Skip to main content

The Endothelium: The Cradle of Definitive Hematopoiesis?

  • Chapter

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

It has been more than 80 years since a lineage relationship between hematopoietic and endothelial cells in the form of a bipotential precursor—the hemangioblast—was first proposed. Evidence has accumulated that supports the existence of such a cell, however, identification and isolation of hemangioblasts from embryos has so far not been achieved. The situation has been further complicated by the suggestion that different types of hemangioblasts with varying degrees of maturity exist, some of which may be restricted to either primitive or definitive hematopoietic lineages. Furthermore, recent work has pointed to a specialized group of endothelial cells that possess hemogenic potential and may represent an intermediate step in the generation of definitive hematopoietic stem cells. The following chapter provides a brief summary of recent developments in the investigation into the origins of hematopoiesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Graham GJ, Wright EG. Hematopoietic stem cells: their heterogeneity and regulation. Int J Exp Pathol 1997; 78(4):197–218.

    Article  CAS  PubMed  Google Scholar 

  2. Dzierzak E, Medvinsky A, de Bruijn M. Qualitative and quantitative aspects of haematopoietic cell development in the mammalian embryo. Immunol Today 1998; 19(5):228–36.

    Article  CAS  PubMed  Google Scholar 

  3. Keller G, Lacaud G, Robertson S. Development of the hematopoietic system in the mouse. Exp Hematol 1999; 27(5):777–87.

    Article  CAS  PubMed  Google Scholar 

  4. Brotherton TW, Chui DH, Gauldie J et al. Hemoglobin ontogeny during normal mouse fetal development. Proc Natl Acad Sci USA 1979; 76(6):2853–7.

    Article  CAS  PubMed  Google Scholar 

  5. Cline MJ, Moore MA. Embryonic origin of the mouse macrophage. Blood 1972; 39(6):842–9.

    CAS  PubMed  Google Scholar 

  6. Faust N, Huber MC, Sippel AE et al. Different macrophage populations develop from embryonic/fetal and adult hematopoietic tissues. Exp Hematol 1997; 25(5):432–44.

    CAS  PubMed  Google Scholar 

  7. Muller AM, Medvinsky A, Strouboulis J et al. Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1994; 1(4):291–301.

    Article  CAS  PubMed  Google Scholar 

  8. Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86(6):897–906.

    Article  CAS  PubMed  Google Scholar 

  9. Cumano A, Dieterlen-Lievre F, Godin I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 1996; 86(6):907–16.

    Article  CAS  PubMed  Google Scholar 

  10. Yoder MC, Hiatt K, Dutt P et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 1997; 7(3):335–44.

    Article  CAS  PubMed  Google Scholar 

  11. Palis J, Robertson S, Kennedy M et al. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 1999; 126(22):5073–84.

    CAS  PubMed  Google Scholar 

  12. Cumano A, Ferraz JC, Klaine M et al. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 2001; 15(3):477–85.

    Article  CAS  PubMed  Google Scholar 

  13. Kumaravelu P, Hook L, Morrison AM et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs: role of the aorta-gonad-meso-nephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 2002; 129(21):4891–9.

    CAS  PubMed  Google Scholar 

  14. de Bruijn MF, Speck NA, Peeters MC et al. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 2000; 19(ll):2465–74.

    Article  PubMed  Google Scholar 

  15. Dieterlen-Lievre F, Martin C. Diffuse intraembryonic hemopoiesis in normal and chimeric avian development. Dev Biol 1981; 88(1):180–91.

    Article  CAS  PubMed  Google Scholar 

  16. Tavian M, Coulombel L, Luton D et al. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 1996; 87(l):67–72.

    CAS  PubMed  Google Scholar 

  17. Garcia-Porrero JA, Godin IE, Dieterlen-Lievre F. Potential intraembryonic hemogenic sites at pre-liver stages in the mouse. Anat Embryol (Berl) 1995; 192(5):425–35.

    CAS  Google Scholar 

  18. Ciau-Uitz A, Walmsley M, Patient R. Distinct origins of adult and embryonic blood in Xenopus. Cell 2000; 102(6):787–96.

    Article  CAS  PubMed  Google Scholar 

  19. Thompson MA, Ransom DG, Pratt SJ et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev Biol 1998; 197(2):248–69.

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Porrero JA, Manaia A, Jimeno J et al. Antigenic profiles of endothelial and hemopoietic lineages in murine intraembryonic hemogenic sites. Dev Comp Immunol 1998; 22(3):303–19.

