Skip to main content

Hypoxia-Induced Gene Activity in Disused Oxidative Muscle

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 588))

Abstract

Hypoxia is an important modulator of the skeletal muscle’s oxidative phenotype. However, little is known regarding the molecular circuitry underlying the muscular hypoxia response and the interaction of hypoxia with other stimuli of muscle oxidative capacity. We hypothesized that exposure of mice to severe hypoxia would promote the expression of genes involved in capillary morphogenesis and glucose over fatty acid metabolism in active or disused soleus muscle of mice. Specifically, we tested whether the hypoxic response depends on oxygen sensing via the alpha-subunit of hypoxia-inducible factor-1 (HIF-1α). Spontaneously active wildtype and HIF-1α heterozygous deficient adult female C57B1/6 mice were subjected to hypoxia (PiO2 70 mmHg). In addition, animals were subjected to hypoxia after 7 days of muscle disuse provoked by hindlimb suspension. Soleus muscles were rapidly isolated and analyzed for transcript level alterations with custom-designed AtlasTM cDNA expression arrays (BD Biosciences) and cluster analysis of differentially expressed mRNAs. Multiple mRNA elevations of factors involved in dissolution and stabilization of blood vessels, glycolysis, and mitochondrial respiration were evident after 24 hours of hypoxia in soleus muscle. In parallel transcripts of fat metabolism were reduced. A comparable hypoxia-induced expression pattern involving complex alterations of the IGF-I axis was observed in reloaded muscle after disuse. This hypoxia response in spontaneously active animals was blunted in the HIF-1α heterozygous deficient mice demonstrating 35% lower HIF-1α mRNA levels. Our molecular observations support the concept that severe hypoxia provides HIF-1-dependent signals for remodeling of existing blood vessels, a shift towards glycolytic metabolism and altered myogenic regulation in oxidative mouse muscle and which is amplified by enhanced muscle use. These findings further imply differential mitochondrial turnover and a negative role of HIF-1α for control of fatty acid oxidation in skeletal muscle exposed to one day of severe hypoxia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair TH, Gay WJ and Montani JP. Growth regulation of the vascular system: evidence for a metabolic hypothesis. Am J Physiol 259: R393–R404, 1990.

    PubMed  CAS  Google Scholar 

  2. Allaire J, Maltais F, Doyon JF, Noel M, LeBlanc P, Carrier G, Simard C and Jobin J. Peripheral muscle endurance and the oxidative profile of the quadriceps in patients with COPD. Thorax 59: 673–678, 2004.

    Article  PubMed  CAS  Google Scholar 

  3. Antonucci R, Berton E, Huertas A, Laveneziana P and Palange P. Exercise physiology in COPD. Monaldi Arch Chest Dis 59: 134–139, 2003.

    PubMed  CAS  Google Scholar 

  4. Banchero N. Cardiovascular responses to chronic hypoxia. Annu Rev Physiol 49: 465–476, 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Bass A, Brdiczka D, Eyer P, Hofer S and Pette D. Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur J Biochem 10: 198–206, 1969.

    Article  PubMed  CAS  Google Scholar 

  6. Dapp C, Schmutz S, Hoppeler H and Fluck M. Transcriptional reprogramming and ultrastructure during atrophy and recovery of mouse soleus muscle. Physiol Cenomics 20:97–107, 2004.

    Article  CAS  Google Scholar 

  7. Djonov V, Baum O and Burri PH. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314: 107–117, 2003.

    Article  PubMed  Google Scholar 

  8. Eisen MB, Spellman PT, Brown PO and Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863–14868, 1998.

    Article  PubMed  CAS  Google Scholar 

  9. Gosker HR, Wouters EF, van der Vusse GJ and Schols AM. Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr 71: 1033–1047, 2000.

