Skip to main content

Supplementary mathematics

  • Chapter
  • 1993 Accesses

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 40))

Abstract

This appendix summarizes Hilbert space notions needed to work with Dirac operators in atomic and molecular physics and used in Chapters 3 and 5. Full details will be found in the general references above.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jordan T F 1969 Linear Operators for Quantum Mechanics (New York: John Wiley).

    MATH  Google Scholar 

  2. Reed M and Simon B 1972–1979 Methods of Modern Mathematical Physics (4 vols.) (New York: Academic Press).

    MATH  Google Scholar 

  3. Kato T 1976 Perturbation Theory for Linear Operators (Berlin: Springer-Verlag).

    MATH  Google Scholar 

  4. Richtmyer R D 1978 Methods of Advanced Mathematical Physics (2 vols) (New York: Springer-Verlag).

    Google Scholar 

  5. Elliott J P and Dawber P G 1979 Symmetry in Physics (Basingstoke: Macmillan Press).

    Google Scholar 

  6. Hamermesh M 1962 Group theory and its application to physical problems (Reading, Mass.: Addison-Wesley).

    MATH  Google Scholar 

  7. Wybourne B G 1974 Classical Groups for Physicists (New York: Wiley).

    MATH  Google Scholar 

  8. Drake G W F ed 1996 Atomic, Molecular and Optical Physics Handbook (Woodbury NY: American Institute of Physics).

    Google Scholar 

  9. Racah G 1965 Ergeb. Exakt. Naturwiss. 37 28.

    MathSciNet  Google Scholar 

  10. Stone A P 1961 Proc. Camb. Phil. Soc. 57 460.

    Article  MATH  Google Scholar 

  11. El Baz E and Castel B 1972 Graphical Methods of Spin Algebras (New York: Marcel Dekker, Inc.).

    Google Scholar 

  12. Yutsys AP Levinson I B and Vanagas V V 1962 Mathematical Apparatus of the Theory of Anglar Momentum (Jerusalem: Israel Program for Scientific Translations).

    Google Scholar 

  13. Wigner E P 1959 Group Theory and its application to the quantum mechanics of atomic spectra (New York: Academic Press).

    MATH  Google Scholar 

  14. Judd B R 1963 Operator Techniques in Atomic Spectroscopy (New York: McGraw-Hill).

    Google Scholar 

  15. Judd B R 1967 Second Quantization and Atomic Spectroscopy (Baltimore: The Johns Hopkins Press).

    Google Scholar 

  16. Brink D M and Satchler G R 1968 Angular Momentum (Oxford: Clarendon Press).

    Google Scholar 

  17. Lindgren I and Morrison J 1982 Atomic Many-Body Theory (Berlin: Springer-Verlag).

    Google Scholar 

  18. Innes F R and Ufford C W 1958 Phys. Rev. 111, 194.

    Article  MATH  ADS  Google Scholar 

  19. Meyer J, Sepp W-D, Fricke B and Rosen A 1996 Comput. Phys. Commun. 96, 263.

    Article  ADS  Google Scholar 

  20. Atkins P W 1970 Molecular Quantum Mechanics. (Oxford: Clarendon Press).

    Google Scholar 

  21. Klahn B and Bingel W A 1977 Theoret. Chim. Acta (Berl.) 44, 9, 27.

    Article  MathSciNet  Google Scholar 

  22. Klahn B 1981 Adv. Quant. Chem. 13, 155.

    Article  Google Scholar 

  23. Rotenberg M 1962 Ann. Phys. (N. Y.) 19, 262.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Rotenberg M 1970 Adv. Atom. Molec. Phys. 6, 233.

    Article  Google Scholar 

  25. Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover).

    Google Scholar 

  26. Szegö G 1959 Orthogonal Polynomials (American Mathematical Society Colloquium Publication No. 23).

    Google Scholar 

  27. Courant R and Hilbert D 1953 Methods of Mathematical Physics, Vol. 1 (New York: Interscience Publishers).

    Google Scholar 

  28. Gerschgorin S 1931 Izvestiya Akad. Nauk. USSR, Ser. Math. 7, 749.

    Google Scholar 

  29. Wilkinson J H 1965 The Algebraic Eigenvalue Problem (Oxford: Clarendon Press).

    MATH  Google Scholar 

  30. Cársky P and Urban M 1980 Ab Initio Calculations. Methods and Applications in Chemistry. Springer-Verlag, Berlin.

    Google Scholar 

  31. Huzinaga S, Andzelm J, Klobukowski M, Radzio-Andzelm E, Sakai Y. and Tatewaki H (eds.) 1984 Gaussian Basis Sets for Molecular Calculations (Amsterdam: Elsevier).

    Google Scholar 

  32. Poirier R, Kari R, Csizmadia I G 1985 Handbook of Gaussian Basis Sets (Amsterdam: Elsevier).

    Google Scholar 

  33. Wilson S Basis Sets in [34].

    Google Scholar 

  34. Lawley K P (ed.) 1987 Adv. Chem. Phys. 69 (New York: John Wiley).

    Google Scholar 

  35. Schmidt M W and Ruedenberg K 1979 J. Chem. Phys. 71, 3951.

    Article  ADS  Google Scholar 

  36. Feller D F and Ruedenberg K 1979 Theor. Chim. Acta 52, 231.

    Article  Google Scholar 

  37. Wilson S 1982 Theor. Chim. Acta 61, 343.

    Article  ADS  Google Scholar 

  38. Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes (2nd edn) (Cambridge: Cambridge University Press).