    Article  CAS  PubMed  Google Scholar 

  21. Oberlin E, Tavian M, Blazsek I et al. Blood-forming potential of vascular endothelium in the human embryo. Development 2002; 129(17):4l47–57.

    Google Scholar 

  22. Labastie MC, Cortes F, Romeo PH et al. Molecular identity of hematopoietic precursor cells emerging in the human embryo. Blood 1998; 92(10):3624–35.

    CAS  PubMed  Google Scholar 

  23. Yoshida H, Takakura N, Hirashima M et al. Hematopoietic tissues, as a playground of receptor tyrosine kinases of the PDGF-receptor family. Dev Comp Immunol 1998; 22(3):321–32.

    Article  CAS  PubMed  Google Scholar 

  24. Tavian M, Cortes F, Charbord P et al. Emergence of the haematopoietic system in the human embryo and foetus. Haematologica 1999; 84 Suppl EHA-4:1–3.

    PubMed  Google Scholar 

  25. Petrenko O, Beavis A, Klaine M et al. The molecular characterization of the fetal stem cell marker AA4. Immunity 1999; 10(6):691–700.

    Article  CAS  PubMed  Google Scholar 

  26. Brachtendorf G, Kuhn A, Samulowitz U et al. Early expression of endomucin on endothelium of the mouse embryo and on putative hematopoietic clusters in the dorsal aorta. Dev Dyn 2001; 222(3):4l0–9.

    Article  Google Scholar 

  27. Watt SM, Butler LH, Tavian M et al. Functionally defined CD 164 epitopes are expressed on CD34(+) cells throughout ontogeny but display distinct distribution patterns in adult hematopoietic and nonhematopoietic tissues. Blood 2000; 95(10):3113–24.

    CAS  PubMed  Google Scholar 

  28. Shalaby F, Ho J, Stanford WL et al. A requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997; 89(6):981–90.

    Article  CAS  PubMed  Google Scholar 

  29. Manaia A, Lemarchandel V, Klaine M et al. Lmo2 and GATA-3 associated expression in intraembryonic hemogenic sites. Development 2000; 127(3):643–53.

    CAS  PubMed  Google Scholar 

  30. North T, Gu TL, Stacy T et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 1999; 126(11):2563–75.

    CAS  PubMed  Google Scholar 

  31. Vandenbunder B, Pardanaud L, Jaffredo T et al. Complementary patterns of expression of c-ets 1, c-myb and c-myc in the blood-forming system of the chick embryo. Development 1989; 107(2):265–74.

    CAS  PubMed  Google Scholar 

  32. Godin I, Cumano A. The hare and the tortoise: an embryonic haematopoietic race. Nat Rev Immunol 2002; 2(8):593–604.

    CAS  PubMed  Google Scholar 

  33. Jaffredo T, Gautier R, Eichmann A et al. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 1998; 125(22):4575–83.

    CAS  PubMed  Google Scholar 

  34. de Bruijn MF, Ma X, Robin C et al. Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity 2002; 16(5):673–83.

    Article  PubMed  Google Scholar 

  35. Ma X, Robin C, Ottersbach K et al. The Ly-6A (Sca-1) GFP Transgene is Expressed in all Adult Mouse Hematopoietic Stem Cells. Stem Cells 2002; 20(6):514–21.

    Article  CAS  PubMed  Google Scholar 

  36. Ody C, Vaigot P, Quere P et al. Glycoprotein IIb-IIIa is expressed on avian multilineage hematopoietic progenitor cells. Blood 1999; 93(9):2898–906.

    CAS  PubMed  Google Scholar 

  37. North TE, de Bruijn MF, Stacy T et al. Runxl expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 2002; 16(5):66l–72.

    Article  Google Scholar 

  38. Sabin F. Studies on the origin of blood vessels and of red blood corpuscules as seen in the living blastoderm of chicks during the second day of incubation. Contrib. Embryol. Carnegie Inst. of Washington 1920; 9:214–262.

    Google Scholar 

  39. Murray PDF. The Development in vitro of the Blood of the early Chick Embryo. Proc R Soc London 1932; 111:497–521.

    Article  CAS  Google Scholar 

  40. Watt SM, Gschmeissner SE, Bates PA. PECAM-1: its expression and function as a cell adhesion molecule on hemopoietic and endothelial cells. Leuk Lymphoma 1995; 17(3–4):229–44.