    PubMed  CAS  Google Scholar 

  10. Haddad F and Adams GR. Selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol 93: 394–403, 2002.

    PubMed  CAS  Google Scholar 

  11. Hepple RT. Skeletal muscle: microcirculatory adaptation to metabolic demand. Med Sci Sports Exerc 32: 117–123, 2000.

    Article  PubMed  CAS  Google Scholar 

  12. Hochberg Y and Benjamini Y. More powerful procedures for multiple signifi cance testing. Stat Med 9: 811–818, 1990.

    PubMed  CAS  Google Scholar 

  13. Hofer T, Wenger RH, Kramer MF, Ferreira GC and Gassmann M. Hypoxic up-regulation of erythroid 5-aminolevulinate synthase. Blood 101: 348–350, 2003.

    Article  PubMed  CAS  Google Scholar 

  14. Hopfl G, Ogunshola O and Gassmann M. HIFs and tumors-causes and consequences. Am J Physiol Regul Integr Comp Physiol 286: R608–R623, 2004.

    PubMed  Google Scholar 

  15. Hopfl G, Ogunshola O and Gassmann M. Hypoxia and high altitude. The molecular response. Adv Exp Med Biol 543: 89–115, 2003.

    PubMed  Google Scholar 

  16. Hoppeler H and Vogt M. Muscle tissue adaptations to hypoxia. J Exp Biol 204: 3133–3139, 2001.

    PubMed  CAS  Google Scholar 

  17. Hoppeler H, Luthi P, Claassen H, Weibel ER and Howald H. The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pfl ugers Arch 344: 217–232, 1973.

    Article  CAS  Google Scholar 

  18. Hoppeler H and Desplanches D. Muscle structural modifi cations in hypoxia. Int J Sports Med 13Suppl 1: S166–S168, 1992.

    Article  PubMed  Google Scholar 

  19. Hoppeler H. Vascular growth in hypoxic skeletal muscle. Adv Exp Med Biol 474: 277–286, 1999.

    PubMed  CAS  Google Scholar 

  20. Hoppeler H, Vogt M, Weibel ER and Fluck M. Response of skeletal muscle mitochondria to hypoxia. Exp Physiol 88: 109–119, 2003.

    Article  PubMed  CAS  Google Scholar 

  21. Hudlicka O. Is physiological angiogenesis in skeletal muscle regulated by changes in microcirculation? Microcirculation 5: 5–23, 1998.

    PubMed  CAS  Google Scholar 

  22. Jagoe RT, Lecker SH, Gomes M and Goldberg AL. Patterns of gene expression in atrophying skeletal muscles: response to food deprivation. FASEB J 16: 1697–1712, 2002.

    Article  PubMed  CAS  Google Scholar 

  23. Kilic N, Oliveira-Ferrer L, Wurmbach JH, Loges S, Chalajour F, Vahid SN, Weil J, Fernando M and Ergun S. Pro-angiogenic signaling by the endothelial presence of CEACAM1. J Biol Chem 280: 2361–2369, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Mador MJ and Bozkanat E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir Res 2: 216–224, 2001.

    Article  PubMed  CAS  Google Scholar 

  25. Mason SD, Howlett RA, Kim MJ, Olfert IM, Hogan MC, McNulty W, Hickey RP, Wagner PD, Kahn CR, Giordano FJ and Johnson RS. Loss of skeletal muscle HIF-1alpha results in altered exercise endurance. PLoS Biol 2: e288, 2004.

    Article  PubMed  CAS  Google Scholar 

  26. Mathieu-Costello O. Muscle adaptation to altitude: tissue capillarity and capacity for aerobic metabolism. High Alt Med Biol 2: 413–425, 2001.

    Article  PubMed  CAS  Google Scholar 

  27. McGuigan MR, Bronks R, Newton RU, Sharman MJ, Graham JC, Cody DV and Kraemer WJ. Resistance training in patients with peripheral arterial disease: effects on myosin isoforms, fi ber type distribution, and capillary supply to skeletal muscle. J Gerontol A Biol Sci Med Sci 56: B302–B310, 2001.

    PubMed  CAS  Google Scholar 

  28. Millis RM, Stephens TA, Harris G, Anonye C and Reynolds M. Relationship between intracellular oxygenation and neuromuscular conduction during hypoxic hypoxia. Life Sci 35: 2443–2451, 1984.

