Skip to main content

Modeling of low enrichment uranium fuels for research and test reactors

  • Chapter
Applied Computational Materials Modeling
  • 2908 Accesses

Abstract

During the last decade, a considerable international effort to develop a low enriched uranium fuel for research and test reactors with high uranium density has been underway. UMo-based alloys are the best candidates for achieving this conversion although several failures in U-Mo dispersion fuel plates like pillowing and large porosities have been reported during irradiation experiments, introducing obstacles to further developments. In this chapter we apply the BFS method to model the behavior of the interface Al/UMox and the interdiffusion of additives, as Si and Ge, added to the Al matrix, in order to identify the driving forces responsible for the observed effects. The basis features characterizing the real system are identified in this modeling effort as are: the trend to interfacial compound formation, the Al “stopping power” of increasing Mo concentration, the depletion of Si in the Al matrix and the reduced diffusion of Al into UMo with high Si concentration. These and other basic questions must be answered in order to have a better understanding of the basic behavior of this fuel previous to its qualification. While the approach presented in this chapter is relevant to other applications as well, it is important to highlight the influence that modeling techniques can have in problems of high technological importance, and the benefits arising from virtual experiments and detailed understanding from simple atomistic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 10CFR50, Limiting the use of highly enriched uranium in domestically licensed research reactors, Federal Register, vol. 51, no. 377, 1986.

    Google Scholar 

  2. J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus and T.C. Wiencek, Development of very-high-density low-enriched-uranium fuels, Nucl. Eng. Des. 178, 119 (1997).

    Article  CAS  Google Scholar 

  3. M. Ugajin, A. Itoh, M. Akabori, N. Ooka and Y. Nakakura, Irradiation behavior of high uranium-density alloys in the plate fuels, J. Nucl. Mater. 254, 78 (1998).

    Article  CAS  Google Scholar 

  4. M.K. Meyer, T.C. Wiencek, S.L. Hayes and G.L. Hofman, Irradiation behavior of U6MnAl dispersion fuel elements, J. Nucl. Mater. 278, 358 (2000).

    Article  CAS  Google Scholar 

  5. G.L. Hofman, R.F. Domagala and G.L. Copel, Irradiation behavior of low-enriched U6Fe-Al dispersion fuel elements, J. Nucl. Mater. 150, 238 (1987).

    Article  CAS  Google Scholar 

  6. M.K. Meyer, G.L. Hofman, T.C. Wiencek, S.L. Hayes and J.L. Snelgrove, Irradiation behavior of U-Nb-Zr alloy dispersed in aluminum, J. Nucl. Mater. 299, 175 (2001).

    Article  CAS  Google Scholar 

  7. M.K. Meyer, G.L. Hofman, S.L. Hayes, C.R. Clark, T.C. Wiencek, J.L. Snelgrove, R.V. Strain and K.-H. Kim, Low-temperature irradiation behavior of uranium molybdenum alloy dispersion fuel, J. Nucl. Mater. 304, 221 (2002).

    Article  CAS  Google Scholar 

  8. D.B. Lee, K.H. Kim, C.K. Kim, Thermal compatibility studies of unirradiated U-Mo alloys dispersed in aluminum, J. Nucl. Mater. 250, 79 (1997).

    Article  CAS  Google Scholar 

  9. K.H. Kim, J. Park, C.K. Kim, G.L. Hofman y M.K. Meyer, Irradiation behavior of atomized U-10 wt% Mo alloy aluminum matrix dispersion fuel meat at low temperature, Nucl. Eng. and Design 211, 229 (2002).

    Article  CAS  Google Scholar 

  10. G.L. Hofman, M.R. Finlay and Y.S. Kim, Post-irradiation Analysis of Low Enriched U-Mo/Al Dispersion Fuel Miniplate Tests, RERTR-4 and 5, International Meeting on RERTR, November 7–12, 2004, Vienna, Austria.

    Google Scholar 

  11. M.I. Mirandou, S.N. Balart, M. Ortiz and M.S. Granovsky, Characterization of the Reaction Layer in U-7 wt% Mo/Al Diffusion Couples, J. Nucl. Mater. 323, 29 (2003).

    Article  CAS  Google Scholar 

  12. P. Lemoine, F. Huet, B. Guigon, C. Jarousse and S. Guillot, French Development and Qualification Programs for the JHR Project Fuel Element, International Meeting on RERTR, November 7–12, 2004, Vienna, Austria.