    Article  CAS  PubMed  Google Scholar 

  41. Young PE, Baumhueter S, Lasky LA. The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development. Blood 1995; 85(1):96–105.

    CAS  PubMed  Google Scholar 

  42. Eichmann A, Corbel C, Nataf V et al. Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc Natl Acad Sci USA 1997; 94(10):5l4l–6.

    Article  Google Scholar 

  43. Kabrun N, Buhring HJ, Choi K et al. Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 1997; 124(10):2039–48.

    CAS  PubMed  Google Scholar 

  44. Fong GH, Zhang L, Bryce DM et al. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 1999; 126(13):3015–25.

    CAS  PubMed  Google Scholar 

  45. Takakura N, Huang XL, Naruse T et al. Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis. Immunity 1998; 9(5):677–86.

    Article  CAS  PubMed  Google Scholar 

  46. Shalaby F, Rossant J, Yamaguchi TP et al. Failure of blood-island formation and vasculogenesis in Flk-l-deficient mice. Nature 1995; 376(6535):62–6.

    Article  CAS  PubMed  Google Scholar 

  47. Visvader JE, Fujiwara Y, Orkin SH. Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev 1998; 12(4):473–9.

    Article  CAS  PubMed  Google Scholar 

  48. Shivdasani RA, Mayer EL, Orkin SH. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 1995; 373(6513):432–4.

    Article  CAS  PubMed  Google Scholar 

  49. Robb L, Lyons I, Li R et al. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the sci gene. Proc Natl Acad Sci USA 1995; 92(15):7075–9.

    Article  CAS  PubMed  Google Scholar 

  50. Choi K, Kennedy M, Kazarov A et al. A common precursor for hematopoietic and endothelial cells. Development 1998; 125(4):725–32.

    CAS  PubMed  Google Scholar 

  51. Chung YS, Zhang WJ, Arentson E et al. Lineage analysis of the hemangioblast as defined by FLK1 and SCL expression. Development 2002; 129(23):5511–20.

    Article  CAS  PubMed  Google Scholar 

  52. Nishikawa SI, Nishikawa S, Hirashima M et al. Progressive lineage analysis by cell sorting and culture identifies FLKl+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 1998; 125(9):1747–57.

    CAS  PubMed  Google Scholar 

  53. Hidaka M, Stanford WL, Bernstein A. Conditional requirement for the Flk-1 receptor in the in vitro generation of early hematopoietic cells. Proc Natl Acad Sci USA 1999; 96(13):7370–5.

    Article  CAS  PubMed  Google Scholar 

  54. Schuh AC, Faloon P, Hu QL et al. In vitro hematopoietic and endothelial potential of flk-1(-/-) embryonic stem cells and embryos. Proc Natl Acad Sci USA 1999; 96(5):2159–64.

    Article  CAS  PubMed  Google Scholar 

  55. Cho NK, Keyes L, Johnson E et al. Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell 2002; 108(6):865–76.

    Article  CAS  PubMed  Google Scholar 

  56. Moore MA, Metcalf D. Ontogeny of the hematopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 1970; 18(3):279–96.

    Article  CAS  PubMed  Google Scholar 

  57. Dieterlen-Lievre F. On the origin of hematopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morph 1975; 33:607–619.

    CAS  PubMed  Google Scholar 

  58. Lassila O, Martin C, Toivanen P et al. Erythropoiesis and lymphopoiesis in the chick yolk-sac-embryo chimeras: contribution of yolk sac and intraembryonic stem cells. Blood 1982; 59(2):377–81.

    CAS  PubMed  Google Scholar 

  59. Minehata K, Mukouyama YS, Sekiguchi T et al. Macrophage colony stimulating factor modulates the development of hematopoiesis by stimulating the differentiation of endothelial cells in the AGM region. Blood 2002; 99(7):2360–8.

    Article  CAS  PubMed  Google Scholar 

  60. Dieterlen-Lievre F. Hematopoiesis: progenitors and their genetic program. Curr Biol 1998; 8(20):R727–30.

    Article  CAS  PubMed  Google Scholar 

  61. Nishikawa SI. A complex linkage in the developmental pathway of endothelial and hematopoietic cells. Curr Opin Cell Biol 2001; 13(6):673–8.

    Article  CAS  PubMed  Google Scholar 

  62. Ogawa M, Fraser S, Fujimoto T et al. Origin of hematopoietic progenitors during embryogenesis. Int Rev Immunol 2001; 20(l):21–44.

