 

  • Whitham, G. B., 1974, Linear and nonlinear waves. Wiley, New York.

    MATH  Google Scholar 

  • Wolf, A., Swift, J. B., Swinney, H. L. and Vastano, J. A., 1985, Determining Lyapunov exponents from a time series, Physica D 16:285–317.

    Article  MathSciNet  ADS  Google Scholar 

  • Yokozawa, M., and Hara, T., 1999, Global versus local coupling models and theoretical stability analysis of size-structure dynamics in plant populations, Ecological Modelling 118:61–72.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). How to Model Emergence: Traditional Methods. In: Collective Beings. Contemporary Systems Thinking. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35941-0_4

Download citation

Publish with us

Policies and ethics