    Google Scholar 

  13. G. Bozzolo and J.E. Garcés, Atomistic modeling of surface alloys, Surface alloys and alloy surfaces, The Chemical Physics of Solid Surfaces, Vol. 10, Elsevier, 2002.

    Google Scholar 

  14. G. Bozzolo, J. Khalil, M. Bartow and R.D. Noebe, Atomistic modeling of ternary and quaternary ordered intermetallic alloys, Mat. Res. Soc. Symp. Proc. 646, N6.2 (2001).

    Google Scholar 

  15. A. Wilson, G. Bozzolo, R.D. Noebe and J. Howe, Experimental Verification of the Theoretical Prediction of the Phase Structure of a Ni−Al−Ti−Cr−Cu Alloy, Acta Mater. 50, 2787 (2002).

    Article  CAS  Google Scholar 

  16. G. Bozzolo, R.D. Noebe and H. Mosca, Atomistic Modeling of Pd Site Preference in NiTi, J. Alloys Compds. 386, 125 (2005).

    Article  CAS  Google Scholar 

  17. P. Blaha, K. Schwartz, and J. Luitz, WIEN97, Vienna University of Technology. Improved and updated Unix version of the copyrighted WIEN code, P. Blaha, K. Schwartz, P. Sorantin and S. Trickey.

    Google Scholar 

  18. J.R. Smith, T. Perry, A. Banerjea, J. Ferrante and G. Bozzolo, Equivalent crystal theory of metals and semiconductor surfaces and defects, Phys. Rev. B 44, 6444 (1991).

    Article  CAS  Google Scholar 

  19. R. Hultgren, R.L. Orr, P.D. Anderson and K.K. Kelley, Selected values of the Thermodynamics Properties of Binary Alloys, Wiley, New York, 1963.

    Google Scholar 

  20. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary Alloy Phase Diagrams, ASM International, 1990.

    Google Scholar 

  21. A.E. Dwight, The Uranium Molybdenum Equilibrium Diagram Below 900 C, J. Nucl. Mater. 2, 81 (1960).

    Article  CAS  Google Scholar 

  22. J. Kolaczkiewicz, M. Hochol and S. Zuber, LEED, AES, Δφ and EELS study of Al on Mo(110), Surf. Sci. 247, 284 (1991).

    Article  CAS  Google Scholar 

  23. D. Subramanyam, M. Notis and J. Goldstein, Microstructural investigation of intermediate phases formation in Uranium-Aluminum diffusion couples, Met. Trans. 16A, 589 (1985).

    CAS  Google Scholar 

  24. R. Pearce, R. Giles and L. Tavender, Preparation and properties of UAlx coatings formed on uranium via the electrophoretic deposition of Aluminum powder, J. Nucl. Mat. 24, 129 (1967).

    Article  CAS  Google Scholar 

  25. J. Buddery, M. Clark, R. Pearce and J. Stobbs, The development and properties of an oxidation resistant coating for uranium, J. Nucl. Mat. 13, 169 (1964).

    Article  CAS  Google Scholar 

  26. M. Mirandou, M. Granovsky, M. Ortiz, S. Balart, S. Aricó and L. Gribaudo, Reaction layer between U-7wt%Mo and Al alloys in chemical diffusion couples, International Meeting on RERTR, November 7–12, 2004, Vienna, Austria.

    Google Scholar 

  27. M.A. Shaikh, M. Iqbal, J.I. Akhter, M. Ahmad, Q. Zaman, M. Akhtar, M.J. Moughal, Z. Ahmed and M. Farooque, Alloying of immiscible Ge with Al by ball milling, Mater. Lett. 57, 3682 (2003).

    Article  Google Scholar 

  28. K. Chattopadhyay, X.-M. Wang, K. Aoki and T. Masumoto, Metastable phase formation during mechanical alloying of Al-Ge and Al-Si alloys, J. Alloys Compds. 232, 224 (1996).

    Article  CAS  Google Scholar 

  29. S. Srikanth, D. Sanyal and P. Ramachandrarao, A re-evaluation of the Al-Ge system, CALPHAD 20, 321 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Garcés, J., Bozzolo, G., Rest, J., Hofman, G. (2007). Modeling of low enrichment uranium fuels for research and test reactors. In: Bozzolo, G., Noebe, R.D., Abel, P.B., Vij, D. (eds) Applied Computational Materials Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34565-9_14

Download citation

Publish with us

Policies and ethics