    Google Scholar 

  39. Keller H B 1968 Numerical methods for two-point boundary value problems (Waltham, Mass: Blaisdell Publishing Co.).

    MATH  Google Scholar 

  40. Hall G and Watt J M 1976 Modern numerical methods for ordinary differential equations (Oxford: Clarendon Press).

    MATH  Google Scholar 

  41. Hull T E 1975 in Numerical solution of boundary value problems for ordinary differential equations (ed. A K Aziz) pp. 3–26 (New York: Academic Press).

    Google Scholar 

  42. Isaacson E and Keller H B 1966 Analysis of Numerical Methods (New York: John Wiley).

    MATH  Google Scholar 

  43. Mayers D F 1957 Proc. Roy. Soc. A 241 93.

    Article  ADS  MathSciNet  Google Scholar 

  44. Dahlquist G 1956 Math. Scand. 4, 33–53.

    MATH  MathSciNet  Google Scholar 

  45. Dahlquist G 1959 Kungl. Tekniska Hogskolans Handlingen No. 130 (1959).

    Google Scholar 

  46. Lambert J D 1973 Computational Methods in Ordinary Differential Equations (New York: John Wiley).

    MATH  Google Scholar 

  47. Coulthard M A 1967 Proc. Phys. Soc. 91 44.

    Article  ADS  Google Scholar 

  48. Smith F C and Johnson W R 1967 Phys. Rev. 160 136.

    Article  ADS  Google Scholar 

  49. Desclaux J P, Mayers D F and O’Brien F 1971 J. Phys. B: At. Mol. Phys. 4 631.

    Article  ADS  Google Scholar 

  50. Desclaux J-P 1975 Comput. Phys. Commun. 9, 31.

    Article  ADS  Google Scholar 

  51. Fox L and Goodwin E T 1949 Proc. Camb. Phil. Soc. 45 373–388.

    Article  MATH  MathSciNet  Google Scholar 

  52. Pereyra V 1966 Num. Math. 8 376.

    Article  MATH  MathSciNet  Google Scholar 

  53. Pereyra V 1967 Num. Math. 10 316.

    Article  MATH  MathSciNet  Google Scholar 

  54. Pereyra V 1968 Num. Math. 11 111.

    Article  MATH  MathSciNet  Google Scholar 

  55. Hildebrand F B 1956 Introduction to Numerical Analysis (New York: McGraw-Hill).

    MATH  Google Scholar 

  56. Modern Computing Methods 1961 (London: H M Stationery Office).

    Google Scholar 

  57. Norrington P H and Grant I P 1981 J. Phys. B: Atom. Molec. Phys. 14 L261.

    Article  ADS  Google Scholar 

  58. Fischer C F, Brage T and Jönsson P 1997 Computational Atomic Structure. An MCHF approach (Bristol and Philadelphia: Institute of Physics).

    Google Scholar 

  59. Coddington E A and Levinson N 1955 Theory of Ordinary Differential Equations. (New York: McGraw-Hill).

    MATH  Google Scholar 

  60. Atkinson F V 1964 Discrete and Continuous Boundary Value Problems (New York: Academic Press).

    Google Scholar 

  61. Stakgold I 1979 Green’s Functions and Boundary Value Problems (New York: John Wiley).

    MATH  Google Scholar 

  62. Thaller B 1992 The Dirac Equation (New York: Springer-Verlag).

    Google Scholar 

  63. Chodos A, Jaffe R L, Johnson K, Thorn C B and Weisskopf V F 1974 Phys. Rev. D 9, 3471.

    Article  ADS  MathSciNet  Google Scholar 

  64. Johnson W R, Blundell S A and Sapirstein J 1988 Phys. Rev. A 37, 307.

    Article  ADS  MathSciNet  Google Scholar 

  65. Goldstein H 1980 Classical Mechanics (2nd edition) (Reading, Mass.: Addison Wesley).

    MATH  Google Scholar 

  66. Landau L D and Lifshitz E M 1976 Mechanics(3rd edition) (Oxford: Pergamon Press).

    Google Scholar 

  67. McMurchie L E and Davidson E R 1978 J. Comput. Phys. 26, 218.

    Article  ADS  Google Scholar 

  68. Saunders V R 1983 in Methods of Computational Molecular Physics, Vol. 1, p. 1. ed. G H F Diercksen and S Wilson (Dordrecht: Reidel).

    Google Scholar 

  69. Quiney H M and Grant I P 2006 in preparation

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Supplementary mathematics. In: Grant, I.P. (eds) Relativistic Quantum Theory of Atoms and Molecules. Springer Series on Atomic, Optical, and Plasma Physics, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-0-387-35069-1_13

Download citation

Publish with us

Policies and ethics