    Article  PubMed  CAS  Google Scholar 

  29. Narici MV and Kayser B. Hypertrophie response of human skeletal muscle to strength training in hypoxia and normoxia. Eur J Appl Physiol Occup Physiol 70: 213–219, 1995.

    Article  PubMed  CAS  Google Scholar 

  30. Nilsson I, Shibuya M and Wennstrom S. Differential activation of vascular genes by hypoxia in primary endothelial cells. Exp Cell Res 299: 476–485, 2004.

    Article  PubMed  CAS  Google Scholar 

  31. Ning W, Chu TJ, Li CJ, Choi AM and Peters DG. Genome-wide analysis of the endothelial transcriptome under short-term chronic hypoxia. Physiol Genomics 18: 70–78, 2004.

    Article  PubMed  CAS  Google Scholar 

  32. Nioka S, McCully K, McClellan G, Park J and Chance B. Oxygen transport and intracellular bioenergetics on stimulated cat skeletal muscle. Adv Exp Med Biol 510: 267–272, 2003.

    PubMed  CAS  Google Scholar 

  33. Pastoris O, Foppa P, Catapano M and Dossena M. Effects of hypoxia on enzyme activities in skeletal muscle of rats of different ages. An attempt at pharmacological treatment. Pharmacol Res 32: 375–381, 1995.

    Article  PubMed  CAS  Google Scholar 

  34. Pette D and Spamer C. Metabolic properties of muscle fi bers. Fed Proc 45: 2910–2914, 1986.

    PubMed  CAS  Google Scholar 

  35. Raguso CA, Guinot SL, Janssens JP, Kayser B and Pichard C. Chronic hypoxia: common traits between chronic obstructive pulmonary disease and altitude. Curr Opin Clin Nutr Metab Care 7: 411–417, 2004.

    Article  PubMed  CAS  Google Scholar 

  36. Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS and Wagner PD. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest 96: 1916–1926, 1995.

    PubMed  CAS  Google Scholar 

  37. Sauleda J, Garcia-Palmer F, Wiesner RJ, Tarraga S, Halting I, Tomas P, Gomez C, Saus C, Palou A and Agusti AG. Cytochrome oxidase activity and mitochondrial gene expression in skeletal muscle of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157: 1413–1417, 1998.

    PubMed  CAS  Google Scholar 

  38. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88: 1474–1480, 2000.

    PubMed  CAS  Google Scholar 

  39. Slate RK, Ryan M and Bongard FS. Dependence of tissue oxygen on oxygen delivery. J Surg Res 61: 201–205, 1996.

    Article  PubMed  CAS  Google Scholar 

  40. Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DA, Bauer C, Gassmann M and Candinas D. HIF-1 is expressed in normoxic tissue and displays an organ-specifi c regulation under systemic hypoxia. FASEB J 15: 2445–2453, 2001.

    PubMed  CAS  Google Scholar 

  41. Tsai AG, Johnson PC and Intaglietta M. Oxygen gradients in the microcirculation. Physiol Rev 83: 933–963, 2003.

    PubMed  CAS  Google Scholar 

  42. Weineck J. Optimales Training. Erlangen: Perimed Fachbuch-Verlagsgesellschaft, 1983.

    Google Scholar 

  43. Wittwer M, Billeter R, Hoppeler H and Fluck M. Regulatory gene expression in skeletal muscle of highly endurance-trained humans. Acta Physiol Scand 180: 217–227, 2004.

    Article  PubMed  CAS  Google Scholar 

  44. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ and Holash J. Vascularspecifi c growth factors and blood vessel formation. Nature 407: 242–248, 2000.

    Article  PubMed  CAS  Google Scholar 

  45. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, Sylvester JT and Semenza GL. Impaired physiological responses to chronic hypoxia in mice partially defi cient for hypoxia-inducible factor lalpha. J Clin Invest 103: 691–696, 1999

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Däpp, C., Gassmann, M., Hoppeler, H., Flück, M. (2006). Hypoxia-Induced Gene Activity in Disused Oxidative Muscle. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia and Exercise. Advances in Experimental Medicine and Biology, vol 588. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34817-9_16

Download citation

Publish with us

Policies and ethics