    CAS  PubMed  Google Scholar 

  63. Wood HB, May G, Healy L et al. CD34 expression patterns during early mouse development are related to modes of blood vessel formation and reveal additional sites of hematopoiesis. Blood 1997; 90(6):2300–11.

    CAS  PubMed  Google Scholar 

  64. Jaffredo T, Gautier R, Brajeul V et al. Tracing the progeny of the aortic hemangioblast in the avian embryo. Dev Biol 2000; 224(2):204–14.

    Article  CAS  PubMed  Google Scholar 

  65. Nishikawa SI, Nishikawa S, Kawamoto H et al. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 1998; 8(6):761–9.

    Article  CAS  PubMed  Google Scholar 

  66. Fraser ST, Ogawa M, Yu RT et al. Definitive hematopoietic commitment within the embryonic vascular endothelial-cadherin(+) population. Exp Hematol 2002; 30(9):1070–8.

    Article  CAS  PubMed  Google Scholar 

  67. Ogawa M, Kizumoto M, Nishikawa S et al. Expression of alpha4-integrin defines the earliest precursor of hematopoietic cell lineage diverged from endothelial cells. Blood 1999; 93(4):1168–77.

    CAS  PubMed  Google Scholar 

  68. Hamaguchi I, Huang XL, Takakura N et al. In vitro hematopoietic and endothelial cell development from cells expressing TEK receptor in murine aorta-gonad-mesonephros region. Blood 1999; 93(5):1549–56.

    CAS  PubMed  Google Scholar 

  69. Pardanaud L, Luton D, Prigent M et al. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 1996; 122(5):1363–71.

    CAS  PubMed  Google Scholar 

  70. Pardanaud L, Dieterlen-Lievre F. Manipulation of the angiopoietic/hemangiopoietic commitment in the avian embryo. Development 1999; 126(4):6l7–27.

    Google Scholar 

  71. Marshall CJ, Moore RL, Thorogood P et al. Detailed characterization of the human aorta-gonad-mesonephros region reveals morphological polarity resembling a hematopoietic stromal layer. Dev Dyn 1999; 215(2):139–47.

    Article  CAS  PubMed  Google Scholar 

  72. Takahashi Y, Imanaka T, Takano T. Spatial and temporal pattern of smooth muscle cell differentiation during development of the vascular system in the mouse embryo. Anat Embryol (Berl) 1996; 194(5):515–26.

    CAS  Google Scholar 

  73. Okuda T, van Deursen J, Hiebert SW et al. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84(2):321–30.

    Article  CAS  PubMed  Google Scholar 

  74. Wang Q, Stacy T, Binder M et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 1996; 93(8):3444–9.

    Google Scholar 

  75. Yokomizo T, Ogawa M, Osato M et al. Requirement of Runxl/AMLl/PEBP2alphaB for the generation of haematopoietic cells from endothelial cells. Genes Cells 2001; 6(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  76. Kennedy M, Firpo M, Choi K et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 1997; 386(6624):488–93.

    Article  CAS  PubMed  Google Scholar 

  77. Walmsley M, Ciau-Uitz A, Patient R. Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. Development 2002; 129(24):5683–95.

    Article  CAS  PubMed  Google Scholar 

  78. Lacaud G, Gore L, Kennedy M et al. Runxl is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood 2002; 100(2):458–66.

    Article  CAS  PubMed  Google Scholar 

  79. Fujimoto T, Ogawa M, Minegishi N et al. Step-wise divergence of primitive and definitive haematopoietic and endothelial cell lineages during embryonic stem cell differentiation. Genes Cells 2001; 6(12):1113–27.

    Article  CAS  PubMed  Google Scholar 

  80. Hara T, Nakano Y, Tanaka M et al. Identification of podocalyxin-like protein 1 as a novel cell surface marker for hemangioblasts in the murine aorta-gonad-mesonephros region. Immunity 1999; ll(5):567–78.

    Article  Google Scholar 

  81. Endoh M, Ogawa M, Orkin S et al. SCL/tal-1-dependent process determines a competence to select the definitive hematopoietic lineage prior to endothelial differentiation. EMBO J 2002; 21(24):6700–8.

    Article  CAS  PubMed  Google Scholar 

  82. Gunsilius E, Duba HC, Petzer AL et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 2000; 355(9216):1688–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Ottersbach, K., Dzierzak, E. (2006). The Endothelium: The Cradle of Definitive Hematopoiesis?. In: Hematopoietic Stem Cell Development. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33535-3_7

Download citation

Publish with us

Policies and ethics